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Abstract
In this paper, we consider two different models of nonlinear ordinary differential
equations (ODEs) of second order. We construct two new Lyapunov functions to
investigate boundedness of solutions of those nonlinear ODEs of second order. By
using the Lyapunov direct or second method and inequality techniques, we prove
two new theorems on the boundedness solutions of those ODEs of second order as
t → ∞. When we compare the conditions of the theorems of this paper with those of
Meng in (J. Syst. Sci. Math. Sci. 15(1):50–57, 1995) and Sun and Meng in (Ann. Differ.
Equ. 18(1):58–64 2002), we can see that our theorems have less restrictive conditions
than those in (Meng in J. Syst. Sci. Math. Sci. 15(1):50–57, 1995) and Sun and Meng in
(Ann. Differ. Equ. 18(1):58–64 2002) because of the two new suitable Lyapunov
functions. Next, in spite of the use of the Lyapunov second method here and in
(Meng in J. Syst. Sci. Math. Sci. 15(1):50–57, 1995; Sun and Meng in Ann. Differ. Equ.
18(1):58–64 2002), the proofs of the results of this paper are proceeded in a very
different way from that used in the literature for the qualitative analysis of ODEs of
second order. Two examples are given to show the applicability of our results. At the
end, we can conclude that the results of this paper generalize and improve the results
of Meng in (J. Syst. Sci. Math. Sci. 15(1):50–57, 1995), Sun and Meng in (Ann. Differ.
Equ. 18(1):58–64 2002), and some other that can be found in the literature, and they
have less restrictive conditions than those in these references.
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1 Introduction
It is well known that linear and nonlinear ODEs of second order can arise during many
applications in various scientific areas such as physics, biology, chemistry, biophysics, me-
chanics, medicine, aerodynamics, economy, atomic energy, control theory, information
theory, population dynamics, electrodynamics of complex media, and so on. Therefore,
qualitative behaviors of solutions to ODEs of second order, stability, boundedness, conver-
gence, instability, integrability, globally existence of solutions, etc., have been extensively
investigated in the literature by this time. For a comprehensive treatment of these qual-
itative properties of solutions of ODEs of second order and some applications, we refer
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the readers to [1–45, 47–54] and the references cited therein. Besides, the boundedness
of solutions of nonlinear ODEs of second order are of particular interest in applications
(see [1–3, 6, 8, 16–18, 23–46, 48–54]).

During the investigations of the qualitative properties of solutions to ODEs of second
order, fixed point method, perturbation theory, variations of parameters formulas, the
Lyapunov second method, and so on have been used to get information without solving
equation(s) under study. It is worth mentioning that, to the best of our knowledge, prob-
ably, up to now in the related literature, the Lyapunov second method has been the most
effective tool to study these qualitative properties of solutions of nonlinear ODEs of higher
order without solving them. This method requires the construction of a suitable function
or functional, which gives meaningful result(s) for the problem under study. However, the
construction of the Lyapunov functions for nonlinear ODEs of higher order still remains
an open problem in the literature for now.

As for the motivation of the results of this paper, the boundedness and square integra-
bility, etc. of solutions of the following ODEs of second order:

x′′ +
(
q1(t) + q2(t)

)
x = 0, (1)

d
dt

(
r(t)x′) + q(t)x = 0, (2)

x′′ + p(t)x′ +
(
q1(t) + q2(t)

)
x = 0, (3)

x′′ + p(t)x′ +
(
q1(t) + q2(t)

)
x = f (t), (4)

and

d
dt

(
r(t)x′) + p(t)x′ +

(
q1(t) + q2(t)

)
x = f (t, x) (5)

have been discussed by Meng [15], Sun and Meng [23], and some others cited in the ref-
erences [15] and [23]. The proofs of the results of Meng [15], Sun and Meng [23], and the
others were done by using the Lyapunov second method and some well-known inequal-
ities. In [15] and [23], the authors obtained some interesting results on the boundedness
and square integrability of solutions of these ODEs of second order, (1)–(5). Here, in par-
ticular, we should insist that Meng [15] considered ODE (4). He obtained certain sufficient
conditions under which all the solutions of ODE (4) are bounded and square integrable.
He proved three theorems on boundedness and square integrability of solutions of ODE
(4). Each of the theorems in [15] is a slight different variant of the other ones.

