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Abstract
In this article, we regard the generalized Riccati transformation and Riemann–Liouville
fractional derivatives as the principal instrument. In the proof, we take advantage of
the fractional derivatives technique with the addition of interval segmentation
techniques, which enlarge the manners to demonstrate the sufficient conditions for
oscillation criteria of certain fractional partial differential equations.
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1 Introduction
The fractional calculus could be regarded as an age old but interesting theme. The appear-
ance of the fractional differential equations is becoming more and more frequent. Kumar
et al. [1, 2] studied the fractional diabetes model as well as the Ambartsumian equation by
applying the homotopy analysis transform method (HATM). In 2019, the authors of [3]
presented a hybrid numerical scheme based on the HATM in order to detect the fractional
model of nonlinear wave-like equations. In [4], the authors dealt with a fractional exten-
sion of the Biswas–Milovic (BM) model by using the fractional homotopy analysis trans-
form method (FHATM). In 2019, Singh et al. [5] developed nondifferentiable solutions
of extended wave equations. The author of [6] illustrated the rumor spreading dynami-
cal model involving the Atangana–Baleanu derivative of non-integer order. In addition,
fractional differential equations play an important role in modeling mechanics, electri-
cal properties of real materials, rheological theory, aerodynamics, finance, bioengineering
and so on. Currently, the fractional calculus and the theory of fractional differential equa-
tions have become a popular gambit. Kumar et al. [7] analyzed the exothermic reactions
model by using fractional energy balance equation (FEBE). Making use of the Caputo–
Fabrizio fractional operator and the fixed point theorem, the authors [8] reported a frac-
tional SIRS-SI model. See Refs. [9–12].

The research of the oscillation of the fractional differential equations has been done
more and more extensively. Zhou et al. [13, 14] suggested the sufficient conditions for the
existence of nonoscillatory solutions for fractional neutral differential equations. In 2019,
the authors [15] utilized the sufficient criteria for the oscillation of all solutions to the
fractional partial differential equation. However, to the best of the author’s knowledge very
little is known about the oscillation criteria of the fractional partial differential equations
involved with the Riemann–Liouville fractional partial differential up to now [16–23].
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A lot of work of the fractional differential equations which raise more and more atten-
tion has been published lately [24]. At the same time, several novel methods have been
established to verify the sufficient condition of the oscillation properties of the fractional
partial differential equations, such as [25–33]. We study the sufficient condition for oscil-
lation of the solutions by using the generalized Riccati substitution, fractional integral as
well as the properties of the Riemann–Liouville fractional derivative. In order to illustrate
the main results, we give several examples at the end of the paper.

The Riemann–Liouville fractional derivative may always be used to solve the oscillation
of fractional partial differential equations. Li [34] investigated the forced oscillation of
fractional partial differential equations of the form,

Dα
+,tu(x, t) = a(t)�u(x, t) – m

(
x, t, u(x, t)

)
+ f (x, t),

(x, t) ∈ Ω × R+ ≡ G. (1)

Prakash et al. [35] investigated the oscillation of certain nonlinear fractional partial dif-
ferential equation with damping term,

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t) + q(x, t)f

(
u(x, t)

)

= a(t)�u(x, t) + g(x, t), (x, t) ∈ G. (2)

Harikrishnan et al. [36] established the oscillation of the fractional differential equation
of the form,

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ q(x, t)f
(
u(x, t)

)

= a(t)�u(x, t) + g(x, t), (x, t) ∈ G. (3)

In [37], Wang and Meng studied the oscillatory behavior of a fractional partial differen-
tial equation of this form,

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t)

+ q(x, t)f
(∫ t

0
(t – v)–αu(x, v) dv

)

= a(t)�u(x, t), (x, t) ∈ Ω × R+ ≡ G. (4)

In this paper, we shall investigate the oscillation criteria for the fractional partial differ-
ential equation

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

+ p(t)Dα
+,tu(x, t) + q(x, t)f

(
u(x, t)

