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Abstract
In the literature, many generalizations of continued fractions have been introduced,
and for each of them, convergence results have been proved. In this paper, we
suggest a definition of generalized continued fractions which covers a great variety of
former generalizations as special cases. As a starting point for a convergence theory,
we prove a Pringsheim-type convergence criterion which includes criteria for the
aforementioned special cases. Furthermore, we address several fields in which our
definition may be applied.
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1 Introduction and definitions
Infinite continued fractions have the form

b0 +
a1

b1 + a2

b2+
.. .

= lim
N→∞ b0 +

a1

b1 + a2

b2+
...

bN–1+ aN
bN

,

where various domains for the coefficients an, bn can be considered depending on the
mathematical field the continued fraction is used in. In early approaches (sometimes re-
ferred to as simple continued fractions), an = 1 and bn ∈ N were required, yielding unique
representations for irrational numbers, with the approximants being the best rational
approximations. Later on, continued fractions with complex coefficients an, bn were in-
troduced and used for characterizing subdominant solutions of second-order difference
equations or for finding representations of special analytic functions. Most of the theory
is based on the fact that the approximants can be rewritten as

b0 +
a1

b1 + a2

b2+
...

bN–1+ aN
bN

=
AN

BN
,
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where both (AN ) and (BN ) meet the same recurrence relation XN = XN–1bN + XN–2aN ,
subject to some initial conditions. We refer to [31, 32] for details on these (and more)
basic facts.

Motivated by applications in different areas of mathematics (such as number theory,
ergodic theory, linear difference equations, Padé approximants), researchers introduced
many generalizations of continued fractions in the literature. Discussing all applications
is far beyond the scope of this paper. Instead, we focus on the characterization of special
solutions of linear difference equations by means of continued fractions. Starting from the
second-order difference equation

xn = bnxn+1 + an+1xn+2, n = 0, 1, 2, . . .

with two-dimensional space of solution (we assume an+1 �= 0 for all n ∈ N0), it seems nat-
ural to write

xn

xn+1
= bn +

an+1
xn+1
xn+2

= bn +
an+1

bn+1 + an+2

bn+2+
.. .

,

that is, the proportion of two successive elements of a solution x = (xn) is given by a contin-
ued fraction. Obviously, this can only be true for a one-dimensional subspace of solutions.
It turned out that the subdominant solution is characterized by continued fractions if there
is one, see [32, Sect. 20] which was later used for backward computing methods, see, e.g.,
[15, 24]. A natural motivation for generalizations was to consider difference equations

xn = bnxn+1 +
n+r–1∑

m=n+1

anmxm+1

of order r or infinite difference equations (‘sum equations’ as literal translations of the
German term ‘Summengleichungen’)

xn = bnxn+1 +
∞∑

m=n+1

anmxm+1,

and to look for characterizations of a certain subspace of solutions. Another natural gen-
eralization concerns second-order difference equations

cn–1xn = bnxn+1 + an+1xn+2, n = 0, 1, 2, . . . , (1)

where cn–1, bn, an+1, xn are not complex numbers anymore, but elements of some more
general structure, e.g., cn–1, bn, an+1 are matrices and the xn are vectors. In a quite general
setting, we might discuss such equations in some Banach algebra R with unity I . There-
fore, we find various generalizations of continued fractions in the literature:

– The recurrence relation for both numerators An and denominators Bn is generalized.
This includes the intuitive replacement of the second-order difference equation by
schemes of higher order [9, 27, 29], infinite order [30], or other recurrence schemes
[23]. These generalizations correspond to solutions of higher-order difference
equations, sum equations, . . . in C.
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– Instead of an, bn ∈C, the coefficients in this recurrence scheme are elements from
some more general structure R. In general, for defining continued fractions or
generalizations, it is appropriate to require that R is a Banach algebra with unity I , in
literature (e.g., [23, 33]), matrix algebras were considered. Such continued fractions
correspond to special solutions of difference equations of the form (1) with cn–1 = I .

– The coefficients an, bn ∈C in the original representation are replaced by coefficients
an, bn ∈R directly. This replacement might lead to b0 + a1(b0 + · · · )–1 or
b0 + (b1 + · · · )–1, but due to the absence of commutativity, the general form will be

b0 + a1(b1 + · · · )–1c1

with two sequences (an) and (cn) of partial numerators (see, e.g., [11, 39]). These
continued fractions can characterize solutions of the general difference equation (1)
for arbitrary cn–1. Unfortunately for this construction, there are no recurrence
schemes for sequences (An), (Bn), (Cn) for which the N th approximant can be written
as AN B–1

N , B–1
N CN , or AN B–1

N CN .
Therefore, the last type of generalization is not a special case of the first one (or the first two
ones) and vice versa. This is true for many generalizations of continued fractions found in
the literature. Hence, for each single generalization, convergence criteria were published.
The main motivation of this paper is the question

Is there a unified definition which contains all the
generalizations cited above as special cases?

The answer will be ‘Yes’. The next question is

Is it possible to find unified proofs for convergence
criteria for generalized continued fractions?

Due to the large amount of completely different convergence criteria, we cannot answer
this question for all classical convergence criteria for continued fractions in a single paper.
We will concentrate on the famous Pringsheim-type criteria. For this class of convergence
criteria, the answer is again ‘Yes’.

Our unified definition is motivated by a relationship between converging continued frac-
tions and irreducible Markov chains: For dealing algorithmically with quasi-birth-death
processes, that is, Markov chains with a block-tridiagonal transition structure, some meth-
ods use matrix-valued continued fractions. The convergence of these continued fractions
can be guaranteed by a probabilistic interpretation of the continued fraction and its ap-
proximants as a series of some kind of taboo probabilities. In Sect. 2, we demonstrate how
to obtain (matrix-valued) continued fractions in the context of Markov chain, and how to
interpret the continued fraction and its approximants probabilistically. In Sect. 3, we pre-
serve this probabilistic interpretation, but omit the condition of tridiagonality. Then we
obtain a new recursion scheme which we use for defining generalized continued fractions.

At first glance, this construction intends to treat Markov chains with a general block-
transition structure algorithmically by means of generalized continued fractions. Al-
though such algorithms can be deduced, we once again emphasize that the clue of the
definition in Sect. 3 is that it:
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– Includes a great variety of generalizations of continued fractions found in the
literature. This fact is discussed in Sect. 4.

– Allows direct proofs of some convergence criteria, for instance, Pringsheim-type
criteria. This is done in Sect. 5. Due to our definition covering many other
generalizations, this convergence criterion includes convergence criteria for a large
class of generalizations of continued fractions.

– Follows traditional motivations for studying continued fractions: Historically,
continued fractions with complex elements were introduced since they can be used
for deriving regular representations of some special functions (hypergeometric
functions, Bessel functions, . . . ). The coefficients of these expansions can be obtained
from the second-order difference equations these special functions satisfy, whereas
continued fractions (in the non-generalized sense) are strongly related to infinite
systems of linear equations which include second-order linear difference equations,
higher-order difference equations, and sum equations as special cases. Therefore, in
Sects. 6 and 7, we
– point out how to use generalized continued fractions (in our sense) for obtaining

(minimal) roots of analytic functions, briefly discuss possibilities to find
representations of analytic functions,

– and briefly discuss that gcfs might provide useful representations for analytic
functions.

2 Markov chains and continued fractions
In this section, we demonstrate that in the context of Markov chains with a certain tran-
sition structure, continued fractions arise in a natural way. Originally, this relationship
between Markov chains and continued fractions was exploited algorithmically.

Consider a (time-homogeneous) discrete-time Markov chain (basics of Markov chains
can be found in many textbooks, for example, in [40]) (X�)�∈N0 with two-dimensional state
space E = N0 × {1, . . . , d} (we use the notation N0 = {0, 1, 2, . . .}) for which the one-step
transition probabilities from state (i, u) to state (j, v) are 0 if |j – i| ≥ 2. Then the one-step
transition probability matrix has the form

P =

⎛

⎜⎜⎜⎜⎝

p00 p01

p10 p11 p12

p21 p22 p23
. . . . . . . . .

⎞

⎟⎟⎟⎟⎠
,

where pij = (p(i,u),(j,v))d
u,v=1 ∈R

d×d , and the entries p(i,u),(j,v) are the one-step transition prob-
abilities from state (i, u) to (j, v). In many applications of Markov chains, invariant mea-
sures have to be computed, that is, a non-trivial, non-negative vector π with πP = π . With
π = (πn)n∈N0 and πn ∈ R

d , a vector-matrix difference equation has to be solved, and for
d > 1, there is no explicit solution. Up to notations and slight variations (and the consid-
eration of continuous-time Markov chains instead of discrete-time Markov chains), in [4,
5, 8, 18, 34], the following method has been suggested and discussed:

– Choose N large, and set K (N)
N = I – pNN , where I ∈R

d×d is the identity matrix.
– For n = N – 1, N – 2, . . . , 0, compute

K (N)
n = I – pnn – pn,n+1

(
K (N)

n+1
)–1pn+1,n. (2)
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– Determine π
(N)
0 as an approximate solution of xK (N)

0 = 0.
– Compute π

(N)
n = π

(N)
n–1pn–1,n(K (N)

n )–1 for n = 1, . . . , N .
Using appropriate probabilistic interpretations and assuming irreducibility and recur-
rence of the Markov chain, it is possible to prove that

– (K (N)
n )–1 exists for all n ∈N if the Markov chain is irreducible,

– limN→∞ K (N)
n exists for all n ∈N0,

– K = limN→∞ K (N)
0 has the eigenvalue 0 with non-negative eigenvector,

– πn = limN→∞ π
(N)
n exists for an appropriate method of finding an ‘approximate’

solution π
(N)
0 of xK (N)

0 = 0,
– π = (πn)n∈N0 satisfies πP = π .

