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Abstract
We propose an e-epidemic time-delay Susceptible-Latent-Breaking out-Susceptible
(SLBS) model to study delay dynamics appearing due to antivirus software, which
takes time to clean the viruses from latent and breaking-out computers. We perform
nonlinear stability analysis, Hopf bifurcation analysis, and its direction and stability.
Numerical simulation results (time series analysis and bifurcation diagram) give useful
insights for delay dynamics. We investigate the effect of the control parameters like
rate of infection of all the classes and cure rates on the model system. Our results
suggest that time delay is responsible for destabilizing the system dynamics. For
smooth functionality of a computer system, our results suggest the minimum use of
removable storage devices like smart phones, optical discs, memory cards, external
hard disk, digital cameras, and so on and use of effective antivirus softwares.
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1 Introduction
With increasing popularity of the internet, increasing numbers of network-based applica-
tions enter into our everyday life, which can bring about as much as potential hazards mal-
ware for network users [1]. Understanding the virus spread dynamics is most important for
defence strategies and computer security [2]. In last decades the study of widespread infec-
tion of the computers connected to internet has attracted the interest of the researchers at
home and abroad. To illustrate the computer virus transmission dynamics, Murray [3] has
suggested high similarities between computer and biological viruses. Kephart and White
[4, 5] investigated SIS models for the spread of computer virus. Wierman [2, 6] proposed
the SIR computer virus propagation model. Considering that the computer virus has a la-
tent period, Yuan et al. [7, 8] incorporated the exposed class E (infected but not yet broken-
out) to the classical SIR and SEIR computer virus model. However, the SEIR computer
virus model assumes that the recovered computers have a permanent immunization pe-
riod, which is not consistent with real situation. Mishra and Saini [9] proposed the SEIRS
computer virus model to reveal common worm propagation. There are also some other
computer virus models with vaccination [10–12], quarantine [13–16], effect of antivirus
software [17], and so on.

However, most of the mentioned computer virus models assume that the infected com-
puters that are in latency do not infect other computers. This is not consistent with reality.
An infected computer that is in latency can affect other computers during file download-
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ing or copying. Apart from this, new viruses and newer versions of old viruses may infect
the cured computers, and effect of removable storage devices are also assumed. Based on
these assumptions, the following computer virus model with graded infection rate has
been proposed by Yang and Yang [18]:

dS(t)
dt

= μ1 –
(
β1L(t) + β2B(t)

)
S(t) + γ1L(t) + γ2B(t) – (δ + θ )S(t),

dL(t)
dt

= μ2 +
(
β1L(t) + β2B(t)

)
S(t) – (γ1 + α + δ)L(t) + θS(t),

dB(t)
dt

= αL(t) – (γ2 + δ)B(t),

(1)

where S(t), L(t), and B(t) denotes the numbers of uninfected, latent, and breaking-out
computers at time t, β1, β2, μ1, μ2, γ1, γ2, δ, α, and θ are the parameters of system (1),
and the meanings of all the parameters are the same as those in [18]. Yang and Yang [18]
studied the local and global stability of system (1).

Time delay comes from the time sharing of the communication medium and the compu-
tation time entailed for communication processing and physical signal coding. The con-
cept of delay comes in the 1970s when analogue controllers were replaced by digital con-
trollers in computer networks [19]. Yang [20] demonstrated that the computational delay
can cause system instability in a digital controller. Delay is an important aspect because
it directly affects the speed of the digital device on an operating computer. In [18] the ef-
fect of time delay is not considered; nevertheless, delay acts crucially on system dynamics.
Therefore we have deliberated time delay due to the period that antivirus software uses to
clean viruses from latent and breaking-out computers. Recently, computer virus models
with time delay have been investigated by some scholars [21–26]. In addition to computer
virus models with time delay, there are also some other dynamical models with time de-
lay, which have shown that time delay causes problems such as instability and restrict the
conceivable performance of the control systems. For example, the predator–prey model
[27–30], the epidemic model [31–35], and the neural network model [36–39]. All the men-
tioned works about delayed dynamical models have shown that time delay can produce
complicated nonlinear phenomena with the change of time. Therefore it is important to
know that at which time the delay destabilizes the system. Thus we have considered the
effect of time delay on the system dynamics. Considering the effect of time delay (denoted
as τ ) due to the period that antivirus software uses to clean viruses, we investigate the
following delayed model:

dS(t)
dt

= μ1 –
(
β1L(t) + β2B(t)

)
S(t) + γ1L(t – τ ) + γ2B(t – τ ) – (δ + θ )S(t),

dL(t)
dt

= μ2 +
(
β1L(t) + β2B(t)

)
S(t) – γ1L(t – τ ) – (α + δ)L(t) + θS(t),

dB(t)
dt

= αL(t) – γ2B(t – τ ) – δB(t).

(2)

This paper is organized as follows. Section 2 deals with linear stability and Hopf bifurca-
tion analysis. In Sect. 3, we study the nonlinear stability analysis using the Lyapunov direct
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method. In Sect. 4, we obtain the stability and direction of Hopf bifurcation by using the
theory of center manifold and normal form. Numerical simulation results are presented
in Sect. 5. Conclusions and discussions are presented in Sect. 6.

2 Linear stability and Hopf bifurcation analysis
This section reports the stability analysis of only one existing endemic equilibrium point
E∗ and the critical point τ0 for the local Hopf bifurcation with the help of transversality
condition.

Now by direct computation system (2) has a unique endemic equilibrium (S∗, L∗, B∗),
where

S∗ =
μ1 + A1B∗

A2 + A3B∗ , L∗ =
γ2 + δ

α
B∗,

and B∗ is the unique positive root of the equation

m2
(
B∗)2 + m1B∗ + m0 = 0 (3)

with

m0 = –α(μ1θ + μ2δ + μ2θ ) < 0,

m1 = αδA1 + δ(α + γ2 + δ)A2 – α(μ1 + μ2)A3,

m2 = δ(α + γ2 + δ)A3 > 0,

and

A1 =
γ1(γ2 + δ)

α
+ γ2, A2 = δ + θ , A3 =

β1(γ2 + δ)
α

+ β2.