)

= a(t)�u(x, t) +
m∑

i=1

bi(t)�u(x, t – τi), (x, t) ∈ Ω × R+ ≡ G, (5)

with the Robin boundary condition

∂u(x, t)
∂N

+ g(x, t)u(x, t) = 0, (x, t) ∈ ∂Ω × R+, (6)
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where α ∈ (0, 1) is a constant, Dα
+,t is the Riemann–Liouville fractional derivative of order

α of u with respect t, Ω is a bounded domain in Rn with piecewise smooth boundary ∂Ω ,
� is the Laplacian operator and N is the unit exterior normal vector to ∂Ω , and g(x, t) is
a nonnegative continuous function on ∂Ω × R+.

Throughout, we assume that:
(A1) r(t) ∈ Cα(R+, R+), p(t) ∈ C(R+, R), a(t) ∈ C(R+, R+), bi(t) ∈ C(R+, R+), τi ≥ 0 is a con-

stant, i = 1, 2, . . . , m;
(A2) q(x, t) ∈ C(G, R+), minx∈Ω q(x, t) = Q(t);
(A3) f : R → R is a continuous function such that f (x)

x ≥ m for certain constant m > 0 and
for all x �= 0.

A solution u(x, t) of (5) is called oscillatory in G if it is neither eventually positive nor
eventually negative. Otherwise, it is called nonoscillatory.

2 Preliminaries and basic lemmas
In this section, we list several symbols and lemmas which are useful through this paper.

Definition 2.1 ([25]) The Riemann–Liouville fractional integral Iα
+ y of order α ∈ R+ is

defined by

(
Iα

+ y
)
(t) =

1
Γ (α)

∫ t

0
(t – v)α–1y(v) dv, t > 0, (7)

where Γ (α) is the gamma function defined by Γ (α) =
∫ +∞

0 sα–1e–s ds for α > 0. This integral
is called left-sided fractional integral.

Definition 2.2 ([25]) The Riemann–Liouville fractional partial derivative of order 0 < α <
1 of a function u(x, t) is defined by

(
Dα

+,tu
)
(x, t) =

∂

∂t
1

Γ (1 – α)

∫ t

0
(t – v)–αu(x, v) dv, t > 0, (8)

provided the right hand side is pointwise defined on R+, where Γ is the gamma function.

Definition 2.3 ([25]) The Riemann–Liouville fractional derivative of order α > 0 of a
function y : R+ → R on the half-axis R+ is given by

(
Dα

+y
)
(t) =

d�α	

dt�α	
(
I�α	–α

+ y
)
(t)

=
1

Γ (�α	 – α)
d�α	

dt�α	

∫ t

0
(t – v)�α	–α–1y(v) dv, t > 0, (9)

provided the right hand side is pointwise defined on R+, where �α	 is the ceiling function
of α.

Lemma 2.1 (Lemma 2.4, [30]) Let

F(t) =
∫ t

0
(t – v)–αy(v) dv, α ∈ (0, 1), t > 0. (10)
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Then

F ′(t) = Γ (1 – α)
(
Dα

+y
)
(t). (11)

Lemma 2.2 ([25]) Let α ≥ 0, m ∈ N , and D = d
dx , If the fractional derivatives Dα

+y(t) and
Dα+m

+ y(t) exist, then

Dm(
Dα

+y(t)
)

= Dα+m
+ y(t). (12)

Lemma 2.3 ([25]) Let α ∈ (0, 1) and I1–α
+ y(t) be the fractional integral (7) of order 1 – α,

then

Iα
+
(
Dα

+y(t)
)

= y(t) –
I1–α

+ y(0)
Γ (α)

tα–1. (13)

For convenience, we use the following notations in this paper:

v(t) =
∫

Ω

u(x, t) dx, ξ =
tα

Γ (1 + α)
, c̃(ξ ) = c(t), r̃(ξ ) = r(t),

σ̃ (ξ ) = σ (t), ξ0 =
tα
0

Γ (1 + α)
, ξ1 =

tα
1

Γ (1 + α)
, Q̃(ξ ) = Q(t),

R(t) = Iα
+

(
p(t)
r(t)

)
.