In this paper, motivated by the works of Meng [15] and Sun and Meng [23], firstly, we
deal with the following nonlinear ODE of second order:

x′′ + p(t)g
(
x′) + q1(t)h(x) + q2(t)x = f

(
t, x, x′), (6)

where x ∈ �, � = (–∞,∞), t ∈ �+, �+ = [0,∞). Throughout this paper, it is assumed
that p, q2 ∈ C(�+,�), q1 ∈ C1(�+,�), g ∈ C1(�,�), h ∈ C1(�,�), and f ∈ C(�+ × �2,�),
g(0) = 0 and h(0) = 0. By these assumptions, the existence of the solutions of ODE (6) is
guaranteed. We also assume that the functions g , h, and f satisfy the Lipschitz condition in
the unknown function x and its derivative x′. Hence, the uniqueness of solutions of ODE
(6) is guaranteed.
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Let us compare ODEs (1)–(5) with ODE (6). It is clear that ODE (6) is a general form of
ODEs (1), (3). Next, when p(t) = 0 or g(x′) = 0, h(x) = x, f (t, x, x′) = 0, and q1(t)+q2(t) = q(t),
then ODE (6) is reduced to ODE (2) provided that r(t) = 1.

Similarly, when g(x′) = x′, h(x) = x and f (t, x, x′) = 0 depends only on t, then ODE (6) is
reduced to ODE (4). In addition, when g(x′) = x′, h(x) = x and f (t, x, x′) depends only on t
and x, then ODE (6) is reduced to ODE (5) provided that r(t) = 1.

Secondly, we consider the following nonlinear ODE of second order:

x′′ + φ
(
t, x, x′) + q1(t)x + q2(t)θ (x) = q

(
t, x, x′), (7)

where x ∈ �, t ∈ �+, q1 ∈ C(�+,�), q2 ∈ C1(�+,�), θ ∈ C1(�,�), φ ∈ C1(�+ × �2,�) and
q ∈ C(�+ × �2,�), θ (0) = 0, and φ(t, x, 0) = 0. By these assumptions, the existence of the
solutions of ODE (7) is guaranteed. We also assume that the functions φ, θ , and q sat-
isfy the Lipschitz condition in the unknown function x and its derivative x′. Hence, the
uniqueness of solutions of ODE (7) is guaranteed.

Let us compare ODEs (1)–(5) with ODE (7). It is clear that ODE (7) is a general form of
ODEs (1), (3), and (4). Next, ODE (7) can be reduced to ODEs (2) and (5) provided that
r(t) = 1. These cases can be examined in detail as before. However, we omit the details of
the comparison for the sake of brevity.

Finally, when we look at ODEs (1)–(5), we see that ODEs (1)–(4) are linear and ODE (5)
has a slightly modified nonlinear form. Next, ODEs (6) and (7) include and improve ODEs
(1)–(4) from the linear cases to the more general nonlinear forms. In addition, ODE (5)
has a simple nonlinear function; however, each of ODEs (6) and (7) has three nonlinear
functions.

This paper investigates the problem of asymptotic boundedness of solutions of ODEs (6)
and (7) as t → ∞. Here, instead of simple linear and nonlinear ODEs of second order, we
discuss the mentioned problem for two general nonlinear ODEs of second order compared
to those in [15, 23] and the one that can be found in the literature. This fact is the first
contribution of this paper to the topic and the existing literature.

Next, in [15] and [23], the authors benefited from the Lyapunov second method. How-
ever, the style and arrangements through the proofs of the results of Meng [15] and Sun
and Meng [23] are very different than the classical ones that can be found in the literature.
Here, the authors of this paper would not like to discuss the differences for the sake of
brevity. The next and second contribution of this paper is that we can obtain the results of
Meng [15] and Sun and Meng [23] under less restrictive conditions in the particular cases.

Later, Meng [15] and Sun and Meng [23] gave examples to show the applicability of the
theoretical results obtained in [15] and [23], respectively. However, in [15] and [23], the
graphs of the orbits of the solutions of the given examples were not drawn. In this paper,
two examples with the graphs of paths of their solutions are given to show and illustrate
that the established conditions can be applicable clearly. This is the third contribution of
this paper to the topic and the existing literature.

Finally, to best of our knowledge from the literature, no paper was devoted to the asymp-
totic analysis of bounded solutions of ODEs (6) and (7). By this work, we attempt to fill that
gap for the relevant literature. Next, it should be noted that the construction of suitable
Lyapunov functions for ODE(s) under study enables us to get more restrictive conditions
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for the qualitative behaviors of solutions. This can be seen when we compare the Lyapunov
functions and the results of this paper with those of Meng [15], Sun and Meng [23], and
those that can be found in the literature. These are the main contributions of this paper
to the relevant topics and literature.