The product of the roots of B∗ is m0
m2

, which is clearly negative, and the discriminant of
Eq. (3) is m2

1 – 4m0m2, which is also positive since m0 < 0. Thus Eq. (3) has one positive
and one negative root by Vieta’s theorem.

The characteristic equation of system (2) at the endemic equilibrium is

λ3 + p2λ
2 + p1λ + p0 +

(
q2λ

2 + q1λ + q0
)
e–λτ + (r1λ + r0)e–2λτ = 0, (4)

where

p0 = a1(a6a7 – a5a8) + a4(a2a8 – a3a7),

p1 = a1(a5 + a8) + a5a8 – a2a4 – a6a7,

p2 = –(a1 + a5 + a8),

q0 = a4(a2b4 + a8b1 – a7b2) – a1(a5b4 – a8b3),

q1 = b3(a1 + a8) + b4(a1 + a5) – a4b1,

q2 = –(b3 + b4),
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r0 = b4(a4b1 – a1b3),

r1 = b3b4,

and

a1 = –
(
β1L∗ + β2B∗ + δ + θ

)
, a2 = –β1S∗,

a3 = –β2S∗, a4 = β1L∗ + β2B∗ + θ ,

a5 = β1S∗ – (α + δ), a6 = β2S∗,

a7 = α, a8 = –δ, b1 = γ1,

b2 = γ2, b3 = –γ1,

b4 = –γ2.

For τ = 0, Eq. (4) becomes

λ3 + (p2 + q2)λ2 + (p1 + q1 + r1)λ + p0 + q0 + r0 = 0. (5)

Lemma 2.1 When τ = 0, all the roots of Eq. (5) have negative real parts, and the endemic
point E∗(S∗, L∗, B∗) of system (2) is locally asymptotically stable (LAS).

Multiplying both sides of Eq. (4) by eλτ , we obtain

q2λ
2 + q1λ + q0 +

(
λ3 + p2λ

2 + p1λ + p0
)
eλτ + (r1λ + r0)e–λτ = 0. (6)

For τ > 0, let λ = iω (ω > 0) be the root of Eq. (6). Then

(
p0 + r0 – p2ω

2) cos τω –
(
(p1 – r1)ω – ω3) sin τω =q2ω

2 – q0,
(
p0 – r0 – p2ω

2) sin τω +
(
(p1 + r1)ω – ω3) cos τω = – q1ω.

Thus

cos τω =
s14ω

4 + s12ω
2 + s10

ω6 + s04ω4 + s02ω2 + s00
,

sin τω =
s15ω

5 + s13ω
3 + s11ω

ω6 + s04ω4 + s02ω2 + s00
,

(7)

where

s00 = p2
0 – r2

0, s02 = p2
1 – r2

1 – 2p0p2, s04 = p2
2 – 2p1, s10 = –(p0 – r0)q0,

s12 = (p0 – r0)q2 – (p1 – r1)q1 + p2q0, s14 = q1 – p2q2,

s11 = (p1 + r1)q0 – (p0 + r0)q1,

s13 = p2q1 – q0 – (p1 + r1)q2, s15 = q2.
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Therefore we obtain the equation

ω12 + s5ω
10 + s4ω

8 + s3ω
6 + s2ω

4 + s1ω
2 + s0 = 0 (8)

with

s0 = s2
00 – s2

10,

s1 = 2(s00s02 – s10s12) – s2
11,

s2 = s2
02 – s2

12 + 2(s00s04 – s10s14 – s11s13),

s3 = 2(s00 + s02s04 – s12s14 – s11s15) – s2
13,

s4 = s2
04 – s2

14 + 2(s02 – s13s15),

s5 = 2s04 – s2
15.

Now we have (H1): Eq. (8) has at least one positive root ω0. Thus from Eq. (7) we have

τ0 =
1
ω0

cos–1
{

s14ω
4
0 + s12ω

2
0 + s10

ω6
0 + s04ω

4
0 + s02ω

2
0 + s00

}
.

Differentiating Eq. (6) with respect to τ , we obtain

[
dλ

dτ

]–1

=
2q2λ + q1 + (3λ2 + 2p2λ + p1)eλτ + r1e–λτ

(r1λ2 + r0λ)e–λτ – (λ4 + p2λ3 + p1λ2 + p0λ)eλτ
–

τ

λ
.

Thus we get

�
[

dλ

dτ

]–1

τ=τ0

=
PRQR + PIQI

Q2
R + Q2

I
,

where

PR =
(
p1 + r1 – 3ω2

0
)

cos τ0ω0 – 2p2ω0 sin τ0ω0 + q1,

PI =
(
p1 – r1 – 3ω2

0
)

sin τ0ω0 + 2p2ω0 cos τ0ω0 + 2q2ω0,

QR =
(
p1ω

2
0 – r1ω

2
0 – ω4

0
)

cos τ0ω0 –
(
p2ω

3
0 – p0ω0 + r0ω0

)
sin τ0ω0,

QI =
(
p1ω

2
0 + r1ω

2
0 – ω4

0
)

sin τ0ω0 +
(
p2ω

3
0 – p0ω0 + r0ω0

)
cos τ0ω0.

The transversality condition holds if (H2): PRQR + PIQI �= 0. We have the following result
[25].

Theorem 2.2 Let an endemic point E∗ of system (2) exist, and let conditions (H1) and (H2)
be satisfied. Then it is LAS at τ ∈ [0, τ0) and unstable for τ > τ0. Furthermore, system (2)
undergoes Hopf bifurcation at E∗ when τ = τ0, and a family of periodic solutions bifurcate
from E∗(S∗, L∗, B∗) near τ = τ0.
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3 Global stability analysis
This section deals with the nonlinear or global stability analysis by constructing suitable
Lyapunov function for the endemic equilibrium point of the delayed model system (2).

