
Wang et al. Advances in Difference Equations        (2019) 2019:411 
https://doi.org/10.1186/s13662-019-2344-5

R E S E A R C H Open Access

Simultaneous identification of initial field
and spatial heat source for heat conduction
process by optimizations
Bingxian Wang1* , Bin Yang1 and Mei Xu1

*Correspondence:
wangbingxian@aliyun.com
1School of Mathematics Science,
Huaiyin Normal University, Huaian,
P.R. China

Abstract
Consider the simultaneous identification of the initial field and spatial heat source for
heat conduction process from extra measurements with the two additional
measurement data at different times. The uniqueness and conditional stability for this
inverse problem are established by using the properties of a parabolic equation and
the representation of solution after reforming the equation. By combining the least
squares method with the regularization technique, the inverse problem is
transformed into an optimal control problem. Based on the existence and uniqueness
of the minimizer of the cost functional, an alternative iteration process is built to solve
this optimizing problem by the variational adjoint method. The negative gradient
direction is selected as the first search direction. For further iterations, the alternative
iteration algorithm is used for the initial field and heat source identification. The
efficiency of the proposed scheme is tested by the numerical simulation experiments.
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1 Introduction
Consider the following heat conduction problem:

ut – �u = f (x) in Ω × (0, T), (1)

with initial condition

u(x, 0) = φ(x) in Ω , (2)

and boundary condition

u(x, t) = 0 on ∂Ω , (3)

where Ω ⊂ R
d (d = 1, 2) is bounded, f (x) is the space-dependent heat source and φ(x) is

the initial temperature with φ|∂Ω = 0. If f ,φ ∈ L2(Ω), then the solution of (1) is unique and
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u ∈ L2(0, T ; H1
0 (Ω)) in the distributional sense which satisfies (2) (see [1]), and

‖u‖L2(0,T ;H1
0 (Ω)) ≤ C

(‖f ‖L2(Ω) + ‖φ‖L2(Ω)
)
,

where C is independent of f and φ.
The problem considered in this paper is to determine the initial temperature φ(x) and

the space-dependent source f (x) simultaneously from two additional measurement data
at times T1, T2 for 0 < T1 < T2 ≤ T :

u(x, T1) = ψ1(x), x ∈ Ω , (4)

u(x, T2) = ψ2(x), x ∈ Ω . (5)

It is well known that if the source term f (x) in (1) is given, the recovery of the initial
value φ(x) from u(x, T) is severely ill-posed. For the classical heat conduction equation,
it is called a backward heat conduction problem. Many authors have studied this kind
of inverse problem; see [2–7]. On the other hand, when the initial value φ(x) is known,
estimating the source f (x) from the final observation is also an ill-posed problem [8, 9].
The degree of ill-posedness is equivalent to that of second-order numerical differentiation
[10, 11]. The problem in this paper was firstly investigated by Johansson and Lesnic in [12]
where the uniqueness was presented and an iterative regularization algorithm was used
to solve it.

This article is organized as follows. In Sect. 2, we give uniqueness analysis and a con-
ditional stability result for the inverse problem (1)–(5). An optimization problem is pre-
sented and an alternative iteration scheme is constructed by means of the variational ad-
joint method in Sect. 3. Numerical examples are given in Sect. 4.

2 Uniqueness and conditional stability
Suppose f (x),φ(x) ∈ L2(Ω) and set w(x, t) = u(x, t) – φ(x), then (1)–(3) will change into

⎧
⎪⎪⎨

⎪⎪⎩

wt – �w = f (x) – �φ(x) in Ω × (0, T),

w(x, t) = 0 on ∂Ω ,

w(x, 0) = 0 in Ω ,

(6)

with w(x, T1) = ψ1(x) – φ(x) and w(x, T2) = ψ2(x) – φ(x). Applying separation of variables,
we can obtain the solution to (6) as

w(x, t) =
∫

Ω

∫ t

0
K(t – τ , x, y)

(
f (y) – �φ(y)

)
dτ dy, (7)

where

K(t – τ , x, y) =
∞∑

n=1

e–λn(t–τ )Xn(x)Xn(y).

