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Abstract
In this paper, we present several new oscillation criteria for a second order nonlinear
differential equation with mixed neutral terms of the form

(r(t)(z′(t))α)′ + q(t)xβ(σ (t)) = 0, t ≥ t0,

where z(t) = x(t) + p1(t)x(τ (t)) + p2(t)x(λ(t)) and α, β are ratios of two positive odd
integers. Our results improve and complement some well-known results which were
published recently in the literature. Two examples are given to illustrate the efficiency
of our results.
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1 Introduction
In the article, we consider the oscillatory and asymptotic behavior of solutions to a second
order nonlinear advanced differential equation with mixed neutral terms of the form

(
r(t)

(
z′(t)

)α)′ + q(t)xβ
(
σ (t)

)
= 0, t ≥ t0, (1.1)

where z(t) = x(t) + p1(t)x(τ (t)) + p2(t)x(λ(t)). We assume the following conditions hold
throughout this paper.

(H1) α and β are ratios of two positive odd integers;
(H2) r,σ ∈ C1([t0,∞), (0,∞)), r(t) > 0, σ (t) ≥ t, σ ′(t) ≥ 0, limt→∞ σ (t) = ∞;
(H3) τ ,λ ∈ C([t0,∞), R), τ (t) ≤ t, λ(t) ≥ t, limt→∞ τ (t) = limt→∞ λ(t) = ∞;
(H4) p1, p2 ∈ C([t0,∞), [0, 1)), q ∈ C([t0,∞), [0,∞)), q(t) is not identically zero in any

interval of [t0,∞).
By a solution of Eq. (1.1) we mean a function x ∈ C[Tx,∞), Tx ≥ T0, which has the

property r(t)(z′(t))α ∈ C1([Tx,∞), R) and satisfies (1.1) on [Tx,∞). In this paper we only
consider the nontrivial solution of Eq. (1.1) which satisfies sup{|x(t)| : t ≥ T} > 0 for all
T ≥ Tx. A solution of (1.1) is called oscillatory if it has arbitrarily large zeros on [Tx,∞);
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Otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions oscillate.

Following Trench [21], we shall say that Eq. (1.1) is in canonical form if

∫ ∞

t0

r– 1
α (s) ds = ∞. (1.2)

Conversely, we say that (1.1) is in noncanonical form if

∫ ∞

t0

r– 1
α (s) ds < ∞. (1.3)

Advanced differential equations can find applications in a mass of real world problems
where the evolution rate depends on present and future values of the quantity. Therefore,
taking into account the impact of potential future actions, an advance could be introduced
into the equation, which is available at the present and beneficial in the process of decision
making. For instance, we can find numerous applications in mechanical control engineer-
ing, economical problems, population dynamics, neural networks and the field of time
symmetric electrodynamics; see [14].

The establishment of oscillatory and/or nonoscillatory criteria for differential equations
with deviating arguments, which was first studied by Fite [15] in 1921, has always been a
very active research field. Several reviews and references of known results can be found
in the monographs [3–6]. Up to now, most literature has been devoted to the study of
delay differential equations, but few studies have considered the equations with advanced
arguments. Therefore, recent studies have attempted to improve the already existing os-
cillation criteria.

Džurina [12] studied the advanced canonical equation of the form

(
r(t)y′(t)

)′ + q(t)y
(
σ (t)

)
= 0

and established a new comparison principle by using new monotonic properties of
nonoscillatory solutions and iterated exponentiation. Agarwal et al. [7] used an approach
that leads to two independent conditions, eliminating increasing and decreasing positive
solutions, respectively. Baculíková [9] and Jadlovská [17] investigated the second order
linear advanced equation

y′′(t) + q(t)y
(
σ (t)

)
= 0

and gave new oscillation results employing some iterative techniques. Recently, Chatza-
rakis et al. [10] investigated the second order half-linear differential equation with ad-
vanced argument

(
r(t)

(
y′(t)

)α)′ + q(t)yα
(
σ (t)

)
= 0 (1.4)

and established new oscillation criteria under the condition (1.3).
Motivated by the above work, we will consider a generalized nonlinear advanced dif-

ferential equations with mixed neutral terms and establish new sufficient conditions for
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oscillation of Eq. (1.1) under the condition (1.3). Our results presented in Sect. 2 improve
and complement those of Refs. [1, 2, 7–10, 12, 16, 17, 19, 20, 23]. Two examples are ad-
dressed to illustrate the efficiency of the main results in Sect. 3 and the conclusions are
given in Sect. 4.