Theorem 3.1 If min{l1, l2, l3} > 0 with

l1 =
1

M1S∗
(
μ1 + γ1L∗ + γ2B∗) –

(
1 +

γ1M2τ

m2

)(
β1 +

β2B∗

m2
+

θ

m2

)
,

l2 =
(

β1 –
γ1

m1

)
–

2γ 2
1 M2τ

m2
2

+
1
L∗

(
1

M2
–

γ1M2τ

m2
2

)
(
μ2 + β2B∗S∗ + θS∗)

–
α

m3

(
1 +

γ2M3τ

m3

)
,

l3 =
(

γ2

m1
– β2

)
+

β2M1

m2

(
1 +

γ1M2τ

m2

)
–

αL∗

B∗

(
1

M3
–

γ2M3τ

m2
3

)
+

2γ 2
2 M3τ

m2
3

,

(9)

where m1 < S(t) < M1, m2 < L(t) < M2, and m3 < B(t) < M3 for t > 0, then the endemic equi-
librium E∗(S∗, L∗, B∗) of system (2) is globally asymptotically stable (GAS).

Proof First, we construct a proper Lyapunov function to derive a sufficient condition that
guarantees that the endemic point E∗ of the model system (2) is globally asymptotically
stable. Let

S(t) = S∗eu(t), L(t) = L∗ev(t), B(t) = B∗ew(t). (10)

Now the endemic equilibrium E∗ transforms into trivial equilibrium u(t) = v(t) = w(t) = 0
for all t > 0. Thus system (2) is reduced as follows:

du
dt

= –
1
S
(
μ1 + γ1L∗ + γ2B∗)(eu(t) – 1

)
– β1L∗(ev(t) – 1

)
– β2B∗(ew(t) – 1

)

+ γ1
L∗

S
(
ev(t–τ ) – 1

)
+ γ2

B∗

S
(
ew(t–τ ) – 1

)
, (11)

dv
dt

= S∗
(

β1 + β2B∗S∗ +
θ

L

)(
eu(t) – 1

)
–

1
L

(
μ2 + β2B∗S∗ – γ1L∗ + θS∗)(ev(t) – 1

)

+ β2
B∗S(t)

L
(
ew(t) – 1

)
– γ1

L∗

L
(
ev(t–τ ) – 1

)
, (12)

dw
dt

= α
L∗

B
(
ev(t) – 1

)
– α

L∗

B
(
ew(t) – 1

)
– γ2

B∗

B
(
ew(t–τ ) – 1

)
+ γ2

B∗

B
(
ew(t) – 1

)
. (13)

Let V1(t) = |u(t)|. Now calculate the derivative of V1(t) with the solution of (2). It follows
from Eq. (11) that

D+V1 ≤ –
1

M1

(
μ1 + γ1L∗ + γ2B∗)∣∣eu(t) – 1

∣∣ – β1L∗∣∣ev(t) – 1
∣∣ – β2B∗∣∣ew(t) – 1

∣∣

+ γ1
L∗

m1

∣
∣ev(t–τ ) – 1

∣
∣ + γ2

B∗

m1

∣
∣ew(t–τ ) – 1

∣
∣. (14)
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Again, due to form of (14), we consider the functional

V11(t) ≤V1(t) +
γ1L∗

m1

∫ t

t–τ

∣
∣ev(s) – 1

∣
∣ds +

γ2B∗

m1

∫ t

t–τ

∣
∣ew(s) – 1

∣
∣ds,

whose derivative along the solution of system (2) is given by

D+V11(t) ≤ D+V1(t) +
γ1L∗

m1

(∣∣ev(t) – 1
∣∣ –

∣∣ev(t–τ ) – 1
∣∣)

+
γ2B∗

m1

(∣∣ew(t) – 1
∣
∣ –

∣
∣ew(t–τ ) – 1

∣
∣)

≤ –
1

M1

(
μ1 + γ1L∗ + γ2B∗)∣∣eu(t) – 1

∣
∣ – β1L∗∣∣ev(t) – 1

∣
∣

– β2B∗∣∣ew(t) – 1
∣∣

+
γ1L∗

m1

∣
∣ev(t) – 1

∣
∣ +

γ2B∗

m1

∣
∣ew(t) – 1

∣
∣

= –
1

M1

(
μ1 + γ1L∗ + γ2B∗)∣∣eu(t) – 1

∣∣ + L∗
(

γ1

m1
– β1

)∣∣ev(t) – 1
∣∣

+ B∗
(

γ2

m1
– β2

)∣
∣ew(t) – 1

∣
∣. (15)

Now Eq. (12) can be written as

dv
dt

= S∗
(

β1 +
β2B∗

L
+

θ

L

)
(
eu(t) – 1

)
–

1
L

(
μ2 + β2B∗S∗ – γ1L∗ + θS∗)(ev(t) – 1

)

– γ1
L∗

L

(
ev(t) –

∫ t

t–τ

ev(s) dv
ds

ds – 1
)

+ β2
B∗S(t)

L
(
ew(t) – 1

)

= S∗
(

β1 +
β2B∗

L
+

θ

L

)
(
eu(t) – 1

)
–

1
L

(
μ2 + β2B∗S∗ – γ1L∗ + θS∗)(ev(t) – 1

)

– γ1
L∗

L
(
ev(t) – 1

)
+ β2

B∗S(t)
L

(
ew(t) – 1

)
+ γ1

L∗

L

∫ t

t–τ

ev(s) dv
ds

ds

= S∗
(

β1 +
β2B∗

L
+

θ

L

)(
eu(t) – 1

)
–

1
L

(
μ2 + β2B∗S∗ + θS∗)(ev(t) – 1

)

+ β2
B∗S(t)

L
(
ew(t) – 1

)
+ γ1

L∗

L

∫ t

t–τ

ev(s)
{

S∗
(

β1 +
β2B∗

L
+

θ

L

)
(
eu(s) – 1

)

–
1
L

(
μ2 + β2B∗S∗ – γ1L∗ + θS∗)(ev(s) – 1

)
+ β2

B∗S(t)
L

(
ew(s) – 1

)

– γ1
L∗

L
(
ev(s–τ ) – 1

)
}

ds, (16)

where we used the following relation:

ev(t–τ ) = ev(t) –
∫ t

t–τ

ev(s) dv
ds

ds.
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Let V2(t) = |v(t)|. Computing the derivative of V2(t) along the solution of (2), from Eq. (16)
it follows that

D+V2 ≤ S∗
(

β1 +
β2B∗

m2
+

θ

m2

)∣
∣eu(t) – 1

∣
∣ –

1
M2

(
μ2 + β2B∗S∗ + θS∗)∣∣ev(t) – 1

∣
∣

+ β2
B∗M1

m2

∣∣ew(t) – 1
∣∣ + γ1

L∗

m2

∫ t

t–τ

ev(s)
{

S∗
(

β1 +
β2B∗

m2
+

θ

m2

)∣∣eu(s) – 1
∣∣

+
1

m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(s) – 1

∣
∣ + β2

B∗M1

m2

∣
∣ew(s) – 1

∣
∣

+ γ1
L∗

m2

∣∣ev(s–τ ) – 1
∣∣
}

ds.