3 Main results
Theorem 3.1 Let condition (A1)–(A3) hold, suppose that there exists a function ϕ ∈
C1[[t0,∞), (0,∞)], such that

∫ ∞

t0

1
r(s)eR(s) ds = ∞, (14)

lim sup
t→∞

A(t) > 0, lim inf
t→∞ A(t) < 0, (15)

where

A(t) =
1

Γ (α)

∫ t

0
(t – ξ )α–1

(
–meR(ξ )ϕ(ξ )Q(ξ ) +

(Dα
+ϕ(ξ ))2eR(ξ )r(ξ )

4ϕ(ξ )

)
dξ . (16)

Then every solution of (5) is oscillatory.

Proof Suppose to the contrary that u is a nonoscillatory solution of (5). Without loss of
generality, we can assume that there exists u(x, t) > 0 and u(x, t – τi) > 0 in G × [t0,∞) for
some t0 > 0, i = 1, 2, . . . , m. Integrating (5) with respect to x over the domain Ω , we obtain

∫

Ω

Dα
+,t

(
r(t)Dα

+,tu(x, t)
)

dx

+ p(t)
∫

Ω

Dα
+,tu(x, t) dx +

∫

Ω

q(x, t)f
(
u(x, t)

)
dx

= a(t)
∫

Ω

�u(x, t) dx +
∫

Ω

m∑

i=1

bi(t)�u(x, t – τi) dx. (17)
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Using Green’s formula, it is obvious that

∫

Ω

�u(x, t) dx =
∫

∂Ω

∂u(x, t)
∂N

ds = –
∫

∂Ω

g(x, t)u(x, t) ds ≤ 0, t ≥ t1, (18)
∫

Ω

�u(x, t – τi) dx =
∫

∂Ω

∂u(x, t – τi)
∂N

ds

= –
∫

∂Ω

g(x, t – τi)u(x, t – τi) ds

≤ 0, t ≥ t1, i = 1, 2, . . . , m, (19)

where ds is a surface element on ∂Ω . By using Jensen’s inequality and (A2), we obtain

∫

Ω

q(x, t)f
(
u(x, t)

)
dx ≥ Q(t)f

(∫

Ω

u(x, t) dx
)

= Q(t)f
(
v(t)

)
. (20)

Combining (17)–(20), we have

Dα
+
(
r(t)Dα

+v(t)
)

+ p(t)Dα
+v(t) + Q(t)f

(
v(t)

) ≤ 0, (21)

Dα
+
(
eR(t)r(t)Dα

+v(t)
)

= eR(t) p(t)
r(t)

r(t)Dα
+v(t) + Dα

+
(
r(t)Dα

+v(t)
)
eR(t)

= eR(t)p(t)Dα
+v(t) + Dα

+
(
r(t)Dα

+v(t)
)
eR(t)

≤ eR(t)(–Q(t)f
(
v(t)

))

< 0. (22)

Then eR(t)r(t)Dα
+v(t) is strictly decreasing on [t1,∞), and thus Dα

+v(t) is eventually of one
sign. We claim Dα

+v(t) ≥ 0 on [t2,∞), where t2 > t1 is sufficiently large. Otherwise, assume
there exists a sufficiently large T > t2 such that Dα

+v(t) < 0 on [T ,∞). Then, for t ∈ [T ,∞),
by Lemma 2.1, we have

F ′(t)
Γ (1 – α)

= Dα
+v(t) ≤ r(T)eR(T)(Dα

+v(T))
r(t)eR(t) , (23)

where

F(t) =
∫ t

0
(t – s)–αv(s) ds.