2 Main results
In this section, we present some lemmas and our new sufficient conditions for oscillation
of Eq. (1.1). For the sake of convenience, we use the following notation:

R(t) =
∫ t

t0

r– 1
α (s) ds, Q1(t) = 1 – p1

(
σ (t)

)
– p2

(
σ (t)

)R(λ(σ (t)))
R(σ (t))

,

π (t) =
∫ ∞

t
r– 1

α (s) ds, Q2(t) = 1 – p1
(
σ (t)

)π (τ (σ (t)))
π (σ (t))

– p2
(
σ (t)

)
,

where t ∈ [t0,∞).
In what follows we need only to consider the eventually positive solutions of Eq. (1.1),

since if x satisfies Eq. (1.1), then –x is also its solution. Without loss of generality, we only
give proofs for the positive solutions. We begin with the following lemmas.

Lemma 2.1 If x(t) is an eventually positive solution of equation (1.1), then the correspond-
ing function z(t) satisfies one of two cases eventually:

Case 1. z(t) > 0, r(t)(z′(t))α > 0 and (r(t)(z′(t))α)′ ≤ 0;
Case 2. z(t) > 0, r(t)(z′(t))α < 0 and (r(t)(z′(t))α)′ ≤ 0.

Proof Suppose that x(t) is an eventually positive solution of equation (1.1). In view of (H3)
and (H4), there exists t1 ≥ t0 such that x(τ (t)) > 0, x(σ (t)) > 0, x(λ(t)) > 0 for all t ≥ t1, then
z(t) = x(t) + p(t)x(τ (t)) + x(λ(t)) ≥ x(t) > 0, for all t ≥ t1. From Eq. (1.1) we have

(
r(t)

(
z′(t)

)α)′ = –q(t)xβ
(
σ (t)

) ≤ 0, t ≥ t1,

which means that r(t)(z′(t))α is nonincreasing for all t ≥ t1. Then r(t)(z′(t))α > 0 or
r(t)(z′(t))α < 0, and the proof is complete. �

Lemma 2.2 If x(t) is a positive solution of equation (1.1) satisfying Case 1 of Lemma 2.1,
then

z(t) ≥ R(t)r
1
α (t)z′(t) (2.1)

and z(t)
R(t) is nonincreasing for all t ≥ t1. Furthermore,

x(t) ≥ Q1(t)z(t) (2.2)

on t ∈ [t1,∞).

Proof From Case 1, z(t) > 0, z′(t) > 0. Combining condition (1.2), we see that

z(t) = z(t1) +
∫ t

t1

z′(s) ds ≥
∫ t

t1

r 1
α (s)z′(s)
r 1

α (s)
ds ≥ R(t)r

1
α (t)z′(t)
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and

(
z(t)
R(t)

)′
=

z′(t)R(t) – R′(t)z(t)
R2(t)

= –
z(t) – R(t)r 1

α (t)z′(t)
r 1

α (t)R2(t)
≤ 0.

Using the monotonicity of z(t) and z(t)
R(t) , we have

x(t) = z(t) – p1(t)x
(
τ (t)

)
– p2(t)x

(
λ(t)

) ≥ z(t) – p1(t)z
(
τ (t)

)
– p2(t)z

(
λ(t)

)

≥
(

1 – p1(t) – p2(t)
R(λ(t))

R(t)

)
z(t) = Q1(t)z(t). �

Lemma 2.3 If x(t) is a positive solution of Eq. (1.1) satisfying Case 2 of Lemma 2.1, then

z(t) ≥ –π (t)r
1
α (t)z′(t), (2.3)

and z(t)
π (t) is nondecreasing for all t ≥ t1. Furthermore,

x(t) ≥ Q2(t)z(t) (2.4)

on t ∈ [t1,∞).

Proof From Case 2, z(t) > 0, z′(t) < 0. Using condition (1.3), we have

z(l) = z(t) +
∫ l

t
z′(s) ds = z(t) +

∫ l

t

r 1
α (s)z′(s)
r 1

α (s)
ds ≤ z(t) + r

1
α (t)z′(t)

∫ l

t
r– 1

α (s) ds.

Letting l → ∞, we get

0 ≤ z(t) + π (t)r
1
α (t)z′(t).