We find that there exists t1 > 0 such that L∗ev(t) < M2 for all t > t1, and for t > t1 + τ , we
have

D+V2 ≤ S∗
(

β1 +
β2B∗

m2
+

θ

m2

)∣∣eu(t) – 1
∣∣ –

1
M2

(
μ2 + β2B∗S∗ + θS∗)∣∣ev(t) – 1

∣∣

+ β2
B∗M1

m2

∣
∣ew(t) – 1

∣
∣ + γ1

M2

m2

∫ t

t–τ

{S∗
(

β1 +
β2B∗

m2
+

θ

m2

)∣
∣eu(s) – 1

∣
∣

+
1

m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(s) – 1

∣∣ + β2
B∗M1

m2

∣∣ew(s) – 1
∣∣

+ γ1
L∗

m2

∣
∣ev(s–τ ) – 1

∣
∣}ds. (17)

Again, due to the form of (17), we consider the functional

V22(t) ≤ V2(t) + γ1
M2

m2

∫ t

t–τ

∫ t

L

{
S∗

(
β1 +

β2B∗

m2
+

θ

m2

)∣∣eu(s) – 1
∣∣

+
1

m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(s) – 1

∣∣ + β2
B∗M1

m2

∣∣ew(s) – 1
∣∣

+ γ1
L∗

m2

∣∣ev(s–τ ) – 1
∣∣
}

ds dL +
γ 2

1 L∗M2τ

m2
2

∫ t

t–τ

∣∣ev(s) – 1
∣∣ds,

whose right derivative along the solution of system (2) is given by

D+V22(t) ≤ D+V2(t) +
γ1M2τ

m2

{
S∗

(
β1 +

β2B∗

m2
+

θ

m2

)∣∣eu(t) – 1
∣∣ +

β2B∗M1

m2

∣∣ew(t) – 1
∣∣

+
1

m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(t) – 1

∣∣ +
γ1L∗

m2

∣∣ev(t–τ ) – 1
∣∣
}

–
γ1M2

m2

∫ t

t–τ

{
S∗

(
β1 +

β2B∗

m2
+

θ

m2

)∣
∣eu(s) – 1

∣
∣ +

β2B∗M1

m2

∣
∣ew(s) – 1

∣
∣

+
1

m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(s) – 1

∣∣ +
γ1L∗

m2

∣∣ev(s–τ ) – 1
∣∣
}

ds

+
γ 2

1 L∗M2τ

m2
2

(∣∣ev(t) – 1
∣∣ –

∣∣ev(t–τ ) – 1
∣∣)

≤ S∗
(

β1 +
β2B∗

m2
+

θ

m2

)∣
∣eu(t) – 1

∣
∣ –

1
M2

(
μ2 + β2B∗S∗ + θS∗)∣∣ev(t) – 1

∣
∣
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+
β2B∗M1

m2

∣
∣ew(t) – 1

∣
∣ +

γ1M2τ

m2

{
S∗

(
β1 +

β2B∗

m2
+

θ

m2

)∣
∣eu(t) – 1

∣
∣

+
β2B∗M1

m2

× ∣
∣ew(t) – 1

∣
∣ +

1
m2

(
μ2 + β2B∗S∗ + γ1L∗ + θS∗)∣∣ev(t) – 1

∣
∣
}

+
γ 2

1 L∗M2τ

m2
2

∣
∣ev(t) – 1

∣
∣

= S∗
(

1 +
γ1M2τ

m2

)(
β1 +

β2B∗

m2
+

θ

m2

)∣∣eu(t) – 1
∣∣ +

2γ 2
1 L∗M2τ

m2
2

∣∣ev(t) – 1
∣∣

+
(

γ1M2τ

m2
2

–
1

M2

)(
μ2 + β2B∗S∗ + θS∗)∣∣ev(t) – 1

∣
∣

+
β2B∗M1

m2

(
1 +

γ1M2τ

m2

)∣∣ew(t) – 1
∣∣. (18)

Now Eq. (13) can be rewritten as

dw
dt

= α
L∗

B
(
ev(t) – 1

)
– α

L∗

B
(
ew(t) – 1

)
– γ2

B∗

B

(
ew(t) –

∫ t

t–τ

ew(s) dw
ds

ds – 1
)

+ γ2
B∗

B
(
ew(t) – 1

)

= α
L∗

B
(
ev(t) – 1

)
– α

L∗

B
(
ew(t) – 1

)
+ γ2

B∗

B

∫ t

t–τ

ew(s) dw
ds

ds

= α
L∗

B
(
ev(t) – 1

)
– α

L∗

B
(
ew(t) – 1

)
+ γ2

B∗

B

∫ t

t–τ

ew(s)
{
α

L∗

B
(
ev(s) – 1

)

+
(

γ2
B∗

B
– α

L∗

B

)(
ew(s) – 1

)
– γ2

B∗

B
(
ew(s–τ ) – 1

)}
ds, (19)

where we used the relation

ew(t–τ ) = ew(t) –
∫ t

t–τ

ew(s) dw
ds

ds.

Let V3(t) = |w(t)|. Computing the right derivative of V3(t) along the solution of (2), from
Eq. (19) it follows that

D+V3(t) =
αL∗

m3

∣
∣ev(t) – 1

∣
∣ –

αL∗

M3

∣
∣ew(t) – 1

∣
∣ +

γ2B∗

m3

∫ t

t–τ

ew(s)
{

αL∗

m3

∣
∣ev(s) – 1

∣
∣

+
(

γ2B∗

m3
+

αL∗

m3

)∣∣ew(s) – 1
∣∣ +

γ2B∗

m3

∣∣ew(s–τ ) – 1
∣∣
}

ds.