Next, let y(t) = dx
dt = x′(t). Hence, ODEs (6) and (7) can be transformed into the following

systems of ODEs, respectively:

x′ = y,

y′ = –p(t)g(y) – q1(t)h(x) – q2(t)x + f (t, x, y)
(8)

and

x′ = y,

y′ = –φ(t, x, y) – q1(t)x – q2(t)θ (x) + q(t, x, y).
(9)

Let

g1(y) =

⎧
⎨

⎩
y–1g(y), y �= 0,

g ′
y(0), y = 0,

θ1(x) =

⎧
⎨

⎩
x–1θ (x), x �= 0,

θ ′
x(0), x = 0,

h1(x) =

⎧
⎨

⎩
x–1h(x), x �= 0,

h′
x(0), x = 0

and

φ1(t, x, y) =

⎧
⎨

⎩
x–1φ(t, x, y), y �= 0,

φ′
y(t, x, 0), y = 0.

2 Asymptotic analysis
Firstly, we prove a theorem on the boundedness of solutions of ODE (6) as t → ∞ by
using the second method of Lyapunov. Before stating the theorem, we give the following
hypotheses.

Hypotheses A
(H1) Let g0 and h0 be positive constants such that the following conditions hold:

g(0) = 0, y–1g(y) ≥ g0 ≥ 1, ∀y �= 0 as y ∈ �

and

h(0) = 0, x–1h(x) ≥ h0 ≥ 1 > 0, ∀x �= 0 as x ∈ �.
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(H2) Let α1(t), Q(t), and λ(t) be continuous functions such that the following conditions
hold:

p(t) > 0, q1 ∈ C1[a,∞), q1(t) > 0, ∀t ∈ �+,
∣∣f (t, x, y)

∣∣ ≤ ∣∣α1(t)
∣∣, ∀t ∈ �+,∀x, y ∈ �,

Q(t) =
1
2
[
q′

1(t) + 2p(t)q1(t)
]

> 0, ∀ ∈ t ∈ �+,
∫ ∞

a

q2
2(s)

λ2(s)Q(s)
ds < ∞,

∫ ∞

a

α2
1(s)

Q(s)
ds < ∞,

and

λ2(t) ≥ 1, ∀t ∈ [a,∞).

We now give the first theorem of this paper.

Theorem 1 We suppose that hypotheses (H1) and (H2) hold. Then, any solution of ODE
(6) satisfies

∣
∣x(t)

∣
∣ ≤ O(1),

∣∣
∣∣
dx
dt

∣∣
∣∣ ≤ O

(√
q1(t)

)
as t → ∞.

Proof To proceed with the proof, we benefit from the Lyapunov second method. Hence,
we define a Lyapunov function W (t) = W (x, y) by

W (x, y) = 2
∫ x

0
h(ξ ) dξ +

1
q1(t)

y2. (10)

By using the hypotheses of (H1) and (H2), we obtain

W (x, y) = 0 if and only if x = 0 and y = 0.

Next, if we use hypothesis (H1), we have

W (x, y) = 2
∫ x

0

h(ξ )
ξ

ξ dξ +
1

q1(t)
y2 ≥ 2

∫ x

0
h0ξ dξ +

1
q1(t)

y2

≥ 2
∫ x

0
ξ dξ +

1
q1(t)

y2 ≥ x2 +
1

q1(t)
y2 ≥ 0.

If we differentiate the Lyapunov function W in (10) along the solutions of system of ODEs
(8) and use hypotheses (H1) and (H2), we derive

d
dt

W = –
q′

1(t)
q2

1(t)
y2 –

2p(t)
q1(t)

g(y)y –
2q2(t)
q1(t)

xy +
2

q1(t)
yf (t, x, y)

≤ –
q′

1(t)
q2

1(t)
y2 –

2p(t)
q1(t)

y2 –
2q2(t)
q1(t)

xy +
2

q1(t)
yf (t, x, y)

= –
2

q2
1(t)

[
q′

1(t)
2

+ p(t)q1(t)
]

y2 –
2q2(t)
q1(t)

xy +
2

q1(t)
yf (t, x, y).
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Let

Q(t) =
1
2
[
q′

1(t) + 2p(t)q1(t)
]
.

Then we have

dW
dt

≤ –
2q2(t)
q1(t)

xy –
2Q(t)
q2

1(t)
y2 +

2
q1(t)

yf (t, x, y).