Integrating the above inequality from T to t, we have

F(t) ≤ F(T) + Γ (1 – α)r(T)eR(T)(Dα
+v(T)

)∫ t

T

1
r(s)eR(s) ds. (24)

Letting t → ∞, we get limt→∞F(t) ≤ –∞ which is a contradiction. Hence Dα
+v(t) ≥ 0 for

t ≥ t1 holds. Define the function ω by the generalized Riccati substitution

ω(t) = ϕ(t)
eR(t)r(t)Dα

+v(t)
v(t)

, t ≥ t1, (25)
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Dα
+ω(t) =

(
Dα

+ϕ(t)
)ω(t)
ϕ(t)

+ Dα
+

(
eR(t)r(t)Dα

+v(t)
v(t)

)
ϕ(t)

=
(
Dα

+ϕ(t)
)ω(t)
ϕ(t)

+ Dα
+
(
eR(t)r(t)Dα

+v(t)
) 1

v(t)
ϕ(t)

+ Dα
+

(
1

v(t)

)
eR(t)r(t)Dα

+v(t)ϕ(t)

≤ (
Dα

+ϕ(t)
)ω(t)
ϕ(t)

+
ϕ(t)eR(t)(–Q(t)f (v(t)))

v(t)

–
(Dα

+v(t))2eR(t)r(t)ϕ(t)
v2(t)

≤ (
Dα

+ϕ(t)
)ω(t)
ϕ(t)

+
ϕ(t)eR(t)(–Q(t)mv(t))

v(t)
–

ω2(t)
ϕ(t)eR(t)r(t)

= –meR(t)ϕ(t)Q(t) –
(

ω(t)
√

ϕ(t)eR(t)r(t)
–

Dα
+ϕ(t)

√
eR(t)r(t)

2
√

ϕ(t)

)2

+
(Dα

+ϕ(t))2eR(t)r(t)
4ϕ(t)

≤ –meR(t)ϕ(t)Q(t) +
(Dα

+ϕ(t))2eR(t)r(t)
4ϕ(t)

. (26)

By Lemma 2.3, we have

Iα
+
(
Dα

+ω(t)
)

= ω(t) –
I1–α

+ ω(0)
Γ (α)

tα–1. (27)

According to (26), we have

Iα
+
(
Dα

+ω(t)
) ≤ Iα

+

(
–meR(t)ϕ(t)Q(t) +

(Dα
+ϕ(t))2eR(t)r(t)

4ϕ(t)

)
. (28)

Then we have

ω(t) –
I1–α

+ ω(0)
Γ (α)

tα–1 ≤ Iα
+

(
–meR(t)ϕ(t)Q(t) +

(Dα
+ϕ(t))2eR(t)r(t)

4ϕ(t)

)
. (29)

Let B = I1–α
+ ω(0)
Γ (α) , then

ω(t) ≤ Iα
+

(
–meR(t)ϕ(t)Q(t) +

(Dα
+ϕ(t))2eR(t)r(t)

4ϕ(t)

)
+

I1–α
+ ω(0)
Γ (α)

tα–1

= A(t) + Btα–1. (30)

Letting t → ∞ in (30), we have

lim inf
t→∞ ω(t) ≤ lim inf

t→∞ A(t) + lim sup
t→∞

Btα–1 < 0, (31)

which contradicts ω(t) ≥ 0, similarly, if u(x, t) < 0 we can get the contradiction. The proof
is complete. �
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For the following theorem, we introduce a class of functions R. Let

D =
{

(t, s) : t ≥ s ≥ t0
}

. (32)

The function H ∈ C(D, R) is said to belong to the class R, if
(i) H(t, t) = 0, for t ≥ t0, H(t, s) > 0, for t �= s;

(ii) H(t, s) has partial derivatives on D such that ∂H
∂t (t, s) = h1(t, s)

√
H(t, s),

∂H
∂s (t, s) = –h2(t, s)

√
H(t, s), for some h1, h2 ∈ L1

loc(D, R).