For further algorithmic details, comparisons with other methods, and an extensive discus-
sion of the probabilistic interpretation of K (N)

n , (K (N)
n )–1, and π

(N)
n , we refer to the literature

cited above. For d = 1, the interpretation simplifies as follows:
– Let τi = inf{� > 0 : X� = i} be the first hitting time on state i ∈ E = N0, and let

TC = inf{� > 0 : X� /∈ C} be the first time of leaving set C ⊂ E.
– Then 1 – K (N)

n = P(T{n+1,...,N} = τn|X0 = n) is the probability that, conditioned on
starting in state n, the Markov chain returns to n before reaching one of the states
n – 1 or N + 1.

– Furthermore, (K (N)
n )–1 = E[

∑T{n,...,N}
m=0 1{n+1}(Xm)|X0 = n] is the expected number of

visits in state n before reaching one of the states n – 1 or N + 1. These expectations
are finite if the Markov chain is irreducible.

– For N → ∞, we see that 1 – K (N)
0 converges to the probability that the Markov chain

will eventually return to state 0 if it starts in state 0. Hence, K = 0 if and only if state 0
is recurrent.

The recursion (2) can be interpreted as a ‘prototype’ of a matrix-valued continued frac-
tion. The probabilistic interpretation ensures that K (N)

n is invertible for n ≥ 1 and K =
limN→∞ K (N)

0 converges whenever the Markov chain is irreducible. Based on this rela-
tionship, with some further steps, a Ślezyński–Pringsheim-type convergence criterion has
been proved in [2]. In the next section, we use this relationship for finding a powerful
definition of generalized continued fractions, and in Sect. 5, we extend the proof for the
Ślezyński–Pringsheim-type convergence criterion to generalized continued fractions. We
conclude this introductory discussion with some remarks:

– We can replace the state space by E = N0 × D with some Polish space D. Then the
matrices pij ∈R

d×d have to be replaced by kernels pij : D ×B(D) → [0, 1], where B(D)
is the Borel-σ -field on D. With an appropriate definition of multiplication of kernels,
all considerations of this section still hold. In this setting, there is no direct
algorithmic use, and therefore, there is little literature on this topic. Nevertheless, this
fact may be used for theoretical considerations, and it gives an additional motivation
for not only considering (generalized) continued fractions with coefficients in some
matrix algebra, but an arbitrary Banach algebra.

– The literature cited above deals with so-called matrix-analytic methods for
quasi-birth-death processes. Often, these methods are interpreted as variants or
generalizations of matrix-geometric methods introduced by Neuts [26]. Alternatively,
the algorithm described above can be interpreted as solving π (N)P(N) = π (N)

approximately by a block-Gauss-elimination, where P(N) = (pij)N
i,j=0 is the north-west
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corner truncation of P. In [16], this approach is discussed and a relationship to a
method of repetitively censoring the Markov chain is established.

– In Sect. 5, we come back to the probabilistic interpretation since it can be used for
proving convergence criteria.

3 Defining generalized continued fractions
3.1 The general case
The main idea for finding a unified definition of generalized continued fractions is omit-
ting the condition of tridiagonality while preserving the probabilistic interpretation of K (N)

n

and (K (N)
n )–1. For this purpose let Q = (qmn)∞m,n=0 be an arbitrary infinite R-valued matrix

where R is a Banach algebra with unity I and introduce the notation

S(Q, i, j, A) =
∑

�∈N
i0,...,i�∈N0

i0=i,i�=j
i1,...,i�–1∈A

�∏

r=1

qir–1,ir

for a matrix Q = (qmn)∞m,n=0, indices i, j ∈ N0 and sets A ⊂ N0. Since we do not specify
the order of summation, this notation only makes sense in case of unconditional conver-
gence. One way to interpret this series is as follows: Consider an infinite graph with nodes
0, 1, 2, . . . and edges with weights qmn. Define the value of a path i0, i1, . . . , i� by multiply-
ing all weights qi0,i1 , . . . , qi�–1,i� . Then S(Q, i, j, A) is the sum of all values of paths from i to
j where only nodes within set A are visited along the way. Typically, such series occur in
the context of Markov chains: If P = (pmn)∞m,n=0 is the transition probability matrix of a
discrete-time Markov chain with state space N0, we have

S(P, i, j, A) =
∞∑

�=1

P(X� = j, X�–1, . . . , X1 ∈ A|X0 = i).

Due to this interpretation, for stochastic matrices P, we can use standard arguments from
the basic theory of Markov chains for proving convergence of S(P, i, j, A) for some specific
choices of i, j, A. We will benefit from this consideration when proving a Pringsheim-type
convergence criterion in Sect. 5 (see Lemma 2 below). Here, we focus on relationships
that hold between the S(Q, i, j, A) if these series converge unconditionally. We will see that
these relationships generalize the recursion schemes defining continued fractions.

Lemma 1 If the series on the right-hand sides converge unconditionally, we have

(
I – S

(
Q, n, n, {n + 1, . . . , N}))–1 = I + S

(
Q, n, n, {n, . . . , N}) (3)

for n ≤ N and

S
(
Q, n, n, {n + 1, . . . , N}) = qnn +

N∑

m=n+1

qnmS
(
Q, m, n, {n + 1, . . . , N}), (4)

S
(
Q, n, k, {n, . . . , N}) =

(
I + S

(
Q, n, n, {n, . . . , N}))

·
(

qnk +
N∑

m=n+1

qnmS
(
Q, m, k, {n + 1, . . . , N})

)
, (5)
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S
(
Q, m, k, {n, . . . , N}) = S

(
Q, m, k, {n + 1, . . . , N})

+ S
(
Q, m, n, {n + 1, . . . , N})S

(
Q, n, k, {n, . . . , N}) (6)

for k < n < m ≤ N .

Proof For proving (3), we consider

S
(
Q, n, n, {n, . . . , N}) – S

(
Q, n, n, {n + 1, . . . , N})

=
∑

�≥2,i0,...,i�∈N0
i0=n,i�=n

i1,...,i�–1∈{n,...,N}
ik =n for some k∈{1,...,�–1}

�∏

r=1

qir–1,ir =
∑

�∈N

�–1∑

k=1

∑

�≥2,i0,...,i�∈N0
i0=n,ik =n,i�=n

i1,...,ik–1∈{n,...,N}
ik+1,...,i�–1∈{n,...,N}

�∏

r=1

qir–1,ir

=
∞∑

k=1

∞∑

�=k+1

∑

i0,...,ik∈N0
i0=n,ik =n

i1,...,ik–1∈{n,...,N}

k∏

r=1

qir–1,ir

∑

ik ,...,i�∈N0
ik =n,i�=n

ik+1,...,i�–1∈{n+1,...,N}

�∏

r=k+1

qir–1,ir

=
∑

k∈N
i0,...,ik∈N0
i0=n,ik =n

i1,...,ik–1∈{n,...,N}

k∏

r=1

qir–1,ir ·
∑

�∈N
i0,...,i�∈N0
i0=n,i�=n

i1,...,i�–1∈{n+1,...,N}

�∏

r=1

qir–1,ir

= S
(
Q, n, n, {n, . . . , N})S

(
Q, n, n, {n + 1, . . . , N}),

yielding
(
I + S

(
Q, n, n, {n, . . . , N}))(I – S

(
Q, n, n, {n + 1, . . . , N})) = I,

and hence, (3). Equation (4) is seen from

S
(
Q, n, n, {n + 1, . . . , N}) =

∑

�∈N,i0,...,i�∈N0
i0=n,i�=n

i1,...,i�–1∈{n+1,...,N}

�∏

r=1

qir–1,ir

= qnn +
N∑

m=n+1

∑

�≥2,i0,...,i�∈N0
i0=n,i1=m,i�=n

i2,...,i�–1∈{n+1,...,N}

�∏

r=1

qir–1,ir

= qnn +
N∑

m=n+1

qnm
∑

�≥2,i1,...,i�∈N0
i1=m,i�=n

i2,...,i�–1∈{n+1,...,N}

�∏

r=2

qir–1,ir

= qnn +
N∑

m=n+1

qnm
∑

�∈N,i0,...,i�∈N0
i0=m,i�=n

i1,...,i�–1∈{n+1,...,N}

�∏

r=1

qir–1,ir

= qnn +
N∑

m=n+1

qnmS
(
Q, m, n, {n + 1, . . . , N}),

and (5) and (6) are derived in a similar manner. �
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Let us suppose that all series in Lemma 1 converge unconditionally, let us set K (N)
n =

I – S(Q, n, n, {n + 1, . . . , N}), and let us set L(N)
m,n,k = S(Q, m, k, {n, . . . , N}) for n ≤ N and k <

n ≤ m ≤ N , respectively. Then (3)–(6) imply

K (N)
n = I – qnn –

N∑

m=n+1

qnmL(N)
m,n+1,n, (7)

L(N)
n,n,k =

(
K (N)

n
)–1

(
qnk +

N∑

m=n+1

qnmL(N)
m,n+1,k

)
, 0 ≤ k < n, (8)

L(N)
m,n,k = L(N)

m,n+1,k + L(N)
m,n+1,nL(N)

n,n,k , 0 ≤ k < n, n < m ≤ N . (9)