Let a > 0, b, x ∈ �. We consider the inequality

–ax2 + bx ≤ –
a
2

x2 +
b2

2a
. (11)

If we apply this inequality, that is, inequality (11), to the terms

–
2Q(t)
q2

1(t)
y2 +

2
q1(t)

yf (t, x, y),

then we can derive

–
2Q(t)
q2

1(t)
y2 +

2
q1(t)

yf (t, x, y) ≤ –
Q(t)
q2

1(t)
y2 +

f 2(t, x, y)
Q(t)

.

Hence, we have

dW
dt

≤ –
2q2(t)
q1(t)

xy –
Q(t)
q2

1(t)
y2 +

f 2(t, x, y)
Q(t)

≤ –
2q2(t)
q1(t)

xy –
Q(t)
q2

1(t)
y2 +

α2
1(t)

Q(t)
(12)

by using hypothesis (H2).
Let

E(t) = –
2q2(t)
q1(t)

xy –
Q(t)
q2

1(t)
y2.

We arrange this function as follows:

E(t) = –
Q(t)
q2

1(t)

[
λ(t)y +

q1(t)q2(t)
λ(t)Q(t)

x
]2

+
q2

2(t)
λ2(t)Q(t)

x2 +
Q(t)
q2

1(t)
(
λ2(t) – 1

)
y2.

Since the first term of E(t) is negative, it is clear that

E(t) ≤ q2
2(t)

λ2(t)Q(t)
x2 +

Q(t)
q2

1(t)
(
λ2(t) – 1

)
y2. (13)

When we consider together inequalities (12) and (13), it follows that

dW
dt

≤ q2
2(t)

λ2(t)Q(t)
x2 +

Q(t)
q2

1(t)
(
λ2(t) – 1

)
y2 +

α2
1(t)

Q(t)
. (14)
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Next, we assume that

q2
2(t)

λ2(t)Q(t)
=

Q(t)
q1(t)

(
λ2(t) – 1

)
.

Hence, from the last inequality, we can derive that

λ2(t) =
Q2(t) +

√
Q4(t) + 4q1(t)q2

2(t)Q2(t)
2Q2(t)

, t ∈ [a,∞).

From this equality, we can see that

λ2(t) ≥ 1, t ∈ [a,∞).

Thus, we obtain

E(t) ≤ q2
2(t)

λ2(t)Q(t)

[
x2 +

1
q1(t)

y2
]

. (15)

We observe from inequalities (14) and (15) that

dW
dt

≤ q2
2(t)

λ2(t)Q(t)

[
x2 +

1
q1(t)

y2
]

+
α2

1(t)
Q(t)

.

We also have

x2 +
1

q1(t)
y2 ≤ W (t).

Clearly, by the last inequality, we can derive

dW
dt

–
q2

2(t)
λ2(t)Q(t)

W (t) ≤ α2(t)
Q(t)

.

Multiplying this inequality by exp(–
∫ t

a
q2

2(s)
λ2(s)Q(s) ds), we obtain

d
dt

[
W (t) exp

(
–

∫ t

a

q2
2(s)

λ2(s)Q(s)
ds

)]
≤ α2(t)

Q(t)
exp

(
–

∫ t

a

q2
2(s)

λ2(s)Q(s)
ds

)
.

Integrating this inequality from a to t, we get

W (t) exp

(
–

∫ t

a

q2
2(s)

λ2(s)Q(s)
ds

)
– W (a) ≤

∫ t

a

[
α2(s)
Q(s)

exp

(
–

∫ t

a

q2
2(τ )

λ2(τ )Q(τ )
dτ

)]
ds.

Hence, it follows that

W (t) ≤ W (a) exp

(∫ t

a

q2
2(s)

λ2(s)Q(s)
ds

)
+

∫ t

a

[
α2(s)
Q(s)

exp

(∫ t

s

q2
2(τ )

λ2(τ )Q(τ )
dτ

)]
ds

≤ W (a) exp

(∫ ∞

a

q2
2(s)

λ2(s)Q(s)
ds

)
+

∫ ∞

a

[
α2(s)
Q(s)

exp

(∫ ∞

s

q2
2(τ )

λ2(τ )Q(τ )
dτ

)]
ds.
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By hypothesis (H2), we know that

∫ ∞

a

α2(s)
Q(s)

ds < ∞,
∫ ∞

a

q2
2(s)

λ2(s)Q(s)
ds < ∞ and

∫ ∞

s

q2
2(τ )

λ2(τ )Q(τ )
dτ < ∞.

Hence, we can assume that

W (a) exp

(∫ ∞

a

q2
2(s)

λ2(s)Q(s)
ds

)

+
∫ ∞

a

[
α2(s)
Q(s)

exp

(∫ ∞

s

q2
2(τ )

λ2(τ )Q(τ )
dτ

)]
ds = C0, C0 > 0, C0 ∈ �.