Theorem 3.2 Suppose conditions (A1)–(A3) hold, and (14)–(15) are also true. If, for any
T ≥ t0, there exists an interval (a, b) ∈ [T ,∞), and there exists a c ∈ (a, b), H ∈ R, such that

1
H(c, a)

{∫ c

a
eR̃(s)ϕ̃(s)Q̃(s)mH(s, a) ds –

∫ c

a

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

h1(s, a) +
ϕ̃′(s)

√
H(s, a)

ϕ̃(s)

)2

ds
}

+
1

H(b, c)

{∫ b

c
eR̃(s)ϕ̃(s)Q̃(s)m

× H(b, s) ds –
∫ b

c

ϕ̃(s)eR̃(s)r̃(s)
4

(
–h2(b, s) +

ϕ̃′(s)
√

H(b, s)
ϕ̃(s)

)2

ds
}

> 0, (33)

then every solution of (5) is oscillatory.

Proof Suppose to the contrary that u(x, t) is a nonoscillatory solution of (5). Without loss
of generality, we can assume that there exists u(x, t) > 0 and u(x, t –τi) > 0 in G× [t0,∞) for
some t0 > 0, i = 1, 2, . . . , m. Proceeding as in the proof of Theorem 3.1, according to (26),
we have

Dα
+ω(t) ≤ (

Dα
+ϕ(t)

)ω(t)
ϕ(t)

– meR(t)ϕ(t)Q(t) –
ω2(t)

ϕ(t)eR(t)r(t)
. (34)

Let ω(t) = ω̃(ξ ). Then Dα
+ω(t) = ω̃′(ξ ) and Dα

+ϕ(t) = ϕ̃′(ξ ). So the above inequality is trans-
formed into

ω̃′(ξ ) ≤ ϕ̃′(ξ )
ω̃(ξ )
ϕ̃(ξ )

– meR̃(ξ )ϕ̃(ξ )Q̃(ξ ) –
ω̃2(ξ )

ϕ̃(ξ )eR̃(ξ )r̃(ξ )
. (35)

Multiplying both sides of (35) by H(s, t), integrating from t to c about s, where t ∈ (a, c],

∫ c

t
ω̃′(s)H(s, t) ds = ω̃(c)H(c, t) –

∫ c

t
h1(s, t)

√
H(s, t)ω̃(s) ds, (36)

∫ c

t
eR̃(s)ϕ̃(s)Q̃(s)mH(s, t) ds

≤ –ω̃(c)H(c, t) +
∫ c

t
h1(s, t)

√
H(s, t)ω̃(s) ds +

∫ c

t
H(s, t)ϕ̃′(s)

ω̃(s)
ϕ̃(s)

ds

–
∫ c

t

ω̃2(s)
ϕ̃(s)eR̃(s)r̃(s)

H(s, t) ds
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= –ω̃(c)H(c, t) –
∫ c

t

{
ω̃(s)

√
H(s, t)

√
ϕ̃(s)eR̃(s)r̃(s)

–
ϕ̃′(s)H(s,t)ω̃(s)

ϕ̃(s) + h1(s, t)
√

H(s, t)ω̃(s)

2ω̃(s)
√

H(s, t)

√
ϕ̃(s)eR̃(s)r̃(s)

}2

ds

+
∫ c

t

( ϕ̃′(s)H(s,t)ω̃(s)
ϕ̃(s) + h1(s, t)

√
H(s, t)ω̃(s)

2ω̃(s)
√

H(s, t)

)2

ϕ̃(s)eR̃(s)r̃(s) ds

≤ –ω̃(c)H(c, t)

+
∫ c

t

( ϕ̃′(s)
√

H(s,t)
ϕ̃(s) + h1(s, t)

2

)2

ϕ̃(s)eR̃(s)r̃(s) ds. (37)

Multiplying both sides of (35) by H(t, s), integrating from c to t over s, where t ∈ [c, b),