Thus, for i = 1, 2, we can obtain

∫

Ω

(
f (y) – �φ(y)

)∫ Ti

0
K(Ti – τ , x, y) dτ dy + φ(x) = ψi(x). (8)
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Set φ̃(x) = �φ(x) with φ(x) = 0 (x ∈ ∂Ω) and ψ̃i(x) = �ψi(x) (i = 1, 2) with ψi(x) = 0 (x ∈
∂Ω). Then (8) yields

∫

Ω

(
f (y) – φ̃(y)

)∫ Ti

0
�K(Ti – τ , x, y) dτ dy + φ̃(x) = ψ̃i(x), i = 1, 2. (9)

So we have

∞∑

n=1

∫ Ti

0
e–λn(Ti–τ ) dτ

∫

Ω

[
f (y) – φ̃(y)

]
Xn(y) dy�Xn(x) + φ̃(x) = ψ̃i(x). (10)

Denote hi
n =

∫ Ti
0 e–λn(Ti–τ ) dτ = 1

λn
(1 – e–λnTi ). Since �Xn = –λnXn, by using Green formula,

we have

φ̃n =
〈
φ̃(x), Xn

〉
=

〈
�φ(x), Xn

〉
=

〈
φ(x),�Xn

〉
= –λn

〈
φ(x), Xn

〉
= –λnφn,

ψ̃i,n =
〈
ψ̃i(x), Xn

〉
=

〈
�ψi(x), Xn

〉
=

〈
ψi(x),�Xn

〉
= –λn〈ψi, Xn〉 = –λnψi,n.

So (8) yields

⎧
⎨

⎩
–h1

nfn – (1 + h1
nλn)φn = –ψ1,n,

–h2
nfn – (1 + h2

nλn)φn = –ψ2,n.
(11)

When T1 	= T2, we have h1
n 	= h2

n. So (11) has a unique solution. By simple calculation, we
obtain

⎧
⎪⎨

⎪⎩

fn = (1+h2
nλn)ψ1,n–(1+h1

nλn)ψ2,n
h1

n–h2
n

,

φn = h1
nψ2,n–h2

nψ1,n
h1

n–h2
n

.
(12)

Note that φn, fn are the Fourier coefficients of φ and f , that is, φ and f are uniquely deter-
mined by means of the measurements at different times T1 and T2. So combining with the
properties of the problem (1)–(3), we have the following result:

Lemma 2.1 Suppose φ, f ∈ L2(Ω), and ψ1,ψ2 ∈ H1
0 (Ω), then the solution to the inverse

problem (1)–(5) is unique in L2(Ω) × L2(Ω).

Now, we give a conditional stability analysis for the inverse problem. Suppose ∂Ω ∈ C2+α

and φ, f ∈ C2+α(Ω̄), then

ψ1,ψ2 ∈ C2+α(Ω̄) ⊂ C2(Ω̄) ⊂ L2(Ω) (13)

by Theorem 2.2.5 in [13].
We divide the time interval [0, T2] into [0, T1] and [T1, T2]. In [T1, T2], for the source

f (x), we have the following stability result in the framework of Hölder spaces [14]:

|f |α
Ω̄

≤ C
(|ψ1|2+α

Ω̄
+ |ψ2|2+α

Ω̄

)
. (14)
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Now we consider the conditional stability with respect to φ in [0, T1] with the aid of the
stability result (14). By separation of variables we can obtain the solution to (1)–(4) as
follows:

u(x, t) =
∞∑

n=1

Wn(t)Xn(x). (15)