Now, it is observed that

W (t) ≤ C0

and

x2 +
1

q1(t)
y2 ≤ W (t) ≤ C0.

Therefore, we can conclude that

∣∣x(t)
∣∣ ≤ √

C0,
∣∣y(t)

∣∣ ≤ √
C0q1(t).

Thus, we have

∣
∣x(t)

∣
∣ ≤ O(1),

∣
∣y(t)

∣
∣ ≤ O

(√
q1(t)

)
as t → ∞.

These two inequalities complete the proof of Theorem 1. �

Example 1 In a particular case of ODE (6), we consider the following nonlinear ODE of
second order:

x′′ +
(

1
t10 –

6
t

)
(2x′ + x′ exp

(
–
(
x′)2) + t12(3 + sin x

)
x – tαx

=
1

√
1 + t2 + x2 + (x′)2

, t ≥ 2,α < 5,α ∈ �. (16)

Let y = dx
dt . Then ODE (16) can be stated as the following system of ODEs:

dx
dt

= y,

dy
dt

= –
(

1
t10 –

6
t

)(
2y + y exp

(
–y2)) – t12(3 + sin x)x

+ tαx +
1

√
1 + t2 + x2 + y2

, t ≥ 2,α < 5,α ∈ �.

(17)
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Let us compare system (17) with system (8). Then the existence of the following relations
can be derived respectively:

g(y) = 2y + y exp
(
–y2), g(0) = 0,

y–1g(y) = 2 + exp
(
–y2) ≥ 2 = g0 > 1, ∀y �= 0 as y ∈ �,

h(x) = (3 + sin x)x, h(0) = 0,

x–1h(x) = 3 + sin x ≥ 2 = h0 > 1, ∀x �= 0 as x ∈ �,

p(t) =
1

t10 –
6
t

> 0, t ≥ 2,∀t ∈ �+,

q1(t) = t12 > 0, t ≥ 2, q2(t) = –tα , α < 5, α ∈ �, say α = 4,

f (t, x, y) =
1

√
1 + t2 + x2 + (x′)2

,

∣∣f (t, x, y)
∣∣ ≤ 1√

1 + t2
= α(t),

Q(t) =
1
2
[
q′

1(t) + 2p(t)q1(t)
]

= t2 > 0, t ≥ 2 = a,

λ2(t) =
Q2(t) +

√
Q4(t) + 4q1(t)q2

2(t)Q2(t)
2Q2(t)

=
t4 +

√
t8 + 4t16+2α

2t4

=
1 +

√
1 + 4t8+2α

2
> 1,

λ2(t) > 1, t ∈ [2,∞),
∫ ∞

a

α2(s)
Q(s)

ds =
∫ ∞

2

1
s2(s2 + 1)

ds =
1
2

+ arctg 2 –
π

2
< ∞,

and

∫ ∞

a

q2
2(s)

λ2(s)Q(s)
ds = 2

∫ ∞

2

t2α

t2 +
√

t4 + 4t12+2α
ds ≤

∫ ∞

2

t2α

t6+α
ds =

∫ ∞

2

1
t6–α

ds < ∞.

It is now notable that the above discussion shows that all the hypotheses of Theorem 1,
(H1) and (H2), can be applicable. Therefore, all the solutions of system (17) satisfy

∣
∣x(t)

∣
∣ ≤ O(1),

∣
∣y(t)

∣
∣ ≤ O

(
t6) as t → ∞.

Then we can say the same for all the solutions of ODE (16) and their first derivatives.
We can observe the behaviors of the paths of ODE (16) by Figs. 1–4. Example 1 has been

solved with MATLAB-Simulink and the following graphs have been obtained.
Next, we prove the boundedness properties of solution of ODE (7) as t → ∞ using also

the Lyapunov direct or second method. Below are the hypotheses required for the re-
sults.
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Figure 1 Trajectory of x(t) for Example 1 when x(2) = 0 and y(2) = 0

Figure 2 Trajectory of y(t) for Example 1 when x(2) = 0 and y(2) = 0

Hypotheses B
(H3) Let θ0 and φ0 be positive constants such that the following conditions hold:

θ (0) = 0, x–1θ (x) ≥ θ0 ≥ 1 for all x �= 0 as x ∈ �,

and

φ(t, x, 0) = 0, y–1φ(t, x, y) ≥ φ0 ≥ 1 for all t ∈ �+, y �= 0, as x, y ∈ �.