Then

z(t) ≥ –π (t)r
1
α (t)z′(t),

hence

(
z(t)
π (t)

)′
=

z′(t)π (t) – π ′(t)z(t)
π2(t)

=
z(t) + π (t)r 1

α (t)z′(t)
r 1

α (t)π2(t)
≥ 0.

Using the monotonicity of z(t) and z(t)
π (t) , we have

x(t) = z(t) – p1(t)x
(
τ (t)

)
– p2(t)x

(
λ(t)

) ≥ z(t) – p1(t)z
(
τ (t)

)
– p2(t)z

(
λ(t)

)

≥
(

1 – p1(t)
π (τ (t))
π (t)

– p2(t)
)

z(t) = Q2(t)z(t). (2.5)
�
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Lemma 2.4 Assume that (1.3) holds and

∫ ∞

t0

q(s)Qβ
1
(
σ (s)

)
ds = ∞. (2.6)

Suppose that x(t) is a positive solution of Eq. (1.1) on [t1,∞), where t1 ∈ [t0,∞) is sufficiently
large, then Case 2 of Lemma 2.1 holds.

Proof Suppose that x(t) is a positive solution of equation (1.1) on t ∈ [t1,∞). From
Lemma 2.1, we have Case 1 and Case 2. If Case 1 holds, then there exists t2 ≥ t1 such
that z′(t) > 0 on [t2,∞). Combining (1.1) and equation (2.2), we get

(
r(t)

(
z′(t)

)α)′ ≤ –q(t)Qβ
1
(
σ (t)

)
zβ

(
σ (t)

)
, t ≥ t1. (2.7)

Define the function w by

w(t) :=
r(t)(z′(t))α

zβ (σ (t))
> 0, t ≥ t1.

Differentiating the above formula, we have

w′(t) ≤ –q(t)Qβ
1
(
σ (t)

)
–

βw(t)z′(σ (t))σ ′(t)
z(σ (t))

≤ –q(t)Qβ
1
(
σ (t)

)
. (2.8)

Integrating both sides of (2.8) from t2 to t and using (2.6), we obtain

w(t) ≤ w(t2) –
∫ t

t2

q(s)Qβ
1
(
σ (s)

)
ds → –∞, as t → ∞,

which contradicts the fact w(t) > 0. Thus, Case 1 is impossible and z satisfies Case 2 for
t ≥ t1. The proof is complete. �

Theorem 2.5 Let α ≥ β . Assume that (1.3), (2.6) and

∫ ∞

t0

(
1

r(t)

∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

)1/α

dt = ∞, (2.9)

hold. Suppose that Eq. (1.1) has a positive solution x(t) on [t1,∞). Then z(t) satisfies Case 2
on [t1,∞) and

lim
t→∞ x(t) = 0. (2.10)

Moreover, there exist positive constants C1 and C2 and a real number t∗ ∈ [t1,∞) such that

C1Q2(t)π (t) ≤ x(t) ≤ C2 exp

(
–

∫ t

t0

π (σ (s))(
∫ s

t0
q(u)Qβ

2 (σ (u)) du) 1
α

π (s)r1/α(s)
ds

)
(2.11)

on t ∈ [t∗,∞).
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Proof Suppose that x(t) is a positive solution of Eq. (1.1) on [t1,∞). From Lemma 2.4, we
see that z(t) satisfies Case 2 for t ≥ t1.

Since z(t) is nonincreasing and z(t) > 0, there exists a constant c ≥ 0 such that
limt→∞ x(t) = c ≥ 0. We now claim that c = 0. If not, assume that c > 0, combining (1.1),
we have

–
(
r(t)

(
z′(t)

)α)′ = q(t)xβ
(
σ (t)

)
, t ≥ t0.

Integrating the above inequality from t1 to t, we get

r(t)
(
z′(t)

)α – r(t1)
(
z′(t1)

)α = –
∫ t

t1

q(s)xβ
(
σ (s)

)
ds, t ≥ t1,

which implies that

r(t)
(
z′(t)

)α ≤ –
∫ t

t1

q(s)xβ
(
σ (s)

)
ds, t ≥ t1,

then

z′(t) ≤ –
(

1
r(t)

∫ t

t1

q(s)xβ
(
σ (s)

)
ds

) 1
α

, t ≥ t1. (2.12)

Integrating (2.12) from t1 to t, we obtain

z(t) – z(t1) ≤ –
∫ t

t1

(
1

r(s)

∫ s

t1

q(u)xβ
(
σ (u)

)
du

) 1
α

ds, t ≥ t1.