Note that for tridiagonal Q, these recursions simplify to the scheme

K (N)
n = I – qnn – qn,n+1

(
K (N)

n+1
)–1qn+1,n

for continued fractions in Banach algebras. Traditionally, continued fractions are built up
by denominators bn and numerators an, and for (two-sided) continued fractions in Banach
algebras, the coefficients are usually named such that

K (N)
n = bn + an+1

(
K (N)

n+1
)–1cn+1,

see [2, 11]. In order to obtain similar letters, we rename bn = I – qnn, anm = –qnm for m > n
and cnk = qnk for k < n. Then we obtain

K (N)
n = bn +

N∑

m=n+1

anmL(N)
m,n+1,n, (10)

L(N)
n,n,k =

(
K (N)

n
)–1

(
cnk –

N∑

m=n+1

anmL(N)
m,n+1,k

)
, 0 ≤ k < n, (11)

L(N)
m,n,k = L(N)

m,n+1,k + L(N)
m,n+1,nL(N)

n,n,k , 0 ≤ k < n, n < m ≤ N . (12)

Definition 1 LetR be a Banach algebra with unity I , let bn, anm, cnk ∈R for all n, m, k ∈N0

with k < n < m, and let K (N)
n and L(N)

m,n,k be defined by (10), (11), (12). If K (N)
0 is well-defined

(that is, (K (N)
n )–1 exists for n = 1, . . . , N ) for almost all N ∈N and if

K = lim
N→∞ K (N)

0

exists, K is said to be a convergent gcf (abbreviating generalized continued fraction), and
K (N)

0 is referred to as the N th approximant for the gcf K .

The construction of the series S(Q, i, j, A) is inspired by the Markov-chain interpretation,
and therefore, it may be conjectured that this definition is only useful for the algorithmic
treatment of Markov chains with a general (block-)transition structure. However, a large
variety of generalizations of continued fractions that were discussed in the literature turn
out to be special cases of Definition 1. This is one of the main scopes of this paper, and in
Sect. 4, we provide detailed comparisons. In particular, note that the recursion scheme for
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the K (N)
n and L(N)

m,n,k does not reflect the probabilistic interpretation directly, and (K (N)
n )–1

and limN→∞ K (N)
0 may exist in situations where the corresponding series S(· · · ) do not

converge unconditionally.
Nevertheless, if the series S(· · · ) converge, the interpretation of K (N)

n = I – S(Q, n, n, {n,
. . . , N}) provides a convergence criterion.

Theorem 1 Define Q = (qmn)∞m,n=0 by

qmn =

⎧
⎪⎪⎨

⎪⎪⎩

–amn, n > m,

I – bn, n = m,

cmn, n < m,

and let
– S(Q, n, n, {n, . . . , N}) converge unconditionally for all n, N ∈N with n ≤ N ,
– S(Q, m, k, {n, . . . , N}) converge unconditionally for all m, n, k, N ∈N0 with

k < n ≤ m ≤ N and
– S(Q, 0, 0,N) converge unconditionally.

Then K (N)
n as defined in Definition 1 is invertible for all N ≥ n ≥ 1. In particular, the gcf K

defined in Definition 1 is well-defined, and furthermore, it converges with

K = I – S(Q, 0, 0,N),

and for the approximants, we have

K (N)
0 – K = S(Q, 0, 0,N) – S

(
Q, 0, 0, {1, . . . , N}).

Proof The existence of (K (N)
n )–1 and the representation

K (N)
0 = I – S

(
Q, 0, 0, {1, . . . , N})

are immediate consequences of Lemma 1 and our construction of gcfs. The latter term
converges to I – S(Q, 0, 0,N) provided unconditional convergence of this series. �

Later on, we will use this criterion as a first step for proving a Pringsheim-type conver-
gence criterion. Before, we want to demonstrate that our definition covers a wide range of
generalizations of continued fractions found in the literature. In fact, these generalizations
can be interpreted as special cases of a subclass of gcfs which we will discuss below.

3.2 Remarks on the general definition
Remark 1 The graphical interpretation of S(Q, i, j, A) for tridiagonal Q from the begin-
ning of this section is very similar or even identical to that in Flajolet’s outstanding paper
[14] where important connections between combinatorial identities, formal power series,
and formal continued fractions were introduced. However, the scope of the present paper
differs from Flajolet’s work in the facts that we

– consider convergence of the series S(Q, i, j, A) in a Banach algebra, whereas Flajolet
dealt with these terms as formal series (and convergence of a sequence of formal



Baumann Advances in Difference Equations        (2019) 2019:406 Page 10 of 30

series to another series is interpreted in terms of the monoid algebra of all formal
series on some non-commutative alphabet, see Flajolet’s original article [14] for more
details);

– consider non-tridiagonal matrices Q.

Remark 2 In the probabilistic context of computing invariant measures, systems of linear
equations have to be solved, and this can be done by truncating the system and use (block-
)Gaussian elimination. This provides another way of interpreting the formulas (10) to (12):
Consider the infinite system of equations:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0 a01 a02 a03 · · ·
–c10 b1 a12 a13 · · ·
–c20 –c21 b2 a23 · · ·
–c30 –c31 –c32 b3

. . .
...

...
...

. . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

x3
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= 0

for some R-valued sequence (xn)n∈N0 , that is,

0 = b0x0 +
∞∑

n=1

a0nxn, (13)

m–1∑

n=0

cmnxn = bmxm +
∞∑

n=m+1

amnxn, m = 1, 2, 3, . . . . (14)

If amn = 0 for n ≥ m + 2 and cmn = 0 for n ≤ m – 2, (14) simplifies to a second-order differ-
ence equation and (13) is some kind of initial condition. The algorithmic method in the
probabilistic context referred to above relies on considering the truncated system

m–1∑

n=0

cmnxn = bmxm +
N∑

n=m+1

amnxn, m = 1, 2, 3, . . . , N . (15)

A proof by induction with respect to N yields that a solution for (15) is given by x0 = I
and xn = L(N)

n,1,0 for n = 1, . . . , N if the values L(N)
1,1,0, . . . , L(N)

N ,1,0 in Definition 1 are well-defined.
More or less, the induction step performs a reduction step of Gaussian elimination without
pivoting. In the probabilistic context, the probabilistic interpretation guarantees that L(N)

n,1,0

converges to some Ln,1,0, and a solution to (14) is given by xn = Ln,1,0x0 for n ≥ 1. Equation
(10) and the ‘initial condition’ (13) then yield 0 = Kx0 with the gcf K itself. This agrees with
the algorithmic procedure for Markov chains with a block-tridiagonal transition structure,
but the construction of Ln,1,0 and K is neither restricted to tridiagonal matrices nor to the
probabilistic context. In fact, many special functions provide solutions to special cases of
system (14). Hence, Ln,1,0 or K might yield new representations for such special functions,
see Sect. 7 below for an example.

Remark 3 Later on, we will use the term ‘gcf ’ for the values Ln,1,0 as well. This is simply due
to the fact that b0 and a0m have no impact on Ln,1,0, and by setting b0 = 0 and a0m = δmnI ,
we obtain K = Ln,1,0.
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3.3 An important subclass of generalized continued fractions
As pointed out in the introduction, traditional analysis of continued fractions relies on
the fact that the approximants can be written as AN

BN
where both the sequence (AN ) of nu-

merators and the sequence (BN ) of denominators are solutions of the difference equation
XN = XN–1bN + XN–2aN . Hence, many generalizations of continued fractions are based on
generalizations of this recurrence relation. Without additional assumptions, generalized
continued fractions as defined in Definition 1 cannot be represented in such a way, and
this makes it difficult to compare our definition with many of those found in the literature.

Therefore, we consider the special case where cnk = 0 for k < n – 1 (in the Markov-chain
context, this assumption corresponds to upper block Hessenberg matrices P) and c–1

n,n–1

exists for all n ∈N. We will see that in this case, we are able to provide a recursion scheme
for the sequences (AN ) and (BN ) with K (N)

0 = AN B–1
N . First, we observe that cnk = 0 for

k < n – 1 implies L(N)
m,n,k = 0 for k < n – 1, entailing L(N)

n,n,n–1 = (K (N)
n )–1pn,n–1 and L(N)

m,n,n–1 =
∏r=m

n L(N)
r,r,r–1 =

∏r=m
n (K (N)

r )–1pr,r–1, where
∏r=m

n denotes the ‘top-to-bottom product’, that
is,

r=m∏

n
L(N)

r,r,r–1 = L(N)
m,m,m–1 · · ·L(N)

n,n,n–1.

Hence in total, the recursion for K (N)
n simplifies to

K (N)
n = bn +

N∑

m=n+1

anm

r=m∏

n+1

(
K (N)

r
)–1cr,r–1, 0 ≤ n < N . (16)

Theorem 2 Let c–1
n,n–1 exist for all n ∈ N, let K (N)

0 be defined by K (N)
N = bN and (16), and let

the sequences (An)n≥–1 and (Bn)n≥0 be defined by

A–1 = I, Ancn+1,n = An–1bn +
n–1∑

m=0

Am–1amn, n ∈N0, (17)

B0c10 = I, Bncn+1,n = Bn–1bn +
n–1∑

m=1

Bm–1amn, n ∈N. (18)

If K (N)
0 is well-defined for some N ∈N0, B–1

N exists and K (N)
0 = AN B–1

N .