(H4) Let β(t), Q1(t), and μ(t) be functions such that the following conditions hold:

∣∣q(t, x, y)
∣∣ ≤ ∣∣β(t)

∣∣ for ∀t ∈ �+,∀x, y ∈ �,
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Figure 3 Trajectory of x(t) for Example 1 when x(2) = 0 and y(2) = 1

Figure 4 Trajectory of y(t) for Example 1 when x(2) = 0 and y(2) = 1

q2(t) > 0, ∀t ∈ �+, Q1(t) =
q′

2(t)
2

+ q2(t),
∫ ∞

a

β2(s)
Q1(s)

ds < ∞,
∫ ∞

a

q2
1(s)

μ2(s)Q1(s)
ds < ∞,

and

μ2(t) ≥ 1, ∀t ∈ [a,∞).

The next result of this paper is given below.
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Theorem 2 Suppose that hypotheses (H3) and (H4) hold. Then any solution of ODE (7)
satisfies

∣
∣x(t)

∣
∣ ≤ O(1),

∣∣
∣∣
dx
dt

∣∣
∣∣ ≤ O

(√
q2(t)

)
as t → ∞.

Proof We define a Lyapunov function W1(t) = W1(x, y) by

W1(x, y) = 2
∫ x

0
θ (ξ ) dξ +

1
q2(t)

y2. (18)

By the hypotheses of Theorem 2, it follows that

W1(x, y) = 0 if and only if x = 0 and y = 0.

In addition, by hypothesis (H3), we get

W1(x, y) = 2
∫ x

0

θ (ξ )
ξ

ξ dξ +
1

q2(t)
y2

≥ 2
∫ x

0
ξ dξ +

1
q2(t)

y2

= x2 +
1

q2(t)
y2 ≥ 0.

Next, if we calculate the time derivative of the function W1(x, y) given by (18) along solu-
tions of system (9), we have

d
dt

W1 = –
q′

2(t)
q2

2(t)
y2 –

2
q2(t)

φ(t, x, y)y – 2
q1(t)
q2(t)

xy +
2

q2(t)
yq(t, x, y)

= –
q′

2(t)
q2

2(t)
y2 –

2
q2(t)

φ(t, x, y)
y

y2 – 2
q1(t)
q2(t)

xy +
2

q2(t)
yq(t, x, y).

Using hypothesis (H3), we obtain

d
dt

W1 ≤ –
q′

2(t)
q2

2(t)
y2 –

2
q2(t)

y2 – 2
q1(t)
q2(t)

xy +
2

q2(t)
yq(t, x, y)

= –
2

q2
2(t)

[
q′

2(t)
2

+ q2(t)
]

y2 –
2q1(t)
q2(t)

xy +
2

q2(t)
yq(t, x, y).

Let

Q1(t) =
q′

2(t)
2

+ q2(t).

This representation yields that

dW1

dt
≤ –

2q1(t)
q2(t)

xy –
2Q1(t)
q2

2(t)
y2 +

2
q2(t)

yq(t, x, y).
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If we consider inequality (11) and the following terms:

–
2Q1(t)
q2

2(t)
y2 +

2
q2(t)

yq(t, x, y),

then we have

–
2Q1(t)
q2

2(t)
y2 +

2
q2(t)

yq(t, x, y) ≤ –
Q1(t)
q2

2(t)
y2 +

q2(t, x, y)
Q1(t)

.

Hence, we observe that

dW1

dt
≤ –

2q1(t)
q2(t)

xy –
Q1(t)
q2

2(t)
y2 +

q2(t, x, y)
Q1(t)

≤ –
2q1(t)
q2(t)

xy –
Q1(t)
q2

2(t)
y2 +

β2(t)
Q1(t)

(19)

by hypothesis (H4).
Let

E1(t) = –
2q1(t)
q2(t)

xy –
Q1(t)
q2

2(t)
y2.

We can arrange this function as follows:

E1(t) = –
Q1(t)
q2

2(t)

[
μ(t)y +

q1(t)q2(t)
μ(t)Q1(t)

x
]2

+
q2

1(t)
μ2(t)Q1(t)

x2 +
Q1(t)
q2

2(t)
(
μ2(t) – 1

)
y2.

Clearly, from this expression, it follows that

E1(t) ≤ q2
1(t)

μ2(t)Q1(t)
x2 +

Q1(t)
q2

2(t)
(
μ2(t) – 1

)
y2. (20)

Using inequalities (19) and (20), we obtain

dW1

dt
≤ q2

1(t)
μ2(t)Q1(t)

x2 +
Q1(t)
q2

2(t)
(
μ2(t) – 1

)
y2 +

β2(t)
Q1(t)

. (21)

Now, we assume that

q2
1(t)

μ2(t)Q1(t)
=

Q1(t)
q2(t)

(
μ2(t) – 1

)
.