From Lemma 2.3, we have

z(t) – z(t1) ≤ –
∫ t

t1

(
1

r(s)

∫ s

t1

q(u)Qβ
2
(
σ (u)

)
zβ

(
σ (u)

)
du

) 1
α

ds

≤ –z
β
α
(
σ (t)

)∫ t

t1

(
1

r(s)

∫ s

t1

q(u)Qβ
2
(
σ (u)

)
du

) 1
α

ds

≤ –x
β
α
(
σ (t)

)∫ t

t1

(
1

r(s)

∫ s

t1

q(u)Qβ
2
(
σ (u)

)
du

) 1
α

ds. (2.13)

Letting t → ∞ in the above inequality, we see that z(t) → –∞ as t → ∞ which is a con-
tradiction. Hence, c = 0.

Next, we prove that inequality (2.11) holds. From Lemma 2.3, we see that z(t)
π (t) is nonde-

creasing for all t ≥ t1. Thus, there exist C1 > 0 and t2 > t1 such that

z(t) ≥ C1π (t), t ≥ t2. (2.14)

Using (2.4), we get

x(t) ≥ Q2(t)z(t) ≥ C1Q2(t)π (t).
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Integrating (1.1) from t2 to t, we have

–r(t)
(
z′(t)

)α

= –r(t2)
(
z′(t2)

)α +
∫ t

t2

q(s)xβ
(
σ (s)

)
ds

≥ –r(t2)
(
z′(t2)

)α + zβ
(
σ (t)

)∫ t

t2

q(s)Qβ
2
(
σ (s)

)
ds

≥ –r(t2)
(
z′(t2)

)α + zβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds – zβ

(
σ (t)

)∫ t2

t0

q(s)Qβ
2
(
σ (s)

)
ds.

In view of (2.10), there exists t3 > t2 such that

–r(t3)
(
z′(t3)

)α – zβ
(
σ (t)

)∫ t3

t0

q(s)Qβ
2
(
σ (s)

)
ds > 0, t ≥ t3.

Therefore,

–r(t)
(
z′(t)

)α ≥ zβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds, t ≥ t3.

Using Lemma 2.3 in the above inequality, we find

–r(t)
(
z′(t)

)α ≥ zβ–α(σ (t))zα(σ (t))
πα(σ (t))

πα
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

≥ m1
zα(t)
πα(t)

πα
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds,

where m1 > 0 is a constant and zβ–α(σ (t)) ≥ m1 for t ≥ t3, which implies that

z′(t)
z(t)

≤ –
m1π (σ (t))
π (t)r1/α(t)

(∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

) 1
α

. (2.15)

Integrating (2.15) from t3 to t, we get

x(t) ≤ z(t) ≤ z(t3) exp

(
–

∫ t

t3

m1π (σ (u))
π (u)r1/α(u)

(∫ u

t0

q(s)Qβ
2
(
σ (s)

)
ds

) 1
α

du
)

= C2 exp

(
–

∫ t

t0

m1π (σ (u))
π (u)r1/α(u)

(∫ u

t0

q(s)Qβ
2
(
σ (s)

)
ds

) 1
α

du
)

,

where

C2 := z(t3) exp

(
–

∫ t3

t0

m1π (σ (u))
π (u)r1/α(u)

(∫ u

t0

q(s)Qβ
2
(
σ (s)

)
ds

) 1
α

du
)

> 0.

The proof is complete. �
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Theorem 2.6 Assume that (1.3) and (2.6) hold. If

∫ ∞

t0

(
1

r(t)

∫ t

t0

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds

) 1
α

dt = ∞, (2.16)

then Eq. (1.1) is oscillatory.

Proof Suppose that x(t) is a positive solution of equation (1.1) on [t1,∞). From Lemma 2.4,
we see that z satisfies Case 2 for t ≥ t1.