Proof The proof is similar to that for the classic result for non-generalized continued frac-
tions with coefficients in C, see [31] for example. Nevertheless, it is important, and there-
fore we give a full proof by induction with respect to N .

For N = 0, we have K (0)
0 = b0, A0 = b0c–1

10 and B0 = c–1
10 , and the statement is obviously

true. Similarly, for N = 1, we have K (1)
0 = b0 + a01b–1

1 c10, A1 = b0c–1
10 b1c–1

21 + a01c–1
21 and B1 =

c–1
10 b1c–1

21 , and again, the statement is true (note that invertibility of K (1)
1 implies invertibility

of b1).
In the induction step, we assume that the statement is true for the (N –1)st approximants

of all gcfs. Precisely, we assume that for all coefficients b̃n, ãnm, c̃n,n–1 with existing inverses
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c̃–1
n,n–1, the existence of (K̃ (N–1)

n )–1 for n = 1, . . . , N – 1 implies

K̃ (N–1)
0 = ÃN–1B̃–1

N–1,

where K̃ (N–1)
n , ÃN–1, B̃N–1 are constructed using the coefficients b̃n, ãmn, and c̃n,n–1.

For the gcf built up by the coefficients bn, amn, and cn,n–1, we assume that (K (N)
n )–1 exists

for n = 1, . . . , N . We have to prove that K (N)
0 = AN B–1

N . For this purpose, we set b̃n = bn for
n < N – 1, ãnm = anm for n < m < N – 1, c̃n,n–1 = cn,n–1 for n < N , and

b̃N–1 = bN–1 + aN–1,N b–1
N cN ,N–1, ãn,N–1 = an,N–1 + anN b–1

N cN ,N–1

for n < N – 1. By the choice of b̃N–1, we have K̃ (N–1)
N–1 = K (N)

N–1, and iteratively, the choice of
ãn,N–1 yields

K̃ (N–1)
n = b̃n +

N–1∑

m=n+1

ãnm

�=m∏

n+1

((
K̃ (N–1)

�

)–1c̃�,�–1
)

= bn +
N–1∑

m=n+1

anm

�=m∏

n+1

((
K (N)

�

)–1c�,�–1
)

+ an,N b–1
N cN ,N–1

�=N–1∏

n+1

((
K (N)

�

)–1c�,�–1
)

= bn +
N∑

m=n+1

anm

�=m∏

n+1

((
K (N)

�

)–1c�,�–1
)

= K (N)
n

for all n ≤ N – 2. Therefore, if (K (N)
n )–1 exists for n = 1, . . . , N , so does (K̃ (N–1)

n )–1 for n =
1, . . . , N – 1, and we can apply the induction hypothesis, that is, we obtain

K (N)
0 = K̃ (N–1)

0 = ÃN–1B̃–1
N–1 = ÃN–1c̃N ,N–1(B̃N–1c̃N ,N–1)–1

=

(
ÃN–2b̃N–1 +

N–2∑

m=0

Ãm–1ãm,N–1

)(
B̃N–2b̃N–1 +

N–2∑

m=0

B̃m–1ãm,N–1

)–1

.

Obviously, we have Ãm = Am for all m < N – 2, and therefore, the numerator can be written
as

ÃN–2b̃N–1 +
N–2∑

m=0

Ãm–1ãm,N–1

= AN–2bN–1 +
N–2∑

m=0

Am–1am,N–1 + AN–2aN–1,N b–1
N cN ,N–1

+
N–2∑

m=0

Am–1am,N b–1
N cN ,N–1

= AN–1cN ,N–1 + AN–2aN–1,N b–1
N cN ,N–1 +

N–2∑

m=0

Am–1am,N b–1
N cN ,N–1
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=

(
AN–1bN +

N–1∑

m=0

Am–1amN

)
b–1

N cN ,N–1

= AN b–1
N cN ,N–1.

Note that again, the invertibility of K (N)
N implies the invertibility of bN . Of course, we can

deal with the denominator in the same way, and finally, we obtain

K (N)
0 = AN b–1

N cN ,N–1
(
BN b–1

N cN ,N–1
)–1 = AN B–1

N . �

Theorem 2 allows an alternative definition.

Definition 2 Let bn, cn,n–1, anm ∈ R for some Banach algebra R with unity I , let c–1
n,n–1

exist for all n ∈ N, and let the sequences (An)n≥–1, (Bn)n≥0 be defined by (17) and (18),
respectively. If B–1

N exists for almost all N ∈ N and if K = limN→∞ AN B–1
N converges, we

refer to K as a convergent ugcf.

We use the letter u to put emphasis on the relationship with upper Hessenberg matrices.
Obviously, Definitions 1 and 2 are not equivalent. In some way, Definition 1 is much more
general. Even if cnk = 0 for all k < n – 1, it is not clear how to use (17) and (18) if c–1

n,n–1

does not exist. As soon as the existence of (K (N)
n )–1 is guaranteed for sufficiently large

N , gcfs defined in Definition 1 include ugcfs defined in Definition 2. However there are
some examples where ugcfs are well-defined, whereas the corresponding gcfs are not well-
defined. This effect is well known for non-generalized continued fractions in C, see [31].
A simple example is as follows: Let anm = 0 for m > n + 1, cnk = 0 for k < n – 1, and let
b0 = b1 = b2 = b3 = 1, a01 = a12 = 1, a23 = –1, and c10 = c21 = c32 = c34 = 1. Then K (3)

0 is the
non-generalized finite continued fraction

1 +
1

1 + 1
1+ –1

1

in C, and since K (3)
2 = 0, K (3)

0 is not well-defined according to Definition 1. On the other
hand, A–1 = A0 = 1, A1 = 2, A2 = 3, A3 = 1, and B0 = B1 = 1, B2 = 2, B3 = 1 �= 0, that is,
K (3)

0 = A3
B3

= 1 is well-defined according to Definition 2.

Remark 4 Under the assumptions of this subsection, the approximants to L�,1,0 can be
represented in a similar manner: Define B(�)

n by B(�)
� c�+1,� = I and

B(�)
n cn+1,n = B(�)

n–1bn +
n–1∑

m=�+1

B(�)
m–1amn, n > �.

If L(N)
�,1,0 is well-defined, we have L(N)

�,1,0 = B(�)
N B–1

N , the proof is almost identical to that of
Theorem 2.

Remark 5 For cmk = 0 for k ≤ m – 2, (14) simplifies to

cm,m–1xm–1 = bm +
∞∑

n=m+1

amnxn, (19)
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which was referred to as sum equation in the introduction. According to Remark 2, a so-
lution might be given by xm = Lm,1,0x0 for m ≥ 1.

4 Generalized continued fractions in the literature
A major goal of this paper is demonstrating that many generalizations found in the liter-
ature are covered by our definitions. That way, it becomes clear that convergence criteria
for our kind of gcfs/ugcfs (as will be proved in Sect. 5) include convergence criteria for
other generalizations of continued fractions.

4.1 Non-generalized continued fractions in Banach algebras
As pointed out above, the recursion scheme for K (N)

n and L(N)
m,n,k simplifies if Q is tridiagonal.

Equivalently, we can assume that anm = 0 for m > n + 1 and cnk = 0 for k < n – 1. From (16),
we easily obtain

K (N)
n = bn + an,n+1

(
K (N)

n+1
)–1cn+1,n, 0 ≤ n ≤ N .

Such continued fractions have been studied in [2, 11, 39]. If c–1
n+1,n exists for all n ∈ N0,

we obtain a special case of Definition 2, where Bn and An both meet the recurrence rela-
tion Xncn+1,n = Xn–1bn + Xn–2an–1,n. Replacing bn by bnc–1

n+1,n and an–1,n by an := an–1,nc–1
n+1,n

yields the recursion Xn = Xn–1bn + Xn–2an. Such continued fractions in non-commutative
structures have been introduced in [12, 13, 33, 45, 46], further convergence results can be
found in [1, 19, 25, 37, 39, 41, 47].

4.2 Perron’s finite and infinite Jacobi chains
For non-generalized continued fractions in C, using the recursions for An and Bn dates
back at least to the eighteenth century. An early generalization of the recurrence scheme
for An and Bn is due to Jacobi. In [20], he established the fundamentals for the Jacobi–
Perron algorithm, which was extended by the work of Perron [27, 29] (a discussion on all
publications on this topic is beyond the scope of this paper, we refer to [6] for an early ex-
tensive study on the Jacobi–Perron algorithm). With our notation, Perron defined a Jacobi
chain of order n by

B(�)
N = δN�, N ,� = 0, . . . , n,

B(�)
N = B(�)

N–1bN +
N–1∑

m=N–n

B(�)
m–1amN , N > n,� = 0, . . . , n,

K =
(

lim
N→∞

a0�B(�)
N

B(0)
N

)n

�=1
,

if the limits exist. For the coefficients bN , amN , he allowed arbitrary complex numbers up
to the condition aN–n,N �= 0 for all N > n. In contrast to our definition of gcfs or ugcfs, K is

n-dimensional in this situation. Nevertheless, we can identify the �th entry limm→∞
a0�B(�)

N
B(0)

N
as a ugcf in the sense of Definition 2 by setting cN ,N–1 = 1, amN = 0 for N –m > n and a0N = 0
for N ∈ {1, . . . , n} \ {�}. Hence, Perron’s Jacobi chains can be interpreted as n-dimensional
vectors of ugcfs in C.
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Continued fractions are capable of characterizing subdominant solutions of second-
order difference equations (see [32, Sect. 20]). Amongst others, a reason for considering
Jacobi chains of order n is that they are strongly related to an n-dimensional subspace S of
the solutions of a difference equation of order n + 1 where all solutions in S are dominated
by all other solutions. In [30], Perron intended to generalize this concept to ‘sum equa-
tions’ (literal translation of the German term ‘Summengleichung’), and in this context, he
introduced a kind of infinite Jacobi chain, that is, he considered the recursion scheme

XN = XN–1bN +
N–1∑

m=0

Xm–1amN

with coefficients bN , amN ∈C (up to notation, this is equation (14) in [30]). Although he did
not explicitly constructed quotients of numerators and denominators, he pointed out that
this recursion scheme is a straightforward generalization of finite Jacobi chains. Obviously,
the recursion coincides with (17) and (18) for R = C and cN+1,N = 1.