Hence, we can derive that

μ2(t) =
Q2

1(t) +
√

Q4
1(t) + 4q2(t)q2

1(t)Q2
1(t)

2Q2
1(t)

, t ∈ [a,∞).

From this equality, we have

μ2(t) ≥ 1, t ∈ [a,∞).
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Then we obtain

E1(t) ≤ q2
1(t)

μ2(t)Q1(t)

[
x2 +

1
q2(t)

y2
]

. (22)

Inequalities (21) and (22) together yield that

dW1

dt
≤ q2

1(t)
μ2(t)Q1(t)

[
x2 +

1
q2(t)

y2
]

+
β2(t)
Q1(t)

.

Since

x2 +
1

q2(t)
y2 ≤ W1(t),

then

dW1

dt
–

q2
1(t)

μ2(t)Q1(t)
W1(t) ≤ β2(t)

Q1(t)
.

Multiplying this inequality by exp(–
∫ t

a
q2

1(s)
μ2(s)Q1(s) ds), we obtain

d
dt

[
W1(t) exp

(
–

∫ t

a

q2
1(s)

μ2(s)Q1(s)
ds

)]
≤ β2(t)

Q1(t)
exp

(
–

∫ t

a

q2
1(s)

μ2(s)Q1(s)
ds

)
.

Integrating this inequality from a to t, we get

W1(t) exp

(
–

∫ t

a

q2
1(s)

μ2(s)Q1(s)
ds

)
–W1(a) ≤

∫ t

a

[
β2(s)
Q1(s)

exp

(
–

∫ t

a

q2
1(τ )

μ2(τ )Q1(τ )
dτ

)]
ds.

Hence, it follows that

W1(t) ≤ W1(a) exp

(∫ t

a

q2
1(s)

μ2(s)Q1(s)
ds

)
+

∫ t

a

[
β2(s)
Q1(s)

exp

(∫ t

s

q2
1(τ )

μ2(τ )Q1(τ )
dτ

)]
ds

≤ W1(a) exp

(∫ ∞

a

q2
1(s)

μ2(s)Q1(s)
ds

)
+

∫ ∞

a

[
β2(s)
Q1(s)

exp

(∫ ∞

s

q2
1(τ )

μ2(τ )Q1(τ )
dτ

)]
ds.

By hypothesis (H4), we know

∫ ∞

a

β2(s)
Q1(s)

ds < ∞,
∫ ∞

a

q2
1(s)

μ2(s)Q1(s)
ds < ∞ and

∫ ∞

s

q2
1(τ )

μ2(τ )Q1(τ )
dτ < ∞.

Hence, we can assume that

W1(a) exp

(∫ ∞

a

q2
1(s)

μ2(s)Q1(s)
ds

)

+
∫ ∞

a

[
β2(s)
Q1(s)

exp

(∫ ∞

s

q2
1(τ )

μ2(τ )Q1(τ )
dτ

)]
ds = M0, M0 > 0, M0 ∈ �.

Now, it is observed that

W1(t) ≤ M0
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and

x2 +
1

q2(t)
y2 ≤ W1(t) ≤ M0.

Therefore, we can conclude that

∣
∣x(t)

∣
∣ ≤ √

M0,
∣
∣y(t)

∣
∣ ≤ √

M0q2(t).

That is, we have

∣
∣x(t)

∣
∣ ≤ O(1),

∣
∣y(t)

∣
∣ ≤ O

(√
q2(t)

)
as t → ∞.

These two estimates finish the proof of Theorem 2. �

Example 2 As a particular case of ODE (7), we consider the nonlinear ODE of second
order

x′′ +
(
3x′ + x′ exp

(
–t2 – x2)) +

(
6 exp(2t)

)
x + exp(8t)(2x + sin x)

=
sin t

exp(t)(1 + exp(x2))
. (23)

Let y = dx
dt . Then ODE (23) can be expressed as the following system:

dx
dt

= y,

dy
dt

= –(3y + y exp
(
–t2 – x2) –

(
6 exp(2t)

)
x

– exp(8t)(2x + sin x) +
sin t

exp(t)(1 + exp(x2))
.