We find that there exists t1 > 0 such that B∗ew(t) < M3 for all t > t1. and for t > t1 + τ , we
have

D+V3(t) ≤ αL∗

m3

∣∣ev(t) – 1
∣∣ –

αL∗

M3

∣∣ew(t) – 1
∣∣ +

γ2M3

m3

∫ t

t–τ

{
αL∗

m3

∣∣ev(s) – 1
∣∣

+
(

γ2B∗

m3
+

αL∗

m3

)∣
∣ew(s) – 1

∣
∣ +

γ2B∗

m3

∣
∣ew(s–τ ) – 1

∣
∣
}

ds. (20)
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Again, due to the structure of (20), we consider the functional

V33(t) = V3(t) +
γ2M3

m3

∫ t

t–τ

∫ t

B

{
αL∗

m3

∣
∣ev(s) – 1

∣
∣ +

(
γ2B∗

m3
+

αL∗

m3

)∣
∣ew(s) – 1

∣
∣

+
γ2B∗

m3

∣
∣ew(s–τ ) – 1

∣
∣
}

ds dB +
γ 2

2 M3B∗τ
m2

3

∫ t

t–τ

∣
∣ew(s) – 1

∣
∣ds,

whose upper right derivative along the solution of system (2) is given by

D+V33(t) ≤ D+V3(t) +
γ2M3τ

m3

{
αL∗

m3

∣∣ev(t) – 1
∣∣ +

(
γ2B∗

m3
+

αL∗

m3

)∣∣ew(t) – 1
∣∣

+
γ2B∗

m3

∣
∣ew(t–τ ) – 1

∣
∣
}

–
γ2M3

m3

∫ t

t–τ

{
αL∗

m3

∣
∣ev(s) – 1

∣
∣ +

(
γ2B∗

m3
+

αL∗

m3

)

× ∣
∣ew(s) – 1

∣
∣ +

γ2B∗

m3

∣
∣ew(s–τ ) – 1

∣
∣
}

ds

+
γ 2

2 M3B∗τ
m2

3

(∣∣ew(t) – 1
∣
∣ –

∣
∣ew(t–τ ) – 1

∣
∣)

≤ αL∗

m3

∣∣ev(t) – 1
∣∣ –

αL∗

M3

∣∣ew(t) – 1
∣∣

+
γ2M3τ

m3

{
αL∗

m3

∣
∣ev(t) – 1

∣
∣ +

(
γ2B∗

m3
+

αL∗

m3

)∣
∣ew(t) – 1

∣
∣
}

+
γ 2

2 M3B∗τ
m2

3

∣
∣ew(t) – 1

∣
∣

=
αL∗

m3

(
1 +

γ2M3τ

m3

)∣∣ev(t) – 1
∣∣ – αL∗

(
1

M3
–

γ2M3τ

m2
3

)∣∣ew(t) – 1
∣∣

+
2γ 2

2 M3B∗τ
m2

3

∣∣ew(t) – 1
∣∣. (21)

Let us define the Lyapunov functional

V (t) = V11(t) + V22(t) + V33 >
∣∣u(t)

∣∣ +
∣∣v(t)

∣∣ +
∣∣w(t)

∣∣.

Computing the upper right derivative of V (t) along the solution of the system (2),] and
using (15), (18), and (21), we obtain

D+V (t) = D+V11(t) + D+V22(t) + D+V33(t)

≤ –
1

M1

(
μ1 + γ1L∗ + γ2B∗)∣∣eu(t) – 1

∣
∣ + L∗

(
γ1

m1
– β1

)∣
∣ev(t) – 1

∣
∣

+ B∗
(

γ2

m1
– β2

)∣∣ew(t) – 1
∣∣ + S∗

(
1 +

γ1M2τ

m2

)(
β1 +

β2B∗

m2
+

θ

m2

)∣∣eu(t) – 1
∣∣

+
2γ 2

1 L∗M2τ

m2
2

∣∣ev(t) – 1
∣∣ +

(
γ1M2τ

m2
2

–
1

M2

)
(
μ2 + β2B∗S∗ + θS∗)∣∣ev(t) – 1

∣∣

+
β2B∗M1

m2

(
1 +

γ1M2τ

m2

)∣
∣ew(t) – 1

∣
∣ +

αL∗

m3

(
1 +

γ2M3τ

m3

)∣
∣ev(t) – 1

∣
∣
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– αL∗
(

1
M3

–
γ2M3τ

m2
3

)∣
∣ew(t) – 1

∣
∣ +

2γ 2
2 M3B∗τ

m2
3

∣
∣ew(t) – 1

∣
∣

= –S∗
{

μ1 + γ1L∗ + γ2B∗

M1S∗ –
(

1 +
γ1M2τ

m2

)(
β1 +

β2B∗

m2
+

θ

m2

)}∣
∣eu(t) – 1

∣
∣

– L∗
{(

β1 –
γ1

m1

)
–

2γ 2
1 M2τ

m2
2

+
1
L∗

(
1

M2
–

γ1M2τ

m2
2

)(
μ2 + β2B∗S∗ + θS∗)

–
α

m3

(
1 +

γ2M3τ

m3

)}∣∣ev(t) – 1
∣∣ – B∗

{(
γ2

m1
– β2

)
+

β2M1

m2

(
1 +

γ1M2τ

m2

)

–
αL∗

B∗

(
1

M3
–

γ2M3τ

m2
3

)
+

2γ 2
2 M3τ

m2
3

}∣∣ew(t) – 1
∣∣

= –S∗l1
∣∣eu(t) – 1

∣∣ – L∗l2
∣∣ev(t) – 1

∣∣ – B∗l3
∣∣ew(t) – 1

∣∣,

where l1, l2, and l3 are defined in (9).
Since the model system (2) is positive invariant, for all t > t∗

1 , we have

S∗eu(t) = S(t) > S,

L∗ev(t) = L(t) > L,

B∗ew(t) = B(t) > B.