From (1.1), (2.4) and (2.14), we obtain

–
(
r(t)

(
z′(t)

)α)′ = q(t)xβ
(
σ (t)

)

≥ q(t)Qβ
2
(
σ (t)

)
zβ

(
σ (t)

)

≥ Cβ
1 q(t)Qβ

2
(
σ (t)

)
πβ

(
σ (t)

)
, t ≥ t2 ≥ t1. (2.17)

Integrating (2.17) from t2 to t, we have

–r(t)
(
z′(t)

)α ≥ Cβ
1

∫ t

t2

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds, (2.18)

that is,

–z′(t) ≥ Cβ/α
1

r1/α(t)

(∫ t

t2

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds

) 1
α

.

Integrating the above inequality from t2 to t, we get

z(t) ≤ z(t2) –
∫ t

t2

Cβ/α
1

r1/α(u)

(∫ u

t2

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds

) 1
α

du → –∞,

which contradicts the condition (2.16). The proof is complete. �

Theorem 2.7 Let α ≤ β . Assume that (1.3), (2.6) and

∫ t

t1

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds = ∞ (2.19)

hold. If

lim sup
t→∞

πβ
(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds > 1 when α = β (2.20)

and

lim sup
t→∞

πβ
(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds > 0 when α < β , (2.21)

then Eq. (1.1) is oscillatory.
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Proof Suppose that x(t) is a positive solution of equation (1.1) on [t1,∞). From Lemma 2.4,
we see that z(t) satisfies Case 2 for t ≥ t1. Combining (2.18) and (2.19), we have

lim
t→∞

(
–r(t)

(
z′(t)

)α)
= ∞. (2.22)

Integrating (1.1) from t1 to t and using (2.4) and the fact that z(t) is nonincreasing, we get

–r(t)
(
z′(t)

)α = –r(t1)
(
z′(t1)

)α +
∫ t

t1

q(s)xβ
(
σ (s)

)
ds

≥ zβ
(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds. (2.23)

Noting (2.3) and σ (t) ≥ t, we obtain

W (t) := –r(t)
(
z′(t)

)α ≥ –r
β
α
(
σ (t)

)(
z′(σ (t)

))β
πβ

(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds

=
(
–r

(
σ (t)

)(
z′(σ (t)

))α) β
α πβ

(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds

≥ (
–r(t)

(
z′(t)

)α) β
α πβ

(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds

= W
β
α (t)πβ

(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds.

Hence,

W 1– β
α (t) ≥ πβ

(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds.

Taking lim sup of both sides of the above inequality as t → ∞, we arrive at a contradiction
to (2.20) when α = β and (2.21) when α < β . The proof is complete. �

By attaching a condition, the dependence on the initial constant t1 can be easily elimi-
nated.

Corollary 2.8 Let α ≤ β . Assume that (1.3), (2.6), (2.9) and (2.19) hold. If

lim sup
t→∞

πβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds > 1 when α = β

and

lim sup
t→∞

πβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds > 0 when α < β ,

then Eq. (1.1) is oscillatory.

Proof As in the proof of Theorem 2.7, we conclude that (2.23) holds. In view of (2.10),
then there exists t2 > t1 such that

–r(t)
(
z′(t)

)α – zβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds > 0.
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It is clear that

–r(t)
(
z′(t)

)α ≥ –r(t1)
(
z′(t1)

)α +
∫ t

t0

q(s)xβ
(
σ (s)

)
ds –

∫ t1

t0

q(s)xβ
(
σ (s)

)
ds

≥ zβ
(
σ (t)

)∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds, t > t1. (2.24)

The rest of the proof is similar to that of Theorem 2.7 and hence we omit it. �

In order to prove a main theorem of this paper, we review an auxiliary result obtained
by Wu et al. [22, Lemma 2.3].

Lemma 2.9 Let ϕ(u) = Au – B(u – C)(α+1)/α where α > 0 is a quotient of two odd positive in-
tegers, A and C ∈ R, and B > 0. Then ϕ(u) attains its maximum value on u∗ = C + ( Aα

B(α+1) )α ,
and

max
u∈R

ϕ(u) = ϕ
(
u∗) = AC +

αα

(α + 1)α+1
Aα+1

Bα
. (2.25)

The proof of the above lemma is simple and can be obtained directly by the change of
the variable. We omit it.