4.3 n-Fractions as introduced by de Bruin
A concept similar to Perron’s (finite) Jacobi chains is due to de Bruin [9, 10]. Up to notation,
his approach is as follows: Let the (complex-valued) sequences (A(–n)

N )N≥–n, . . . , (A(–1)
N )N≥–n,

(BN )N≥–n satisfy the recurrence relation

XN = XN–1bN +
N–1∑

m=N–n

Xm–1amN , N = 1, 2, 3, . . . ,

subject to the initial conditions
⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A(–n)
–n A(–n)

–n+1 . . . A(–n)
–1 A(–n)

0

A(–n+1)
–n A(–n+1)

–n+1 . . . A(–n+1)
–1 A(–n+1)

0
...

...
. . .

...
...

A(–1)
–n A(–1)

–n+1 . . . A(–1)
–1 A(–1)

0

B–n B–n+1 . . . B–1 B0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 a–n+1,0

0 1 . . . 0 a–n+2,0
...

...
. . .

...
...

0 0 . . . 1 b0

0 0 . . . 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Then define the n-fraction

K = lim
N→∞

(
A(–n)

N
BN

, . . . ,
A(–1)

N
BN

)
.

Again, we obtain an n-dimensional construction. However, by settingR = C and cN+1,N = 1

for all N , we see that the last entry of K , that is, limN→∞
A(–1)

N
BN

, coincides with our definition
of ugcfs.

For � > 1, we can define ÃN by Ã–1 = I and ÃN = ÃN–1b̃N +
∑N–1

m=0 Ãm–1ãmN , where b̃0 =
a–�+1,0, ã0N = a–�+1,N and b̃N = bN , ãmN = amN for m ≥ 1. Then, due to A(–�)

N = 0 for N =
–� + 1, . . . , –1, we have ÃN = A(–�)

N for all N ≥ 0, and thus, we have a representation

A(–�)
N B–1

N = ÃN B–1
N ,

where limN→∞ ÃN B–1
N is a ugcf in the sense of Definition 2. Therefore, we can interpret de

Bruins n-fractions as an n-dimensional vector of ugcfs, too.
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4.4 Matrix continued fractions as defined by Levrie and Bultheel
Another kind of generalized continued fractions in Banach algebras is due to Levrie and
Bultheel [23]. Up to notation, their idea is as follows: The recurrence relation Xn = Xn–1bn +
Xn–2an for numerators An and denominators Bn of non-generalized continued fractions
can be written as

(
An An–1

Bn Bn–1

)
=

(
An–1 An–2

Bn–1 Bn–2

)
·
(

bn I
an 0

)
,

subject to
( A0 A–1

B0 B–1

)
=

( b0 I
I 0

)
. Therefore, a kind of generalization of continued fractions can

be obtained from defining

(
An Cn

Bn Dn

)
=

n∏

k=0

(
bk ck

ak dk

)
=

n∏

k=0

θk .

Levrie and Bultheel referred to limn→∞ AnB–1
n as ‘matrix continued fraction’. They assumed

bk , ck , ak , dk to be matrices with dimensions independent of k, θk being a quadratic matrix.
Here, we assume that all coefficients are elements of some Banach algebra R. In order to
guard against misunderstandings (in the literature, the term ‘matrix continued fractions’
is also used for continued fractions with matrix-valued coefficients, see [33, 37, 41, 47]),
we will prefer referring to Levrie and Bultheel’s construction as LB-fractions.

Actually, LB-fractions are strongly related to ugcfs since

An = An–1bn + Cn–1an

= An–1bn + (An–2cn–1 + Cn–2dn–1)an = · · ·
= An–1bn + An–2cn–1an + An–3cn–2dn–1an + An–4cn–3dn–2dn–1an

+ · · · + A0c1d2 · · ·dn–1an + C0d1 · · ·dn–1an and

Bn = Bn–1bn + Bn–2cn–1an + Bn–3cn–2dn–1an + Bn–4cn–3dn–2dn–1an

+ · · · + B0c1d2 · · ·dn–1an + D0d1 · · ·dn–1an.

Hence, with

amn = cm

n–1∏

k=m+1

dkan,

(An) and (Bn) satisfy (17) and (18), respectively, at least for C0 = A–1 and D0 = 0. Therefore,
if C0 = c0 = I , B0 = a0 = I , and D0 = d0 = 0, we obtain that the LB-fraction limn→∞ AnB–1

n is
a ugcf in the sense of Definition 2.

4.5 Special cases of system (14)
As pointed out in the introduction, continued fractions and their generalizations are capa-
ble of characterizing certain solutions of subspaces of subdominant solutions for certain
systems of equations:
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– It is well known that continued fractions

b0 +
a1

b1 + a2

b2+
.. .

are capable of characterizing subdominant solutions of second-order difference
equations, see [32, Sect. 20].

– In [7], two-sided matrix-valued continued fractions were used for solving a
second-order matrix-vector difference equation.

– Perron’s Jacobi chains of order n can characterize the n-dimensional subspace of
non-dominant solutions of a difference equation of order n + 1, see [29].

– Up to notation, in [30], Perron used (17) and (18) in the context of characterizing
(non-dominant) solutions of sum equations.

– In [17, 43], a relationship between de Bruins n-fractions and subdominant solutions
of difference equations of order n + 1 was established.

– In [3], the relationship between n-fractions and subdominant solutions of difference
equations was used for proving that invariant measures of recurrent Markov chains
with a certain transition structure are subdominant solutions of a difference equation,
and therefore, naive computation schemes are subject to numerical instability.
A stable alternative computation scheme based on n-fractions was suggested.

Difference equations of order 2 or of arbitrary order n are special cases of (14), simply set
cmk = 0 for k ≤ m – 2 and amk = 0 for k ≥ m + n. Since gcfs might provide solutions to (14),
Definition 1 follows one of the traditional motivations of dealing with continued fractions.

5 Convergence theory
In Sects. 6 and 7, we outline some (mathematical) applications of gcfs. These applica-
tions require a thorough discussion of convergence criteria. As a starting point for a con-
vergence theory, we demonstrate that classic Pringsheim-type (sometimes referred to as
Śleszyński–Pringsheim-type) criteria can be extended to gcfs.

5.1 Pringsheim-type criteria in the literature
For complex-valued non-generalized continued fractions, Pringsheim’s convergence cri-
terion is one of the most famous criteria. In its basic form, it guarantees convergence of

b0 +
a1

b1 + a2

b2+
.. .

if |bn| ≥ |an| + 1 for all n = 1, 2, 3, . . . (see [32, 35, 36]). By applying appropriate equivalence
transformations (see [32]), it is seen that | an

bn–1bn
| ≤ 1

4 for n ≥ 2 is sufficient for conver-
gence. This criterion is referred to as Worpitzky-type criterion, and in fact, it is older than
Śleszyński–Pringsheim-type criteria. In the literature,

– for non-generalized continued fractions in Banach algebras defined by
Xn = Xn–1bn + Xn–2an (that is, cn+1,n = I), Śleszyński–Pringsheim-type and/or
Worpitzky-type criteria can be found in [1, 13, 19, 25, 37, 39, 47],

– for non-generalized two-sided continued fractions in Banach algebras, such criteria
were proven in [2, 11, 39],
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– for (finite) complex-valued Jacobi chains, a Śleszyński–Pringsheim-type criterion can
be found in [28],

– for complex-valued n-fractions as defined by de Bruin, Śleszyński–Pringsheim-type
criteria are proved in [21, 22].

Proving a Pringsheim-type criterion for gcfs includes all of these results. In fact, Theo-
rem 5 below will even improve some former results. The ideas are very similar to those
used in [2] where it was proven that

∥∥an–1,nb–1
n

∥∥ + ‖cn+1,n‖ ≤ 1, n ≥ 1,

is sufficient for guaranteeing convergence of non-generalized continued fractions in Ba-
nach algebras. In principle, we replace this condition by

n–1∑

m=0

∥∥amnb–1
n

∥∥ +
∞∑

m=n+1

∥∥cmnb–1
n

∥∥ ≤ 1, n ≥ 1.

5.2 A Pringsheim-type criterion for gcfs with bn = I
We begin with considering gcfs with bn = I for n ≥ 1. The proof of a Pringsheim-type con-
vergence criterion for this case is based on Theorem 1. In fact, the unconditional conver-
gence of the series S(· · · ) is less restrictive than any result which we prove in this section.
However, classical Pringsheim-type conditions are much easier to check. As a first step,
we replace the entries of the matrix Q by their norms.