Using the mean value theorem, we have

S∗∣∣eu(t) – 1
∣∣ = S∗eθ1(t)∣∣u(t)

∣∣ > m1
∣∣u(t)

∣∣,

L∗∣∣ev(t) – 1
∣
∣ = L∗eθ2(t)∣∣v(t)

∣
∣ > m2

∣
∣v(t)

∣
∣,

B∗∣∣ew(t) – 1
∣∣ = B∗eθ3(t)∣∣w(t)

∣∣ > m3
∣∣w(t)

∣∣,

where S∗eθ1(t) lies between S∗ and S(t), L∗eθ2(t) lies between L∗ and L(t), and B∗eθ3(t) lies
between B∗ and B(t). Therefore

D+V (t) ≤ –l1S
∣
∣u(t)

∣
∣ – l2L

∣
∣v(t)

∣
∣ – l3B

∣
∣w(t)

∣
∣

≤ –l
(∣∣u(t)

∣∣ +
∣∣v(t)

∣∣ +
∣∣w(t)

∣∣), where l = min{l1S, l2L, l3B}. (22)

Note that V (t) > |u(t)| + |v(t)| + |w(t)|. Hence from theory of global stability and Eq. (22)
we conclude that the zero solution of the reduced system (11)–(13) is GAS. Therefore the
endemic equilibrium E∗ of model system (2) is GAS. �

4 Stability and direction of Hopf bifurcation
In this section, we discuss the stability and direction of Hopf bifurcation using theory of
normal form and center manifold [40] of the delayed system (2). Let x1 = S – S∗, x2 = I – I∗,
x3 = T – T∗, and xi(t) = xi(τ t) for i = 1, 2, 3. Then the delay system (2) is converted to the
following functional differential equation in C = C([–1, 0],R3):

ẋ = Lμ(xt) + F(μ, xt), (23)
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where x(t) = (x1(t), x2(t), x3(t))T ∈ C, xt(θ ) = x(t + θ ), θ ∈ [–1, 0], and Lμ : C → R
3, F : R×

C →R
3 are given by

Lμ(φ) = (τ0 + μ)
[
J1φ(0) + J2φ(–1)

]
(24)

with

J1 =

⎛

⎜
⎝

a1 a2 a3

a4 a5 a6

0 a7 a8

⎞

⎟
⎠ ,

J2 =

⎛

⎜
⎝

0 b1 b2

0 b3 0
0 0 b4

⎞

⎟
⎠ ,

f (μ,φ) = (τ0 + μ)

⎛

⎜
⎝

–φ1(0)(β1φ2(0) + β2φ3(0))
φ1(0)(β1φ2(0) + β2φ3(0))

0

⎞

⎟
⎠ .

(25)

By the Riesz representation theorem there exists a 3 × 3 matrix-valued function η(θ ,μ)
with components of bounded variation for θ ∈ [–1, 0] such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ), ∀φ ∈C.

By considering Eq. (24) we can choose

η(θ ,μ) = (τ0 + μ)
[
J1δ(θ ) + J2δ(θ + 1)

]
,

where δ(θ ) is the Dirac delta function.
For φ ∈C

1([–1, 0],R3), define

A(μ)φ(θ ) =

⎧
⎨

⎩

dφ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(s,μ)φ(s) = Lμφ, θ = 0,
(26)

and

R(μ)φ(θ ) =

⎧
⎨

⎩
0, θ ∈ [–1, 0),

F(μ,φ), θ = 0.

Now system (23) becomes

ẋt = A(μ)xt + R(μ)xt , (27)

where xt(θ ) = x(t + θ ) for θ ∈ [–1, 0].
For ψ ∈C

1([0, 1], (R3)∗), define

A∗(μ)ψ(s) =

⎧
⎨

⎩
– dψ(s)

ds , s ∈ (0, 1],
∫ 0

–1 dη(t, 0)ψ(–t), s = 0,
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and the bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ̄(0).φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ψ̄T (ξ – θ ) dη(θ )φ(ξ ) dξ , (28)

where η(θ ) = η(θ , 0). Thus A(0) and A∗(0) are adjoint operators, and ±iω0τ0 are their eigen-
values of A(0). Let v(θ ) = (1, v1, v2)T eiω0τ0θ and v∗(s) = P(1, v∗

1, v∗
2)T eiω0τ0s be the eigenvec-

tors of A(0) and A∗(0) at θ = 0 corresponding to the eigenvalues iω0τ0 and –iω0τ0 respec-
tively.

Thus we obtain

v1 =
a4(a8 + b4e–iω0τ0 – iω0)

a6a7 – (a5 + b3e–iω0τ0 – iω0)(a8 + b4e–iω0τ0 – iω0)
,

v2 =
–a7v1

a8 + b4e–iω0τ0 – iω0
,

v∗
1 = –

a1 + iω0

a4
,

v∗
2 = –

a2 + b1eiω0τ0 + (a5 + b3eiω0τ0 + iω0)v∗
1

a7
.

From Eq. (28) we have

〈
v∗(s), v(θ )

〉
= P̄

{(
1 + v1v̄1

∗ + v2v̄2
∗) + τ0

(
v1

(
b1 + b3v̄1

∗) + v2
(
b2 + b4v̄2

∗))e–iω0τ0
}

.

Using the normalization condition 〈v∗(s), v(θ )〉 = 1, we obtain

P̄ =
[(

1 + v1v̄1
∗ + v2v̄2

∗) + τ0
(
v1

(
b1 + b3v̄1

∗) + v2
(
b2 + b4v̄2

∗))e–iω0τ0
]–1.

By the same method we can easily prove that 〈v∗, v̄〉 = 0, thus omitting it. Now we obtain
v and v∗.