∫ t

c
ω̃′(s)H(t, s) ds = –ω̃(c)H(t, c) +

∫ t

c

√
H(t, s)h2(t, s)ω̃(s) ds, (38)

∫ t

c
eR̃(s)ϕ̃(s)Q̃(s)mH(t, s) ds

≤ ω̃(c)H(t, c) –
∫ t

c

√
H(t, s)h2(t, s)ω̃(s) ds +

∫ t

c
H(t, s)ϕ̃′(s)

ω̃(s)
ϕ̃(s)

ds

–
∫ t

c

ω̃2(s)
ϕ̃(s)eR̃(s)r̃(s)

H(t, s) ds

= ω̃(c)H(t, c) –
∫ t

c

{
ω̃(s)

√
H(t, s)

√
ϕ̃(s)eR̃(s)r̃(s)

–
ϕ̃′(s)H(t,s)ω̃(s)

ϕ̃(s) – h2(t, s)
√

H(t, s)ω̃(s)

2ω̃(s)
√

H(t, s)

√
ϕ̃(s)eR̃(s)r̃(s)

}2

ds

+
∫ t

c

( ϕ̃′(s)H(t,s)ω̃(s)
ϕ̃(s) – h2(t, s)

√
H(t, s)ω̃(s)

2ω̃(s)
√

H(t, s)

)2

ϕ̃(s)eR̃(s)r̃(s) ds

≤ ω̃(c)H(t, c)

+
∫ t

c

( ϕ̃′(s)
√

H(t,s)
ϕ̃(s) – h2(t, s)

2

)2

ϕ̃(s)eR̃(s)r̃(s) ds. (39)

Letting t → a+ in (37) and t → b– in (39),

1
H(c, a)

{∫ c

a
eR̃(s)ϕ̃(s)Q̃(s)mH(s, a) ds –

∫ c

a

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

h1(s, a) +
ϕ̃′(s)

√
H(s, a)

ϕ̃(s)

)2

ds
}

+
1

H(b, c)

{∫ b

c
eR̃(s)ϕ̃(s)Q̃(s)m

× H(b, s) ds –
∫ b

c

ϕ̃(s)eR̃(s)r̃(s)
4

(
–h2(b, s) +

ϕ̃′(s)
√

H(b, s)
ϕ̃(s)

)2

ds
}

≤ 0, (40)

which contradicts Eq. (33). The proof is complete. �
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Theorem 3.3 Suppose conditions (A1)–(A3) hold, and (14)–(15) are also true. If, for any
T ≥ t0, there exists an interval (a, b) ∈ [T ,∞), and there exists a c ∈ (a, b), H ∈ R, such that

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)mH(s, l) ds –

∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

h1(s, l) +
ϕ̃′(s)

√
H(s, l)

ϕ̃(s)

)2

ds
}

> 0, (41)

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)mH(t, s) ds –

∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

–h2(t, s) +
ϕ̃′(s)

√
H(t, s)

ϕ̃(s)

)2

ds
}

> 0, (42)

then, for l ∈ [t0,∞), t1 > t0 positive, every solution of (5) is oscillatory.

Proof Suppose to the contrary that u(x, t) is a nonoscillatory solution of (5). Without loss
of generality, we can assume that there exists u(x, t) > 0 and u(x, t – τi) > 0 in G × [t0,∞)
for some t2 ≥ t1, i = 1, 2, . . . , m.

Letting l = a ≥ t2 in (41), according to (41) we have c > a such that

∫ c

a
eR̃(s)ϕ̃(s)Q̃(s)mH(s, a) ds –

∫ c

a

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

h1(s, a) +
ϕ̃′(s)

√
H(s, a)

ϕ̃(s)

)2

ds > 0. (43)

Letting l = c ≥ t2 in (42), according to (42) we have b > c such that

∫ b

c
eR̃(s)ϕ̃(s)Q̃(s)mH(b, s) ds –

∫ b

c

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

–h2(b, s) +
ϕ̃′(s)

√
H(b, s)

ϕ̃(s)

)2

ds > 0. (44)

According to (43) and (44) we find that (33) is true. Then every solution of (5) is oscilla-
tory. �

If we let H(t, s) = (t – s)λ, where t ≥ s ≥ t0, we have the following lemma.