(24)

Let us compare system (24) with system (9). It can be observed that the following relations
hold respectively:

θ (x) = 2x + sin x, θ (0) = 0,

θ (x)
x

= 2 +
sin x

x
≥ 1 = θ0, ∀x �= 0, x ∈ �,

φ(t, x, y) = 3y + y exp
(
–t2 – x2), φ(t, x, 0) = 0,

φ(t, x, y)
y

= 3 + exp
(
–t2 – x2) ≥ 3 = φ0 > 1, ∀t ∈ �+,∀y �= 0 as x, y ∈ �,

q1(t) = 6 exp(2t), q2(t) = exp(8t), ∀t ∈ �+,

q(t, x, y) =
sin t

exp(t)(1 + exp(x2))
,

∣∣q(t, x, y)
∣∣ ≤ 1

exp(t)
= β(t),

Q1(t) =
q′

2(t)
2

+ 2q2(t) = 6 exp(8t) > 0, ∀t ∈ �+,



Tunç and Mohammed Advances in Difference Equations        (2019) 2019:461 Page 16 of 19

Figure 5 Trajectories of x(t) for Example 2 when x(0) = –1, x(0) = 1 and x(0) = 0.5

μ2(t) =
Q2

1(t) +
√

Q4
1(t) + 4q2(t)q2

1(t)Q2
1(t)

2Q2
1(t)

=
36 exp(16t) +

√
(36)2 exp(32t) + 4(36)2 exp(28t)

72 exp(16t)

=
1 +

√
1 + 4 exp(–8t)

2
> 1, μ2(t) ≥ 1,∀t ∈ �+,

∫ ∞

a

β2(s)
Q1(s)

ds =
1
6

∫ ∞

0

1
exp(10s)

ds =
1

60
< ∞,

and

∫ ∞

a

q2
1(s)

μ2(s)Q1(s)
ds ≤ 6

∫ ∞

0

1
exp(2s)

ds = 3 < ∞.

It is now notable that the discussion given shows that all the hypotheses of Theorem 2,
(H3) and (H4), can be applied and hold. Thus, all the solutions of system (24) satisfy

∣∣x(t)
∣∣ ≤ O(1),

∣∣y(t)
∣∣ ≤ O

(√
6 exp(t)

)
as t → ∞.

Therefore, all the solutions of ODE (23) and their first derivatives satisfy the inequalities

∣∣x(t)
∣∣ ≤ O(1),

∣∣x′(t)
∣∣ ≤ O

(√
6 exp(t)

)
as t → ∞.

The results above as t → ∞ can be seen as shown in Figs. 5 and 6. Example 2 has been
solved using MATLAB-Simulink and the following graphs have been obtained.

3 Discussion
Let us compare the results of this paper, Theorem 1 and Theorem 2, with those of Meng
[15] and Sun and Meng [23], respectively.
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Figure 6 Trajectories of y(t) for Example 2 when y(0) = 0, y(0) = 1 and y(0) = –1

(10) We observe that our equations ODEs (6) and (7) generalize and improve ODEs (1)–
(4) from the linear ODEs to the nonlinear ODEs. Next, ODEs (6) and (7) also gen-
eralize and improve ODE (5) for the case as r(t) = 1.

(20) The Lyapunov function

V (t) = F(t)
[

x2(t) +
1

q1(t)

(
dx
dt

)2]

was employed by Meng [15]. This Lyapunov function includes the function F but
this function is not involved in ODE (4). However, in this paper, as a basic tool, we
constructed two new Lyapunov functions as follows:

W (x, y) = 2
∫ x

0
h(ξ ) dξ +

1
q1(t)

y2

and

W1(x, y) = 2
∫ x

0
θ (ξ ) dξ +

1
q2(t)

y2.

These Lyapunov functions depend only on the functions appearing in ODEs (6) and
(7), respectively, but they do not depend on the function F . Hence, we obtain the
results of Meng [15] and Sun and Meng [23] under less restrictive conditions by
using these two Lyapunov functions. In the proofs of Theorem 1 and Theorem 2, we
did not need the conditions

F(t) > 0,
d
dt

F(t) ≥ 0.

In addition, the functions Q(t), λ(t) and Q1(t), μ(t) in Theorem 1 and Theorem 2,
respectively, have very simple forms compared to the functions Q(t), λ(t) used in
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Meng [15, Theorem 1]. Moreover, the integrability conditions in Theorem 1 and
Theorem 2 have much simpler forms than those used in Meng [15, Theorem 1].

(30) Let r(t) = 1 in ODE (5). We can observe that the conditions of Theorem 1 and The-
orem 2 are less restrictive than those of Sun and Meng [23, Theorem 2]. Hence, we
obtain the results of Sun and Meng [23] under weaker conditions.

Thus, the results of this paper improve and include the results of [23].
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