Following the same steps as in [40], we obtain the following expressions:

g20 = 2τ0P̄
(
v̄∗

1 – 1
)
(β1v1 + β2v2),

g11 = 2τ0P̄
(
v̄∗

1 – 1
)(

β1(v1 + v̄1) + β2(v2 + v̄2)
)
,

g02 = 2τ0P̄
(
v̄∗

1 – 1
)
(β1v̄1 + β2v̄2),

g21 = τ0P̄
(
v̄∗

1 – 1
)
((β1v̄1 + β2v̄2)W (1)

20 (0) + 2(β1v1 + β2v2)W (1)
11 (0)

+ β1
(
W (2)

20 (0) + 2W (2)
11 (0)

)
+ β2

(
W (3)

20 (0) + 2W (3)
11 (0)

)

(29)

with

W20(θ ) =
ig20

ω0τ0
v(θ ) +

iḡ02

3ω0τ0
v̄(θ ) + E1e2iω0τ0θ ,

W11(θ ) = –
ig11

ω0τ0
v(θ ) +

iḡ11

ω0τ0
v̄(θ ) + E2,

(30)

where E1 = (E(1)
1 , E(2)

1 , E(3)
1 )T and E2 = (E(1)

2 , E(2)
2 , E(3)

2 )T ∈ R
3 are further given constant vec-

tors.
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Solving this system for E1, we obtain

E(1)
1 =

2
Ã

∣
∣∣
∣∣
∣∣

–h1 –a2 – b1e–2iω0τ0 h2

h1 2iω0 – a5 – b3e–2iω0τ0 –a6

0 –a7 h3

∣
∣∣
∣∣
∣∣
,

E(2)
1 =

2
Ã

∣∣
∣∣∣
∣∣

2iω0 – a1 –h1 h2

–a4 h1 –a6

0 0 h3

∣∣
∣∣∣
∣∣
,

E(3)
1 =

2
Ã

∣∣
∣∣
∣∣
∣

2iω0 – a1 –a2 – b1e–2iω0τ0 –h1

–a4 2iω0 – a5 – b3e–2iω0τ0 h1

0 –a7 0

∣∣
∣∣
∣∣
∣
,

Ã =

∣
∣∣∣
∣∣
∣

2iω0 – a1 –a2 – b1e–2iω0τ0 h2

–a4 2iω0 – a5 – b3e–2iω0τ0 –a6

0 –a7 h3

∣
∣∣∣
∣∣
∣
,

with

h1 = β1v1 + β2v2, h2 = –a3 – b2e–2iω0τ0 ,

h3 = 2iω0 – a8 – b4e–2iω0τ0 .

E(1)
2 = –

2
B̃

∣
∣∣
∣∣∣
∣

–h4 a2 + b1 a3 + b2

h4 a5 + b3 a6

0 a7 a8 + b4

∣
∣∣
∣∣∣
∣
,

E(2)
2 = –

2
B̃

∣∣∣
∣∣
∣∣

a1 –h4 a3 + b2

a4 h4 a6

0 0 a8 + b4

∣∣∣
∣∣
∣∣
,

E(3)
2 = –

2
B̃

∣∣
∣∣
∣∣∣

a1 a2 + b1 –h4

a4 a5 + b3 h4

0 a7 0

∣∣
∣∣
∣∣∣
,

B̃ = –

∣∣
∣∣
∣∣
∣

a1 a2 + b1 a3 + b2

a4 a5 + b3 a6

0 a7 a8 + b4

∣∣
∣∣
∣∣
∣
,

with

h4 = β1�{v1} + β2�{v2}.

Thus we can compute the following values:

c1(0) =
i

2ω0τ0

(
g20g11 – 2|g11|2 –

|g02|2
3

)
+

g21

2
,

μ = –
�{c1(0)}
�{λ′(τ0)} ,
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β = 2�{
c1(0)

}
,

T = –
�{c1(0)} + μ2�{λ′(τ0)}

ω0τ0
,

which determine the properties of a bifurcating periodic solution at the critical value τ0.
The notations μ, β , and T determine the direction of Hopf bifurcation, stability, and pe-
riod of the bifurcating periodic solutions, respectively. Now we state the results in the
following theorem.

Theorem 4.1 If μ > 0 (μ < 0), then the Hopf bifurcation is supercritical (subcritical); if
β < 0 (β > 0), then the bifurcating periodic solutions are stable (unstable); if T > 0 (T < 0),
then the periodic solutions increase (decrease).

5 Numerical simulations
Numerical simulation confirms that the delayed system dynamics exhibits a periodic
solution for τ > 8.40567. The initial condition throughout the simulation is taken as
[10, 5, 5]. The unique endemic equilibrium E∗(16.0404, 29.3064, 14.6532) of system (32)
can be obtained by means of Mathematica for the following set of parameter val-
ues:

μ1 = 4, μ2 = 2, α = 0.2,

β1 = 0.01, β2 = 0.02,

γ1 = 0.1, γ2 = 0.3,

δ = 0.1, θ = 0.02.

(31)

System (2) becomes

dS
dt

= 4 – (0.01L + 0.02B)S + 0.1L(t – τ ) + 0.3B(t – τ ) – 0.12S,

dL
dt

= 2 + (0.01L + 0.02B)S – 0.1L(t – τ ) – 0.3L + 0.02S, (32)

dB
dt

= 0.2L – 0.3B(t – τ ) – 0.1B.

From Eq. (5) at τ = 0, we have the characteristic polynomial λ3 + A2λ
2 + A1λ +

A0 = 0, where A0 = 0.0395353 > 0, A1 = 0.519925, A2 = 1.34572 > 0, and A1A2 – A0 =
0.66014 > 0. Hence from the set of parameter values given in Eq. (31) we obtain that the
endemic equilibrium point E∗ is locally asymptotically stable, which is confirmed by the
Routh–Hurwitz criterion.

In Fig. 1, time series and Lyapunov characteristic exponent (LCE) are performed for ex-
ploring system dynamics with and without delay. In absence of delay, the system dynamics
is stable for the chosen set of parameters shown in Fig. 1(a). A Lyapunov characteristic ex-
ponent (LCE) diagram is plotted using Wolf algorithm [41] in absence of delay in Fig. 1(b).
The value of LCEs (–0.10025, –0.61767, –0.62175) indicates that the system dynamics is
stable for the model system (1).

By computing we obtain ω0 = 0.262283 and τ0 = 8.40567. The delayed model system
shows stable behavior for τ = 7.54 and 8.01, shown in Figs. 1(c) and 1(e), respectively.
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Figure 1 (a) Time series without delay, (b) LCE test for (a). Others shows time series of all three classes for
different values of time delay. The values of other parameters are same as in (31)

Oscillatory behavior can be seen for the values of time delay τ = 8.34 and 8.41 in Figs. 1(d)
and 1(f ), respectively. From Fig. 1(d) we can notice that τ = 8.34 < τ0; however, it shows
oscillatory behavior.