Theorem 3 Let Q be defined as in Theorem 1, set B = (‖qmn‖)∞m,n=0, and suppose that
– S(B, n, n, {n, . . . , N}) converges for all n, N ∈ N with n ≤ N ,
– S(B, m, k, {n, . . . , N}) converges for all m, n, k, N ∈N0 with k < n ≤ m ≤ N and
– S(B, 0, 0,N) converges.

Then the gcf defined in Definition 1 is well-defined (K (N)
n is invertible for all N ≥ n ≥ 1) and

converges with

∥∥K (N)
0 – K

∥∥ ≤ S(B, 0, 0,N) – S
(
B, 0, 0, {1, . . . , N}).

Proof By submultiplicativity of ‖ · ‖, convergence of

S(B, i, j, A) =
∑

�∈N
i0,...,i�∈N0

i0=i,i�=j
i1,...,i�–1∈A

�∏

r=1

‖qir–1,ir ‖

implies absolute convergence of

S(Q, i, j, A) =
∑

�∈N
i0,...,i�∈N0

i0=i,i�=j
i1,...,i�–1∈A

�∏

r=1

qir–1,ir .

Since absolute convergence implies unconditional convergence, all requirements of The-
orem 1 are met, and hence, we have convergence of the gcf. Regarding the bound for
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‖K (N)
0 – K‖, we observe that every summand of S(Q, 0, 0, {1, . . . , N}) occurs in S(Q, 0, 0,N),

too, and hence

K (N)
0 – K = S(Q, 0, 0,N) – S

(
Q, 0, 0, {1, . . . , N})

is still a sum of products of the qmn. Applying the submultiplicativity of ‖ · ‖ again yields
the desired bound. �

Note that since the matrix B in Theorem 3 has entries in R≥0, the terms of ‘conver-
gence’, ‘absolute convergence’, and ‘unconditional convergence’ coincide for the series
S(B, . . .). Furthermore, the multiplication in R is commutative, and therefore, S(B, j, i, A) =
S(BT , i, j, A) for all i, j, A.

If bn = I for all n ≥ 1 and if the above Pringsheim-type condition holds, BT is ‘near to
stochastic’. In the proof of Theorem 4 below, we will be more precise. As a preparation,
we show the following.

Lemma 2 Let P = (pmn)∞m,n=0 be a stochastic matrix, and for all m ≥ 1, let there be some
n > m with pmn > 0. Then

– S(P, n, n, {n, . . . , N}) converges for all n, N ∈N with n ≤ N ,
– S(P, k, m, {n, . . . , N}) converges for all m, n, k, N ∈ N0 with k < n ≤ m ≤ N , and
– S(P, 0, 0,N) ≤ 1 converges.

Proof Let (X�)∞�=0 be a Markov chain in discrete time with states N0 and transition proba-
bility matrix P. Then

S(P, i, j, A) =
∞∑

�=1

P(X� = j, X�–1, . . . , X1 ∈ A|X0 = i).

In particular, S(P, 0, 0,N) is a sum of probabilities of disjoint events, and therefore, it con-
verges to some value ∈ [0, 1] (the return probability to state 0).

Now, fix k < n ≤ m ≤ N . Since the values of pij for i > N have no impact on the series
S(P, n, n, {n, . . . , N}) or S(P, k, m, {n, . . . , N}), we change the entries of P in such a way that
pij = 0 for i > N and i > j. By p(�)

ij , we denote the entries of P�. For Markov chains, state j is
said to be accessible from state i if p(�)

ij > 0 for some � ∈N0. Due to the assumptions on the
entries of P, for all n ≥ 1, some state i > N is accessible, but conversely, for states i > N , no
state n ≤ N is accessible. As a consequence, all states n ∈ {1, . . . , N} are transient (or even
inessential in some terminology, see, e.g., [40]). A standard result for Markov chains (e.g.,
[40]) guarantees that

∞∑

�=0

p(�)
mn ≤

∞∑

�=0

p(�)
nn < ∞.

In particular, we have

S
(
P, n, n, {n, . . . , N}) ≤

∞∑

�=1

P(X� = n|X0 = n) =
∞∑

�=1

p(�)
nn < ∞.
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Furthermore, the transience of m guarantees

S
(
P, k, m, {n, . . . , N}) = pkm +

N∑

j=n

pkjS
(
P, j, m, {n, . . . , N})

≤ pkm +
N∑

j=n

pkj

∞∑

�=1

p(�)
jm < ∞.

�

Theorem 4 Let bn = I for n ≥ 1, and for all m ≥ 1, let there be some n > m with cnm �= 0.
Furthermore, let

∞∑

m=1

‖cm0‖ ≤ 1, (20)

and let

n–1∑

m=0

‖amn‖ +
∞∑

m=n+1

‖cmn‖ ≤ 1, n ∈ N. (21)

Then the gcf K defined in Definition 1 is well-defined (K (N)
n is invertible for all N ≥ n ≥ 1)

and converges with

‖K – b0‖ ≤ 1.

Proof Construct Q as in Theorem 1 and B as in Theorem 3, and set P = BT . Then (20) and
(21) guarantee that P is stochastic. Finally, cnm �= 0 implies pmn > 0, and hence, the condi-
tions of Lemma 2 are met. Due to S(P, i, j, A) = S(BT , j, i, A), the conditions of Theorem 3
are satisfied, guaranteeing convergence of K with

∥∥K – K (0)
0

∥∥ ≤ S(B, 0, 0,N) – S(B, 0, 0,∅) ≤ 1 – 0 = 1. �

5.3 Equivalence transformations
In order to obtain a more general formulation of a Pringsheim-type criterion, we intro-
duce equivalence transformations. Note that the usage of equivalence transformations is
not restricted to this proof. For the special cases discussed in Sect. 4, equivalence transfor-
mations have been introduced in the corresponding literature, and here, we use straight-
forward generalizations. Let us set

b̃n = λnbnρ
–1
n , ãnm = λnanmρ–1

m , c̃mn = λmcmnρ
–1
n

for m, n ∈ N0 with n > m, where (λn)∞n=0 and (ρn)∞n=0 are two sequences of invertible ele-
ments, and define K̃ (N)

n by using b̃n, . . . instead of bn, . . . . Using the corresponding notation
for L̃(N)

m,n,k , a simple induction shows that

K̃ (N)
n = λnK (N)

n ρ–1
n and L̃(N)

m,n,k = ρmL(N)
m,n,kρ

–1
k .

As a direct consequence, we obtain
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Lemma 3 (K̃ (N)
n )–1 exists if and only if (K (N)

n )–1 exists. Furthermore, K̃ = limN→∞ K̃ (N)
0

converges if and only if K = limN→∞ K (N)
0 converges. In case of convergence, we have K̃ =

λ0Kρ–1
0 .

5.4 A general Pringsheim criterion
Finally, we have all preparations for proving our desired Pringsheim-type criterion.

Theorem 5 Let b–1
n exist for n ≥ 1, and for all m ≥ 1, let there be some n > m with cnm �= 0.

Furthermore, let

∞∑

m=1

‖cm0‖ < ∞, (22)

and let

n–1∑

m=0

∥∥amnb–1
n

∥∥ +
∞∑

m=n+1

∥∥cmnb–1
n

∥∥ ≤ 1, n ∈N. (23)

Then the gcf K defined in Definition 1 is well-defined (K (N)
n is invertible for all N ≥ n ≥ 1)

and converges with

‖K – b0‖ ≤
∞∑

m=1

‖cm0‖.

Proof The value of b0 has no impact on any statement of the theorem. Therefore, we may
assume without loss of generality that b0 = (

∑∞
m=1 ‖cm0‖) · I . Now apply an equivalence

transformation with λn = I and ρn = bn, resulting in a new gcf with coefficients b̃n = I ,
ãmn = amnb–1

n , and c̃mn = cmnb–1
n , where

n–1∑

m=0

‖ãmn‖ +
∞∑

m=n+1

‖c̃mn‖ =
n–1∑

m=0

∥∥amnb–1
n

∥∥ +
∞∑

m=n+1

∥∥cmnb–1
n

∥∥ ≤ 1, n ≥ 1,

and

∞∑

m=1

‖c̃m0‖ =
∞∑

m=1

∥∥cm0b–1
0

∥∥ ≤ 1.

Theorem 4 guarantees that K̃ converges with ‖K̃ – I‖ = ‖K̃ – b̃0‖ ≤ 1. From the general
results concerning equivalence transformations, we finally obtain

‖K – b0‖ =
∥∥(K̃ – I)b0

∥∥ ≤
∞∑

m=1

‖cm0‖. �

5.5 Remarks on the Pringsheim-type convergence criterion
– For non-generalized continued fractions, we have cm0 = 0 for m ≥ 2, and hence, the

condition
∑‖cm0‖ < ∞ is trivially fulfilled. Hence, our result still is a straightforward

generalization of the results in [2] for non-generalized continued fractions in Banach
algebras.
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– The basic strategy for proving the Pringsheim-type criterion coincides with the
strategy in [2] for the non-generalized case.