Setting t = 0 and t = T1, respectively, Wn(t) will be determined, and we have

u(x, t) =
∞∑

n=1

[
e–λntφn +

1
λn

(
1 – e–λnt)fn

]
Xn(x), (16)

u(x, t) =
∞∑

n=1

[
eλn(T1–t)ψ1,n +

1
λn

(
1 – eλn(T1–t))fn

]
Xn(x), (17)

where φn = 〈φ, Xn〉, ψ1,n = 〈ψ1, Xn〉, and fn = 〈f , Xn〉.
From (16), we have

u(x, T1) =
∞∑

n=1

[
e–λnT1φn +

1
λn

(
1 – e–λnT1

)
fn

]
Xn(x). (18)

Similarly, from (17), we have

u(x, 0) =
∞∑

n=1

[
eλnT1ψ1,n +

1
λn

(
1 – eλnT1

)
fn

]
Xn(x) (19)

and

�u(x, 0) =
∞∑

n=1

[
–λneλnT1ψ1,n –

(
1 – eλnT1

)
fn

]
Xn(x). (20)

So

∥∥�u(·, 0)
∥∥2

L2(Ω)

=
∞∑

n=1

(
–λneλnT1ψ1,n –

(
1 – eλnT1

)
fn

)2

≤ 2

[ ∞∑

n=1

λ2
ne2λnT1ψ2

1,n +
∞∑

n=1

(
1 – eλnT1

)2f 2
n

]

≤ 8

[( ∞∑

n=1

λ2
ne4λnT1ψ2

1,n

)1/2( ∞∑

n=1

λ2
nψ

2
1,n

)1/2

+

( ∞∑

n=1

e2λnT1 f 2
n

)1/2( ∞∑

n=1

f 2
n

)1/2]

= 8

[( ∞∑

n=1

λ2
ne4λnT1ψ2

1,n

)1/2

‖�ψ1‖L2 +

( ∞∑

n=1

e2λnT1 f 2
n

)1/2

‖f ‖L2

]

. (21)
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On the other hand, (18) yields

λ2
ne4λnT1ψ2

1,n = λ2
ne4λnT1

(
e–λnT1φn +

1
λn

(
1 – e–λnT1

)
fn

)2

≤ 8
(
e2λnT1λ2

nφ
2
n + e4λnT1 f 2

n
)
. (22)

Because C2+α(Ω̄) ⊂ H2(Ω) and Cα(Ω̄) ⊂ L2(Ω), by means of the result in (22), we can
change (21) into

∥∥�u(·, 0)
∥∥2

L2(Ω) ≤ C1

( ∞∑

n=1

e2λnT1λ2
nφ

2
n +

∞∑

n=1

e4λnT1 f 2
n

)1/2

|ψ1|2+α

Ω̄

+ C1

( ∞∑

n=1

e2λnT1 f 2
n

)1/2

|f |α
Ω̄

. (23)

Since u(·, 0)|∂Ω = 0, by (23) and using a W 2,2-estimate of the solution to Poisson equation,
we have

∥
∥u(·, 0)

∥
∥2

H2(Ω) ≤ C
∥
∥�u(·, 0)

∥
∥2

L2(Ω)

≤ C2

( ∞∑

n=1

e2λnT1λ2
nφ

2
n +

∞∑

n=1

e4λnT1 f 2
n

)1/2

|ψ1|2+α

Ω̄

+ C2

( ∞∑

n=1

e2λnT1 f 2
n

)1/2

|f |α
Ω̄

, (24)

where C2 = CC1.
Now we introduce the following norms of φ and f :

‖φ‖2
F1 :=

∞∑

n=1

〈φ, Xn〉2λ2
ne2λnT1 , ‖f ‖2

F2 :=
∞∑

n=1

〈f , Xn〉2e4λnT1 ,

and define the following admissible set of φ and f :

P1 =
{
φ ∈ C2+α(Ω̄) : ‖φ‖F1 ≤ M1

}
, P2 =

{
f ∈ C2+α(Ω̄) : ‖f ‖F2 ≤ M2

}
,

where M1, M2 > 0.
From the above analysis, by the linearity of the inverse problem and (14),(24), we have