Lemma 3.1 Suppose conditions (A1)–(A3) hold, and (14)–(15) are also true. Then the fol-
lowing inequalities are true:

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)m(s – l)λ ds –

∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

λ(s – l)
λ–2

2 +
ϕ̃′(s)(s – l) λ

2

ϕ̃(s)

)2

ds
}

> 0, (45)

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)m(t – s)λ ds –

∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4
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×
(

–λ(t – s)
λ–2

2 +
ϕ̃′(s)(t – s) λ

2

ϕ̃(s)

)2

ds
}

> 0. (46)

Then, for every l ≥ t0, Eq. (5) is oscillatory.

In general, considering H(t, s) = (K(t) – K(s))λ, where K(t) =
∫ t

t1
1

r(s) ds, we have the fol-
lowing lemma.

Lemma 3.2 Suppose conditions (A1)–(A3) hold, and (14)–(15) are also true. Then the fol-
lowing inequalities are true:

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)m

(
K(s) – K(l)

)λ ds –
∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

λ(K(s) – K(l)) λ–2
2

r(s)
+

ϕ̃′(s)(K(s) – K(l))
λ
2

ϕ̃(s)

)2

ds
}

> 0, (47)

lim sup
t→∞

{∫ t

l
eR̃(s)ϕ̃(s)Q̃(s)m

(
K(t) – K(s)

)λ ds –
∫ t

l

ϕ̃(s)eR̃(s)r̃(s)
4

×
(

–
λ(K(t) – K(s)) λ–2

2

r(s)
+

ϕ̃′(s)(K(t) – K(s))
λ
2

ϕ̃(s)

)2

ds
}

> 0. (48)

Then, for every l ≥ t0, Eq. (5) is oscillatory.

4 Examples
Example 4.1 Consider the following fractional partial differential equation:

Dα
+,t

(
etDα

+,tu(x, t)
)

+ (t – 1)Dα
+,tu(x, t) +

(
t2 + x2)(u(x, t) + 1

)

= t�u(x, t) + 5t�u(x, t – 1), (x, t) ∈ (0,π ) × (0,∞), (49)

with the Robin boundary condition

ux(0, t) = ux(π , t) = 0. (50)

Notice α ∈ (0, 1), r(t) = et , p(t) = t – 1, q(x, t) = t2 + x2, Q(t) = t2, f (x) = x + 1, m = 1, a(t) = t,
b1(t) = 5t, τ1 = 1, Ω = (0,π ).

Then (49) is oscillatory by Theorem 3.1.

Example 4.2 Consider the following fractional partial differential equation:

D
1
2
+,t

(
1
t

D
1
2
+,tu(x, t)

)
+ t

(
t2 – 1

)
D

1
2
+,tu(x, t) + tex2u(x, t)

= et�u(x, t) + et�u(x, t – 3), (x, t) ∈ (0,π ) × (0,∞), (51)

with the Robin boundary condition

ux(0, t) = ux(π , t) = 0. (52)
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Notice α = 1
2 , r(t) = 1

t , p(t) = t(t2 – 1), q(x, t) = tex, Q(t) = t, f (x) = 2x, m = 1, a(t) = et ,
b1(t) = et , τ1 = 3, Ω = (0,π ).

Then (51) is oscillatory by Theorem 3.1.

5 Conclusion
In this paper, we illustrate the sufficient conditions for oscillation criteria of certain frac-
tional partial differential equations by using the generalized Riccati transformation and
Riemann–Liouville derivative. The proof has become concise with the aid of fractional
calculus and fractional derivatives. The results provide some new methods to research
the oscillation criteria of fractional partial differential equations.
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