– For non-generalized continued fractions, a speed-of-convergence statement was
proved in [2]. For gcfs, a direct analogue requires further research. In principle, such
statements should make use of the bound on ‖K (N)

0 – K‖ given in Theorem 3.
– For ugcfs defined in Definition 2, c–1

m+1,m exists for all m ∈ N0, and in particular,
cm+1,m �= 0. Furthermore, cm0 = 0 for m ≥ 2. Hence, the conditions of Theorem 5
simplify to

n–1∑

m=0

∥∥amnb–1
n

∥∥ +
∥∥cn+1,nb–1

n
∥∥ ≤ 1, n ∈N. (24)

Note that Theorem 5 guarantees invertibility of all K (N)
n , and hence, the ugcf is a

special case of a gcf. Therefore, (24) guarantees convergence of ugcfs.
– As demonstrated in Sect. 4, our Definition of gcfs covers a wide generality of

generalizations of continued fractions found in the literature. Therefore, Theorem 5
(or the condition (24) for ugcfs) provides a Pringsheim-type criterion for all these
constructions (and for non-generalized continued fractions, a Worpitzky-type
criterion by means of equivalence transformation), that is, all results mentioned in
Sect. 5.1 are included by Theorem 5 or (24), or ugcfs. As some of these criteria have
more restricting conditions (for example, instead of · · · ≤ 1, in [39] and [28],
· · · ≤ 1 – ε with some ε > 0 was required), our approach not only provides a unified
proof, but also improvements on the statements.

– Another equivalence transformation can be applied to the Pringsheim-type
conditions, transforming conditions (22) and (23) into

∑∞
m=0 ‖λmcm0‖ < ∞ and

n–1∑

m=0

∥∥λmamnb–1
n λ–1

n
∥∥ +

∞∑

m=n+1

∥∥λmcmnb–1
n λ–1

n
∥∥ ≤ 1, n = 1, 2, 3, . . . , (25)

respectively, where all λ–1
n are supposed to exist. The estimate on K is transformed

into

∥∥λ0(K – b0)
∥∥ ≤ ‖λmcm0‖. (26)

5.6 Further convergence criteria
Obviously, the literature for continued fractions provides more convergence criteria than
Pringhseim-type conditions. In further research, some of these may be extended to our
definition of gcfs. In particular, Pincherle-type criteria are interesting. For non-generalized
continued fractions in C, that is, K = lim An

Bn
with (An) and (Bn) satisfying Xn = Xn–1bn +

Xn–2an, it states convergence if and only if this recurrence scheme has solutions (Yn) and
(Zn) with limn→∞ Yn

Zn
= 0. Such criteria should be extended at least to ugcfs as defined in

Definition 2, and maybe even to gcfs as defined in Definition 1. Such a result would include
the corresponding results for n-fractions [43, 44] and LB-fractions [23].
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6 Periodic generalized continued fractions
Provided convergence to some value �= 0, the periodic non-generalized C-valued contin-
ued fraction

K = b +
a

b + a

b+
.. .

will meet K = b + a
K , that is, it is a solution of the quadratic equation x2 – xb – a = 0.

A popular result states that K converges if and only if the two solutions x1, x2 of x2 – xb – a
coincide or have different absolute value, and if K converges, K is the root with larger
absolute value, see [32]. Alternatively, we can consider the value 1

K which solves ay2 +
by – 1 = 0. Again, K converges if and only if the solutions y1, y2 coincide or have different
absolute values, and in case of convergence, 1

K is the root with smaller absolute value, that
is, the minimal root.

Now consider our setting, and let cnk = 0 for k < n – 1, let cn,n–1 = –α0, bn = α1 for n ≥ 1,
and amn = αm–m+1 for n > m ≥ 1. Due to the periodicity, L(N)

r,r,r–1 only depends on N – r, and
cnk = 0 for k < n – 1 guarantees that

L(N)
n,1,0 =

r=n∏

1

L(N)
r,r,r–1 =

r=n∏

1

L(N–r)
1,1,0 .

Hence, if L1,1,0 converges, so does Ln,1,0 = Ln
1,1,0 =: Ln. The periodic structure of the coef-

ficients means that system (14) simplifies to 0 =
∑∞

n=m–1 αn–m+1xn. Hence, the considera-
tions in Remark 2 let us hope that

0 =
∞∑

n=m–1

αn–m+1Ln,1,0 =
∞∑

n=m–1

αn–m+1Ln–m+1Lm+1, n ≥ 1,

which is obviously equivalent to

∞∑

n=0

αnLn = 0.

Provided convergence of L, this is in fact true.

Theorem 6 Let (αn)∞n=0 be an R-valued sequence, define cnk , bn, amn as above, let all ap-
proximants L(N)

1,1,0 of L be well-defined, and let L converge, and let

∞∑

n=0

‖αn‖xn

converge in a neighborhood of ‖L‖. Then
∑∞

n=0 αnLn = 0.

Proof We use that a solution for the truncated system (15) is given by x0 = I and xm = L(N)
m,1,0

for m ≥ 1. Here, we have L(N)
m,1,0 =

∏r=m
1 L(N+1–r)

1,1,0 and (15) for n = 1 guarantees

0 =
N∑

m=0

αm

r=m∏

1

L(N+1–r)
1,1,0 =

∞∑

m=0

αm

(r=m∏

1

L(N–r)
1,1,0

)
1{1,...,N}(m), (27)
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where

1{1,...,N}(m) =

⎧
⎨

⎩
1, m = 1, . . . , N ,

0, otherwise.

Define M = max{1, supn∈N
‖L(n)

1,1,0‖
‖L‖ }, choose ε > 0 and n0 ∈ N such that

∑∞
m=0 ‖αm‖((1 +

ε)‖L‖)m converges and ‖L(n)
1,1,0‖
‖L‖ ≤ 1 + ε for n ≥ n0. Then we have

∥∥∥∥∥αm

(r=m∏

1

L(N–r)
1,1,0

)
1{1,...,N}(m)

∥∥∥∥∥ ≤ ‖αm‖ · ‖L‖m(1 + ε)m · Mn0 =: βm,

where βm does not depend on N and
∑∞

m=0 βm converges. Hence, we can use dominated
convergence in (27), and obtain

0 = lim
N→∞

∞∑

m=0

αm

(r=m∏

1

L(N–r)
1,1,0

)
1{1,...,N}(m)

=
∞∑

m=0

lim
N→∞αm

(r=m∏

1

L(N–r)
1,1,0

)
1{1,...,N}(m)

=
∞∑

m=0

αmLm. �

Remark 6 If L converges, and if
∑∞

m=0 αmLm holds, we have

0 =
∞∑

m=n–1

αm–n+1Lm,1,0.

Due to the choice of cnk , bn, amn this entails that the Ln,1,0 satisfy the infinite system (14).
Hence, the examples below provide also examples for gcfs characterizing a certain solution
of system (14).

Note that cnk = 0 for n ≥ k +2 and the periodicity allows us to write L = K = limN→∞ K (N)
0

in two different ways:
– Set b0 = 0, a01 = I , and a0m = 0 for m ≥ 2. Then K = L (see Remark 3).
– Define b0 = α1, a0m = αm+1 for m ≥ 1, and let α–1

0 exist. Then K (N)
0 = K (N)

1 and
L(N)

1,1,0 = (K (N)
1 )–1c10 (due to cnk = 0 for k < n – 1) yields

L–1 = –α–1
0 K .

The latter representation allows us to find a special case of the Pringsheim-type criterion.

Theorem 7 Let αn, cnk , bn, amn as in Theorem 6. Additionally, let α–1
0 and α–1

1 exist, let
αn �= 0 for some n ≥ 2, let λ > 0, and let

∥∥α0α
–1
1

∥∥ +
∞∑

m=2

λm∥∥αmα–1
1

∥∥ ≤ λ. (28)

Then L converges with ‖(α0L–1 + α1)‖ ≤ 1
λ
‖α0‖.
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Proof Additionally, set b0 = α1, a0m = αm+1 for m ≥ 1. Then L–1 = –α–1
0 K (in case of con-

vergence) as pointed out above. Set λn = 1
λn I . Then the Pringsheim-type condition (25)

simplifies to

n–1∑

m=0

λn–m∥∥αn+1–mα–1
1

∥∥ +
1
λ

∥∥α0α
–1
1

∥∥ ≤ 1, n ≥ 1,

or equivalently

n+1∑

m=2

λm∥∥αmα–1
1

∥∥ +
∥∥α0α

–1
1

∥∥ ≤ λ, n ≥ 1.

This is true if and only if (28) holds. From (26), we obtain

‖K – b0‖ ≤ 1
λ

‖c10‖,

which completes the proof since b0 = α1, c10 = –α0, and L–1 = –α–1
0 K . �

6.1 Example: a scalar periodic gcf
Consider f : C→C with f (z) =

∑∞
n=0

(–z)n

(2n)! . Obviously, f is an entire function, and we have
f (z) = cos(

√
z) for non-negative real numbers z and f (z) = cosh(

√
–z) for non-positive real

numbers z. f (z) = 0 is true if and only if z = �2π2

4 for some odd and positive integer �.
Set αn = (–1)n

(2n)! . Then (28) is equivalent to

0 ≥ |α0| – λ|α1| +
∞∑

m=2

λm|αm| = 1 –
λ

2
+

∞∑

m=2

λm

(2m)!

= –λ +
∞∑

m=0

λm

(2m)!
= –λ + cosh(

√
λ).

This is true for, e.g., λ = 4. By Theorem 7, L converges with |L–1 – 1
2 | ≤ 1

4 . Since all coeffi-
cients are real numbers, L–1 ∈ [ 1

4 , 3
4 ], that is, L ∈ [ 4

3 , 4]. According to Theorem 6, f (L) = 0,
and therefore, L = π2

4 . So, L converges to the minimal root of the function f in this example.