Theorem 2.2 Suppose ∂Ω ∈ C2+α . For φi ∈ P1, f i ∈ P2 (i = 1, 2), note that

ψ i
1(x) = u

[
φi, f i](x, T1), ψ i

2(x) = u
[
φi, f i](x, T2),

where u[φi, f i](x, t) are the solutions to (1)–(3) with respect to φi and f i. Then the solution
to the inverse problem has the following stability estimate:

∣∣f 1 – f 2∣∣α
Ω̄

≤ C
(∣∣ψ1

1 – ψ2
1
∣∣2+α

Ω̄
+

∣∣ψ1
2 – ψ2

2
∣∣2+α

Ω̄

)
, (25)
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∥∥φ1 – φ2∥∥2
H2(Ω) ≤ C

(∣∣ψ1
1 – ψ2

1
∣∣2+α

Ω̄
+

∣∣ψ1
2 – ψ2

2
∣∣2+α

Ω̄

)
, (26)

where C is dependent of M1 and M2.

3 Iteration scheme for solving the optimization problem
We reformulate the inverse problem (1)–(5) as the following optimization problem:

Find (φ∗, f ∗) such that

J
(
φ∗, f ∗) = min

φ∈L2(Ω),f ∈L2(Ω)
J(φ, f ), (27)

where the cost functional is

J(φ, f ) := J1(φ, f ) + J2(φ) + J3(f ), (28)

with

J1(φ, f ) =
1
2

∫

Ω

((
u(x, T1) – ψ1(x)

)2 +
(
u(x, T2) – ψ2(x)

)2)dx, (29)

J2(φ) =
γ 2

2

∫

Ω

(
φ – φη

)2 dx, J3(f ) =
γ 2

2

∫

Ω

(
f – f η

)2 dx. (30)

Here u(x, t) is the solution to the problem (1)–(5) depending on (φ, f ), γ > 0 is the regular-
ization parameter; φη and f η are some prior information of φ and f , respectively. Similar
to a discussion in [15], we have the following result for the optimization problem:

Lemma 3.1 For any γ > 0, J(φ, f ) has a unique pair of minimizers (φ∗, f ∗) in L2(Ω) ×
L2(Ω).

Setting Ω ⊂ R
2, we will propose an alternative iteration scheme for minimizing J(φ, f )

based on the variational adjoint method to generate the approximate solution to our in-
verse problem. The crucial steps are the derivation of the gradient of the cost functional
and an efficient iteration scheme based on the gradient.

3.1 Derivation of the gradient of functional
We first derive the tangent linear model. Denote by u(x, t), ũ(x, t), and ŭ(x, t) the solutions
to (1)–(3) corresponding to (φ, f ), (φ, f + α f̂ ), and (φ + βφ̂, f ).

Set

û = lim
α→0

ũ – u
α

+ lim
β→0

ŭ – u
β

,

then by direct calculation for û we have

⎧
⎪⎪⎨

⎪⎪⎩

ût = �û + f̂ , x ∈ Ω , t > 0,

û = 0, x ∈ ∂Ω , t ≥ 0,

û(x, 0) = φ̂, x ∈ Ω ,

(31)

where (31) is called the tangent linear model of (1)–(3).
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Now we calculate the Gatéaux derivative of the cost functional J(·, ·). Generally, Gatéaux
derivative is defined as

(∇f J , f̂ ) + (∇φJ , φ̂) := lim
α→0

J(φ, f + α f̂ ) – J(φ, f )
α

+ lim
β→0

J(φ + βφ̂, f ) – J(φ, f )
β

. (32)

So we calculate directly the two limits on the right-hand side of (32), and by means of
the conditions of the problem (1)–(3), we have

(∇φJ , φ̂) + (∇f J , f̂ ) =
∫

Ω

û|t=T1

(
u(x, T1) – ψ1(x)

)
dx +

∫

Ω

û|t=T2

(
u(x, T2) – ψ2(x)