Bifurcation diagram illustrated in Fig. 2 also confirms that τ = 8.40567 is the critical
value for the proposed delayed system (2). When the value of τ is below τ0 = 8.40567,
the endemic point E∗(16.0404, 29.3064, 14.6532) is asymptotically stable by Theorem 2.2.
In this case the computer viruses can be controlled easily. However, once the value
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Figure 2 The bifurcation diagram of (a) uninfected/susceptible node, (b) latent node, and (c) breaking-out
node with respect to τ . The values of other parameters are as in (31)

of τ passes through τ0 = 8.40567, a local Hopf bifurcation occurs, which means that
the computer viruses will be out of control and system dynamics will become unsta-
ble.

Effect of infected and cure rates on the delayed model system (32) are noticed to in-
vestigate the computer network performance in Fig. 3. The infected rates β1 = (0.01, 0.03,
0.05, 0.7) and β2 = (0.2, 0.4, 0.6, 0.8) vary, and we observe that as the infected rate increases,
the susceptible class decreases, and the number of latent and breaking-out nodes in-
creases, as shown in Figs. 3(a)–3(f ). The cure rate γ1 = (0.2, 0.1, 0.02, 0.01), at which la-
tent node cured, is varied, and we observe that as the cure rate of latent computer de-
creases, susceptible and breaking-out computer also decreases; however, the latent com-
puter increases, as shown in Figs. 4(a)–4(c). The cure rate γ2 = (0.2, 0.1, 0.02, 0.01) at which
breaking-out computer cured is varied, and we observe that as the cure rate decreases, the
number of susceptible and latent computers decreases, and that of breaking-out comput-
ers increases, as shown in Figs. 4(d)–4(f ). The effect of infected rate at which uninfected
computers are infected due to the influence of infected removable storage media (θ ) is
performed in Fig. 5. As the infected rate θ = (0.02, 0.09, 0.16, 0.23) of susceptible comput-
ers increases, the number of uninfected computers decreases, but the number of latent
and breaking-out computers increases.



Zhang et al. Advances in Difference Equations        (2019) 2019:414 Page 18 of 24

Figure 3 Effect of infected rates (β1, β2) on system dynamics (a) uninfected/susceptible node, (b) latent
node, and (c) breaking-out node with τ = 8. The values of other parameters are as in (31)

In Figs. 6 and 7 a sensitive to initial condition (SIC) test is performed for all three classes
without and with delay, respectively. When we consider the initial condition coinciding
with the equilibrium point, the system dynamics indicates a chaotic scenario; however,
the system behavior is stable. Two different initial conditions [16.04, 29.3087, 14.6513] and
[16.00, 29.2587, 14.5513] are considered for execution of SIC test for the nondelay system
in Figs. 6(a)–6(c) and the delay system in Figs. 7(a)–7(c). A slight change in the initial
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Figure 4 Effect of cure rates (γ1, γ2) at which latent and breaking-out computers cured on system dynamics
(a) uninfected/susceptible node, (b) latent node, and (c) breaking-out node with τ = 8. The values of other
parameters are same as in (31)

condition leads to a new trajectory and confirms that the system dynamics is chaotic in
absence and presence of delay for the proposed system (32).

6 Conclusions and discussions
In this paper, we have mainly focused on an e-epidemic delayed SLBS model for com-
puter viruses using bilinear incidence rates. Linear and nonlinear stabilities are per-
formed by means of the Lyapunov method. The stability and direction of Hopf bifur-
cation is performed using center manifold and normal form theory. Numerical exper-
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Figure 5 Effect of infected rate at which uninfected computers are infected due to the influence of infected
removable storage media (θ ) (a) uninfected/susceptible node, (b) latent node, and (c) breaking-out node
with τ = 8. The values of other parameters are as in (31)

iments are executed to investigate the dynamics of system (2) and verify the analyt-
ical findings for a set of parameter values. Our main results are summarized as fol-
lows:

(i) An e-epidemic delayed SLBS model for computer virus has been extended to
explore the system dynamics. Mainly, the effect of time delay due to the period that
the antivirus software uses to clean the viruses in the latent and breaking-out
computers has been examined.

(ii) For a given set of parameter values, we obtain A0 = 0.0395353 > 0, A1 = 0.519925,
A2 = 1.34572 > 0, and A2A1 – A0 = 0.66014 > 0. Hence we concluded that the
endemic equilibrium point E∗ (16.0404, 29.3064, 14.6532) is locally asymptotically
stable by the Routh–Hurwitz criterion in absence of delay. The value of Lyapunov
exponent confirms the stable system dynamics of the model system (1).

(iii) The bifurcation diagram confirms that τ0 = 8.40567 is the critical value for system
(32). When τ < τ0, the endemic point E∗ is asymptotically stable, and the system is
unstable for τ > τ0.

(iv) We obtain c1(0) = 0.00080926 – 0.00164203i, μ = –0.143792 < 0,
β = 0.00161852 > 0, and T = –0.00082122 < 0 by some complicated computations.
Thus, according to Theorem 4.1, we conclude that the Hopf bifurcation is
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Figure 6 Time series and SIC test of all three classes without delay. The values of other parameters are as in
(31)

subcritical and the bifurcating periodic solutions are unstable with decreasing
period.

(v) From Fig. 5 we observe that as the infected rate at which uninfected computers are
infected due to the influence of infected removable storage media (θ ) increases, the
number of latent and breaking-out computers increases, which is not consistent for
smooth functionality of a computer system. Thus we should minimize the use of
removable storage media and if necessary, to use it as minimum time as possible
because a delay increases the infection probability.

Numerical investigations confirm that the virus transmission or infected and cure rates
at which latent and breaking-out computers get cured have important contributions in
reducing or eradicating the viruses from the computer network. Since susceptible node
decreases and latent and breaking-out increases as infected rate increases, the number of
susceptible and latent computers decreases, and that of breaking-out computers increases
as cure rate decreases, and we can see that the model we propose will be useful to analyze
the efficiency of antivirus software. The antivirus software will be efficient if the infected
rate is small and the cure rate is high. Thus this model will be helpful in developing an-
tivirus software with good quality. In our future work, we will focus on optimal control of
such a removable storage device.
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Figure 7 Time series and SIC test of (a) uninfected/susceptible node, (b) latent node, and (c) breaking-out
node at τ = 8.5. The values of other parameters are as in (31)
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