6.2 Example: another scalar periodic gcf
Consider f : C→ C \ {1} with

f (z) =
(z – 2)(z – 3)

1 – z
= 6 + z +

∞∑

n=0

2zn.

f is meromorphic on C with a pole in 1. Set α0 = 6, α1 = 1, and αn = 2 for n ≥ 2. For no
λ, the Pringsheim-type condition (28) will be satisfied, but here we can find an explicit
representation for the approximants L(N)

1,1,0 to L: From (16), we obtain that

L(N)
n,n,n–1 =

(
bn +

N∑

m=n+1

anm

r=m∏

n+1

L(N)
r,r,r–1

)–1

cn,n–1,
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and for n = 1 we obtain with the periodicity of the coefficients

L(N)
1,1,0 = –

(
α1 +

N∑

m=2

αm

r=m∏

2

L(N+1–r)
1,1,0

)–1

α0. (29)

Hence, L(1)
1,1,0 = –6, L(2)

1,1,0 = 6
11 , and an easy induction yields

L(N)
1,1,0 =

3( 1
2 )N–1 – 4( 1

3 )N–1

3( 1
2 )N – 4( 1

3 )N
, N ≥ 0.

Therefore, L = limN→∞ L(N)
1,1,0 = 2. So, in total, no Pringsheim-type criterion is satisfied, and

the minimal root 2 does not lie within the area of convergence of the power series
∑

αmzm.
Nevertheless, the periodic gcf built up by the series αn converges to this minimal root.

6.3 Example: a matrix-valued gcf
Now set

α0 =

(
6 1
0 6

)
, α1 =

(
2 2
1 2

)
, αn =

(
2 2
2 2

)
, n ≥ 2.

Then we obtain

L(N)
1,1,0 =

(
3( 1

2 )2N–2 – 4( 1
3 )2N–2 3( 1

2 )2N–1 – 4( 1
3 )2N–1

3( 1
2 )2N–3 – 4( 1

3 )2N–3 3( 1
2 )2N–2 – 4( 1

3 )2N–2

)

·
(

3( 1
2 )2N – 4( 1

3 )2N 3( 1
2 )2N+1 – 4( 1

3 )2N+1

3( 1
2 )2N–1 – 4( 1

3 )2N–1 3( 1
2 )2N – 4( 1

3 )2N

)–1

by means of a (lengthy, but not difficult) induction from (29). With some effort, we find

L = lim
N→∞ L(N)

1,1,0 =

(
–6 5

–30 19

)
=

(
1 1
2 3

)(
2 0
0 3

)(
1 1
2 3

)–1

.

Hence, the eigenvalues of the limit L are the two (minimal) roots of f (z) = 6 + z +
∑∞

n=2 2zn.

7 Special functions as solutions of (14): an example
We consider the Riemann zeta function ζ , where we will interpret s �→ (s – 1)ζ (s) as an
entire function with value 1 at s = 1.

The Riemann zeta function does not satisfy any easy difference equation of finite or-
der, but a variety of infinite recurrence schemes, from which we have chosen three for
consideration here.

1 =
∞∑

n=0

(s – 1)s . . . (s + n – 1)
(n + 1)!

(
ζ (s + n) – 1

)
, s ∈C, (30)

2s – 2
s – 1

· (s – 1)ζ (s)
2s =

∞∑

n=1

(
s + n – 2

n

)
(s + n – 1)ζ (s + n)

2s+n , s ∈C, (31)
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2
(
2s – 2

)ζ (s)
2s = 1 + 2

∞∑

n=1

(
s + 2n – 1

2n

)
ζ (s + 2n)

2s+2n , s ∈C, (32)

(30) is the most prominent of these relationships and can be found in many textbooks, for
instance, in [42] where also (31) can be found. Alternatively, (31) and (32) can be found in
[38].

7.1 A gcf associated with (30)
Set cn0 = 1 and bn = 1 for all n = 1, 2, 3, . . . , let cnk = 0 for 1 ≤ k < n, and let anm =
(s+n–2)·(s+n–1)·...·(s+m–3)

(m–n+1)! for m > n with some fixed s ∈C. With x0 = 1, (14) reads as

1 =
∞∑

m=n

(s + n – 2)(s + n – 1) · · · (s + m – 3)
(m – n + 1)!

xm

=
∞∑

m=0

(s + n – 2)(s + n – 1) · · · (s + n + m – 3)
(n + 1)!

xm+n, n = 1, 2, 3, . . . ,

where the empty product (for m = n) is 1. Hence, (30) (with s being replaced by s + m – 1)
guarantees that one solution of (14) is given by x0 = 1 and xk = (s + k – 2)(ζ (s + k – 1) – 1)
for k ≥ 1.

Due to cnk = 0 for k ≥ 1, (10), (11), and (12) simplify to K (N)
n = bn for 1 ≤ n ≤ N , L(N)

n,1,0 =
L(N)

n,n,0 for 1 ≤ n ≤ N and

L(N)
n,1,0 = L(N)

n,n,0 = 1 –
N∑

m=n+1

anmL(N)
m,m,0. (33)

Let

q(s, K) =
K∑

k=0

B–
k

k!
(s – 1)s . . . (s + k – 2),

where B–
0 = 1, B–

1 = – 1
2 , B–

2 = 1
6 , B–

3 = 0, B–
4 = – 1

30 , . . . are the Bernoulli numbers. Then

L(N)
n,n,0 = q(s + n – 1, N – n)

for 1 ≤ n ≤ N , as can be proved by induction with respect to N – n by means of (33) and
the recursion formula B–

n = – 1
n+1

∑n–1
k=0

(n+1
k

)
B–

k which is valid for n ≥ 1.
In particular, we obtain

L(N+1)
1,1,0 = q(s, N) = 1 –

(s – 1)
2

+
N∑

n=2

B–
n

n!
(s – 1)s(s + 1) · · · (s + n – 2).

For s ∈ {1, 0, –1, –2, . . .}, L1,1,0 is a ‘finite’ (inverse) generalized continued fraction, and L(N)
1,1,0

obviously converges, its value is L1,1,0 = (s – 1)(ζ (s) – 1). For any other s ∈C, L(N)
1,1,0 diverges

as N → ∞.
Note that there is the representation

(s – 1)
(
ζ (s) – 1

)
= q(s, N) –

(s – 1)s · · · (s + N – 1)
N !

∫ ∞

1
BN

(
x – x�)x–s–N dx
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for the Riemann zeta function (BN (x) is the N th Bernoulli polynomial), but this does not
imply q(s, N) → (s – 1)ζ (s – 1) as N → ∞.

Summarizing, we have seen an infinite system of equations
– which has a solution,
– for which L(N)

n,1,0 is well-defined for all 1 ≤ n ≤ N and solves the truncated system (15),
– for which L(N)

1,1,0 does not converge for N → ∞.

7.2 A gcf associated with (32)
In a similar manner, (32) can be used to construct a system with cnk = 0 for 1 ≤ k < n which
is solved by x0 = 1 and xk = ζ (s + 2(k – 1)) for k ≥ 1. For this system, numerical experiments
give hope that L(N)

1,1,0 converges to ζ (s) for real s > 1, and at least for some s ∈ Cwith Im(s) �= 0
and/or Re(s) < 1, although the convergence seems to be quite slow.

7.3 A gcf associated with (31)
While (30) and (32) are inhomogeneous equations for ζ (s + · · · ), equation (31) is homo-
geneous.

This means that xn = (s+n–1)ζ (s+n)
2s+n provides a solution to the sum equation

cm,m–1xm–1 = bmxm +
∞∑

n=m+1

amnxn, m ≥ 1,

where cm,m–1 = 2s+m–1–2
s+m–2 , amn =

( s+n–2
n–m+1

)
, and bm = amm = s + m – 2. In case of convergence,

we might have x1 = L1,1,0x0. Hence, hope arises that L1,1,0 converges to

sζ (s + 1)
2(s – 1)ζ (s)

.

Again, numerical experiments support this hope including values s with Re(s) < 1 and/or
Im(s) �= 0. Again, this convergence seems to be relatively slow.

7.4 Comment on the recurrence relations and the zeta function
There are many more recurrence relations (see, e.g., [38, 42]) for the ζ function. A thor-
ough analysis of which infinite recurrence formula might be suitable for obtaining a gen-
eralized continued fraction which represents the Riemann zeta function and which allows
to

– efficiently compute values ζ (s) or
– better understand properties of ζ

is far beyond the scope of this paper. Note that the gcfs in this section do not satisfy a
Pringsheim-type condition. Hence, such an analysis would require a further development
of the convergence theory.

8 Conclusion and further research
In this paper, we gave a new definition for generalized continued fractions (gcfs), and
demonstrated that our definition includes and extends many generalizations of continued
fractions which can be found in the literature. In some way, it combines various approaches
of generalizations (coefficients in Banach algebras, more general recursion schemes). As
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a direct benefit of our definition, we were able to prove a Pringsheim-type convergence
criterion, including many former results as special cases.

Providing more convergence criteria and speed-of-convergence results is a goal for fu-
ture research. With a thorough convergence theory as a background, gcfs can be applied
in various fields of mathematics. We have already mentioned that the definition is inspired
by a graphical interpretation (relationship to combinatorics) and by numerical algorithms
for Markov chains. Furthermore, we have seen that scalar periodic gcfs might characterize
the minimal roots of meromorphic functions and that matrix-valued periodic gcfs might
characterize several minimal roots at once. In combination with an advanced convergence
theory, gcfs might turn out to provide useful representations of special functions. In these
mathematical applications, the relationship between (minimal) solutions of second-order
difference equations and continued fractions is generalized.
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