)
dx

+ γ 2
∫

Ω

φ̂
(
φ – φη

)
dx dt + γ 2

∫

Ω

f̂
(
f – f η

)
dx, (33)

where û fits the tangent linear model (31).
Secondly, define the adjoint systems:

⎧
⎪⎪⎨

⎪⎪⎩

–(p1)t – �p1 = 0, x ∈ Ω , 0 < t < T1,

p1(x, t)|∂Ω = 0, t > 0,

p1(x, T1) = u(x, T1) – ψ1(x), x ∈ Ω ,

(34)

⎧
⎪⎪⎨

⎪⎪⎩

–(p2)t – �p2 = 0, x ∈ Ω , 0 < t < T2,

p2(x, t)|∂Ω = 0, t > 0,

p2(x, T2) = u(x, T2) – ψ2(x), x ∈ Ω .

(35)

Multiply both sides of (31) by adjoint functions p1(x, t) and integrate in Ω × [0, T1]. Sim-
ilarly, multiply both sides of (31) by p2(x, t) and integrate in Ω × [0, T2]. By means of the
initial and boundary conditions of (31), we are led to (36)–(37) as follows:

∫

Ω

p1û|T1
0 dx –

∫ T1

0

∫

Ω

û
∂p1

∂t
dx dt

=
∫ T1

0

∫

Ω

û�p1 dx dt +
∫ T1

0

∫

∂Ω

p1
∂û
∂ν

ds dt +
∫ T1

0

∫

Ω

p1 f̂ dx dt, (36)

∫

Ω

p2û|T2
0 dx –

∫ T2

0

∫

Ω

û
∂p2

∂t
dx dt

=
∫ T2

0

∫

Ω

û�p2 dx dt +
∫ T2

0

∫

∂Ω

p2
∂û
∂ν

ds dt +
∫ T2

0

∫

Ω

p2 f̂ dx dt. (37)

Due to (34)–(35), (36) and (37) yield
∫

Ω

((
u(x, T1) – ψ1(x)

)
û(x, T1) – p1(x, 0)φ̂(x)

)
dx =

∫

/Ω
p1û|T1

0 dx

=
∫ T1

0

∫

Ω

p1 f̂ dx dt, (38)
∫

Ω

((
u(x, T2) – ψ2(x)

)
û(x, T2) – p2(x, 0)φ̂(x)

)
dx =

∫

Ω

p2û|T2
0 dx

=
∫ T2

0

∫

Ω

p2 f̂ dx dt. (39)
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Adding (38) to (39), (33) can be changed into

(∇φJ , φ̂) + (∇f J , f̂ ) =
∫

Ω

p1(x, 0)φ̂(x) dx +
∫ T1

0

∫

Ω

p1 f̂ dx dt

+
∫

Ω

p2(x, 0)φ̂(x) dx +
∫ T2

0

∫

Ω

p2 f̂ dx dt

+ γ 2
∫

Ω

φ̂
(
φ – φη

)
dx + γ 2

∫

Ω

f̂
(
f – f η

)
dx.

Due to the irrelevance of φ̂ and f̂ , the gradient of J(φ, f ) at (φ, f ) along φ̂, f̂ can be ob-
tained as follows:

∇φJ = p1(x, 0) + p2(x, 0) + γ 2(φ – φη
)
, (40)

∇f J =
∫ T1

0
p1(x, t) dt +

∫ T2

0
p2(x, t) dt + γ 2(f – f η

)
. (41)

3.2 Iteration algorithm
Starting from the initial guess φ0(x) and f0(x), we construct the following iteration scheme:

φn+1(x) = φn(x) + r1
nD1

n, n = 0, 1, 2, . . . , (42)

fn+1(x) = fn(x) + r2
nD2

n, n = 0, 1, 2, . . . , (43)

where ri
n > 0 (i = 1, 2) is the step size selected by the Wolfe line search [16], and D1

n, D2
n

are the searching directions. The negative gradient direction is selected as the first search
direction for D1

n, D2
n. For the succeeding iterations, two kinds of optimization method are

used for the initial temperature inversion and the heat source identification, respectively.
An alternative iteration scheme is constructed to improve the computation efficiency.

According to the construction of the iterative scheme (42)–(43), we design the following
alternate iteration algorithm for solving (φn, fn):

Fix the maximum iterative step Nmax, the error level ε, and the maximum length of cor-
rection step rmax > 0.

Step 1: Given the initial guess φ0, f0 and initial search step r1
0, r2

0 ∈ (0, rmax), calculate

D1
0 = –g0 := –∇φJ|(φ0,f0), φ1(x) = φ0(x) + r1

0D1
0(x),

D2
0 = –s0 := –∇f J|(φ1,f0), f1(x) = f0(x) + r2

0D2
0(x).

Repeat for n = 2, 3, 4, . . . .
Step 2: Calculate the two tangent directions of J with respect to φ, f :

gn–2 = ∇φJ|(φn–2,fn–2), gn–1 = ∇φJ|(φn–1,fn–2),

sn–2 = ∇f J|(φn–1,fn–2), sn–1 = ∇f J|(φn–1,fn–1).

Here, for given (φi, fj), we first need to solve the direct problem (1)–(3) and
get the solution u[φi, fj], and the adjoint problem (34)–(35) is then also solved to
obtain p1[φi, fj], p2[φi, fj], where

(i, j) = (n – 2, n – 2), (n – 1, n – 2), (n – 1, n – 1).
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Step 3: Calculate the correction step ξn–1, ζn–1 in the nth iteration direction as

ξn–1 =
‖gn–1‖
‖gn–2‖ , ζn–1 =

‖sT
n–1(sn–1 – sn–2)‖

‖sT
n–2(sn–1 – sn–2)‖ .

Step 4: Modify the negative gradient direction and get the new iteration direction of φn,
fn:

D1
n–1 = –gn–1 + ξn–1D1

n–2, D2
n–1 = –sn–1 + ζn–1D2

n–2.

Step 5: Calculate the step size (r1
n–1, r2

n–1) for update (φn–1, fn–1) by Wolfe line search.
Step 6: Calculate

φn(x) = φn–1(x) + r1
n–1D1

n–1(x), fn(x) = fn–1(x) + r2
n–1D2

n–1(x);

Step 7 : Check whether max {‖gn‖,‖sn‖} < ε or n > Nmax? If it is true, stop the iteration
and output φn, fn. Otherwise, set n + 1 ⇒ n and return to Step 2.

4 Numerical implementation
In this section, we give two numerical implementations for the iteration algorithm. All the
computations were performed using MATLAB 2016a on a personal computer with Intel
Core i5 and 8.00 GB memory. Set x = (x1, x2), Ω = [0,π ] × [0,π ], denote the stepsizes in x1

and x2 by h1 = π/M1 and h2 = π/M2, respectively, where M1, M2 ∈ N are grid parameters
with respect to x1, x2. The stepsize in t denoted τ is chosen by T1 = N1τ , T2 = N2τ . What
needs to be explained is that an alternate iterative scheme is proposed. In Example 1, we
compare the numerical results with the solutions by the primary iteration scheme. The
final time giving the inversion input data is taken as T1 = 1/2, T2 = 1 for the two examples,
while the noisy final measurement data are simulated by

uδ(x, Ti) = u(x, Ti) + δ × randn(x), (44)

where randn(x) ∈ [–1, 1] are from the normal distribution with mean 0 and standard de-
viation 1. Here the direct problem (1)–(3) and adjoint system (34) and (35) are solved by
D’Yakonov ADI scheme. The error estimates of φ(x) and f (x) are defined by L2-estimation:

err
(
φδ

n,φ∗) =
∥
∥φδ

n – φ∗∥∥
L2(Ω), err

(
f δ
n , f ∗) =

∥
∥f δ

n – f ∗∥∥
L2(Ω). (45)

Example 1 The exact solution of (1)–(3) is

u(x1, x2, t) =
(
2 – e–2t) sin x1 sin x2, (46)

and then φ∗(x1, x2) = sin x1 sin x2 and f ∗(x1, x2) = 4 sin x1 sin x2. According to (46), the noisy
data is simulated by

uδ(x1, x2, Ti) =
(
2 – e–2Ti

)
sin x1 sin x2 + δ × rand(x1, x2), i = 1, 2. (47)

In this example, we select φη = f η = 0 and divide the domain Ω as 60 × 60 pixels and take
the regularizing parameters γ = 10–2. Set φ0(x1, x2) = 0, f0(x1, x2) = 0 and consider the in-
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Figure 1 Reconstructions of Example 1: (first line) exact and approximate solutions φ(x1, x2) with δ = 0;
(second line) approximate solutions for δ = 0.001, 0.01; (third line) approximate solutions for δ = 0.02, 0.03,
respectively

put data (47) with δ = 0, 0.001, 0.01, 0.02, 0.03, respectively. The inverse results of φ(x1, x2)
and f (x1, x2) are shown in Figs. 1 and 2. Here, in order to represent the advantage of an
alternate iteration in this paper, we also calculate J(φδ

n, f δ
n ), err(φδ

n,φ∗), and err(f δ
n , f ∗) with

δ = 0 by means of alternate iteration and primary iteration, which are shown in Table 1.
For J(φδ

n, f δ
n ), the functional value is reduced faster than when using alternate iteration af-

ter the same number of iterations. Furthermore, the estimated error values err(φδ
n,φ∗) and

err(f δ
n , f ∗) are small after 100 iterations by using the alternate iteration scheme, but respec-

tive errors when using the primary iteration scheme are reduced slowly. It can be seen that
the efficiency of computation is greatly improved by alternate iteration. Figure 3 (first line)
shows the numerical performance for noisy input data by giving the behavior of J(φδ

n, f δ
n ).

And the error estimation results of φ(x1, x2) and f (x1, x2) are shown in Fig. 3 (second line,
(middle) and (right)).
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Figure 2 Reconstructions of Example 1: (first line) exact and approximate solutions of f (x1, x2) with δ = 0;
(second line) approximate solutions for δ = 0.001, 0.01; (third line) approximate solutions for δ = 0.02, 0.03,
respectively

Table 1 Functional value of J(φδ
n , f

δ
n ), errors err(φ

δ
n ,φ

∗) and err(f δn , f
∗) by the primary iteration

scheme; “J1”, “err1” represent the results of the alternate iteration scheme

n J(φδ
n , f

δ
n ) J1(φδ

n , f
δ
n ) err(φδ

n ,φ
∗) err1(φδ

n ,φ
∗) err(f δn , f

∗) err1(f δn , f
∗)

85 5.3832E–01 1.5323E–02 1.0866 5.3221E–01 1.4455 1.0483
87 5.2923E–01 1.3229E–02 1.0254 3.1208E–01 1.2833 8.0214E–01
89 5.0202E–01 1.2026E–02 1.0086 1.9327E–01 1.2312 5.0118E–01
91 4.8282E–01 1.1224E–02 9.7452E–01 8.0323E–02 1.1955 2.0543E–01
93 4.6211E–01 1.0981E–02 9.4924E–01 3.8345E–02 1.1523 1.0214E–01
95 4.5886E–01 1.0735E–02 9.3229E–01 1.4148E–02 1.1101 5.1183E–02
97 4.4553E–01 1.0498E–02 9.1223E–01 5.8643E–03 1.0775 2.9752E–02
99 4.2814E–01 8.2701E–03 8.8426E–01 4.8327E–03 1.0291 2.7538E–02
100 4.0755E–01 7.5523E–03 8.7208E–01 4.0462E–03 9.8123E–01 2.5147E–02
101 3.9613E–01 6.1331E–03 8.6562E–01 7.2483E–03 9.7994E–01 4.1346E–02
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Figure 3 Numerical performance of J(φδ
n , f

δ
n ) (first line), err(φ

δ
n ,φ

∗) (second line, (left)), err(f δn , f
∗) (second line,

(right)) with respect to the number of iterations for δ = 0, 0.001, 0.01, 0.02, and 0.03 of Example 1

Example 2 The exact initial temperature and the source field are

φ(x1, x2) = sin 2x1 sin 2x2, x1, x2 ∈ [0,π ],

f (x1, x2) =

⎧
⎨

⎩
1, π/4 ≤ x1, x2 ≤ 3π/4,

0, else.

Then the exact solution has the same form

u(x1, x2, t) =
∞∑

n=1

∞∑

m=1

Hmn(t) sin mx1 sin nx2, 0 ≤ x1, x2 ≤ π , (48)

where

Hmn(t) =
4e–(m2+n2)t

π2

(∫ t

0

(∫ π

0

∫ π

0
f (x1, x2) sin mx1 sin nx2 dx2 dx1

)
e(m2+n2)τ dτ

+
∫ π

0

∫ π

0
φ(x1, x2) sin mx1 sin nx2 dx2 dx1

)
.
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Figure 4 Reconstructions of Example 2: (first line) exact approximate solutions of φ(x1, x2) with δ = 0; (second
line) approximate solutions for δ = 0.001, 0.01; (third line)approximate solutions for δ = 0.02, 0.03, respectively

Set N1 = N2 = 30, then (48) is computed numerically by its N1 ×N2 terms, and (44) yields
the noisy inversion input data

uδ(x1, x2, Ti) =
N1∑

n=1

N2∑

m=1

Hmn(t) sin mx1 sin nx2 + δ × rand(x1, x2), (49)

where i = 1, 2.
We set f η = φη = 0.01, and consider the input data (49) with δ = 0, 0.001, 0.01, 0.02, and

0.03, respectively, in this example. The regularizing parameters are selected as γ = 10–2.
The initial guess is φ0(x1, x2) = 0 and f0(x1, x2) = 0. We obtain the inverse results of φ(x1, x2)
and f (x1, x2), which are shown in Figs. 4 and 5. In Fig. 6, we give the numerical performance
for noisy input data by giving the behavior of J(φδ

n, f δ
n ) (first line), the errors err(φδ

n,φ∗) and
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Figure 5 Reconstructions of Example 2: (first line) exact and approximate solutions of f (x1, x2) with δ = 0;
(second line) approximate solutions for δ = 0.001, 0.01; (third line) approximate solutions for δ = 0.02, 0.03,
respectively

err(f δ
n , f ∗) with respect to the iteration number n and noise level δ (second line, (left) and

(right)).

Remark 4.1 The penalty term J2 can also be replaced by γ 2

2
∫ T1

0
∫
Ω

|∇u|2 dx, which means
that the heat flux is bounded in physics. In comparison with J2 used in this paper, the
regularization effect is more obvious for the inversion of φ, and the number of iteration is
decreasing. We have already tested it in 1-dimension.

5 Conclusion
This paper presents an alternative iteration method for the simultaneous identification of
the initial field and spatial heat source for a heat conduction process from extra measure-
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Figure 6 Numerical performances J(φδ
n , f

δ
n ) (first line), err(φ

δ
n ,φ

∗) (second line, (left)), err(f δn , f
∗) (second line,

(right)) with respect to the number of iterations for δ = 0, 0.001, 0.01, 0.02, and 0.03 of Example 2

ment data at two different times. The uniqueness and conditional stability results have
been established. In Example 1, we calculated J(φδ

n, f δ
n ), err(φδ

n,φ∗) and err(f δ
n , f ∗) with δ = 0

by means of alternate and primary iteration schemes. In addition, the alternate iteration
scheme takes 3 min, while the primary iteration scheme takes 5 min for 100 iterations in
Matlab2016a. And as seen from Table 1, by using the alternate iteration scheme, the value
of functional J(φn, fn) is reduced faster than by the primary iteration scheme for the same
number of iterations.
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