Theorem 2.10 Let α > β . Assume that (1.3) and (2.6) hold. If there exists a function ρ ∈
C1([t0,∞), (0,∞)) such that

lim sup
t→∞

(
πα(t)
ρ(t)

∫ t

t2

ρ(s)q(s)Qβ
2
(
σ (s)

)(π (σ (s))
π (s)

)β

–
ααCα

4 (ρ ′(s))α+1r(s)
(α + 1)α+1βαρα(s)

ds
)

> 1, (2.26)

for any positive constants C4 > 0 and t2 ≥ t0, then Eq. (1.1) is oscillatory.

Proof Suppose that x(t) is a positive solution of equation (1.1) on [t1,∞). From Lemma 2.4,
we see that z(t) satisfies Case 2 for t ≥ t1. Define the generalized Riccati substitution w(t)
by

w(t) := ρ(t)
(

r(t)(z′(t))α

zβ (t)
+

1
πα(t)

)
, t ≥ t1. (2.27)

By virtue of (2.3), we have w(t) ≥ 0 for t ≥ t1. Differentiating on both sides of (2.27), we
obtain

w′(t) =
ρ ′(t)
ρ(t)

w(t) + ρ(t)
(r(t)(z′(t))α)′

zβ (t)
–

βρ(t)r(t)(z′(t))αz′(t)
zβ+1(t)

+
αρ(t)

r1/α(t)πα(t)

≤ ρ ′(t)
ρ(t)

w(t) + ρ(t)
(r(t)(z′(t))α)′

zβ (t)
–

β(w(t) – ρ(t)
πα (t) ) α+1

α

C4(ρ(t)(r(t))1/α +
αρ(t)

r1/α(t)πα(t)
, (2.28)

where C4 > 0 is a constant and such that z1– β
α (t) ≤ C4 for t ≥ t1.
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Combining (1.1), σ (t) ≥ t and Lemma 2.3, we have

(
r(t)

(
z′(t)

)α)′ ≤ –q(t)Qβ
2
(
σ (t)

)
zβ

(
σ (t)

) ≤ –q(t)Qβ
2
(
σ (t)

)(π (σ (t))
π (t)

)β

zβ
(
σ (t)

)
(2.29)

for t > t2, where t2 ∈ [t1,∞) is large enough. Substituting (2.29) into (2.28), it follows that

w′(t) ≤ –ρ(t)q(t)Qβ
2
(
σ (t)

)(π (σ (t))
π (t)

)β

+
ρ ′(t)
ρ(t)

w(t)

–
β

C4(ρ(t)(r(t))1/α

(
w(t) –

ρ(t)
πα(t)

) α+1
α

+
αρ(t)

r1/α(t)πα(t)
. (2.30)

Using (2.25) with

A :=
ρ ′(t)
ρ(t)

, B :=
β

C4(ρ(t)(r(t))1/α , C :=
ρ(t)
πα(t)

,

we obtain

w′(t) ≤ –ρ(t)q(t)Qβ
2
(
σ (t)

)
(

π (σ (t))
π (t)

)β

+
ρ ′(t)
πα(t)

+
ααCα

4 (ρ ′(t))α+1r(t)
(α + 1)α+1βαρα(t)

+
αρ(t)

r1/α(t)πα(t)

≤ –ρ(t)q(t)Qβ
2
(
σ (t)

)(π (σ (t))
π (t)

)β

+
(

ρ(t)
πα(t)

)′
. (2.31)

Integrating (2.31) from t2 to t, we have

∫ t

t2

ρ(s)q(s)Qβ
2
(
σ (s)

)
(

π (σ (s))
π (s)

)β

–
ααCα

4 (ρ ′(s))α+1r(s)
(α + 1)α+1βαρα(s)

ds –
ρ(t)
πα(t)

+
ρ(t2)
πα(t2)

≤ w(t2) – w(t).

In view of (2.27), we see that

∫ t

t2

ρ(s)q(s)Qβ
2
(
σ (s)

)(π (σ (s))
π (s)

)β

–
ααCα

4 (ρ ′(s))α+1r(s)
(α + 1)α+1βαρα(s)

ds

≤ ρ(t2)
r(t2)(z′(t2))α

zβ (t2)
– ρ(t)

r(t)(z′(t))α

zβ (t)
. (2.32)

On the other hand, from (2.3), we have

–
ρ(t)
πα(t)

≤ ρ(t)
r(t)(z′(t))α

zβ (t)
≤ 0. (2.33)

Substituting (2.33) into (2.32), we obtain

∫ t

t2

q(s)Qβ
2
(
σ (s)

)
(

π (σ (s))
π (s)

)β

–
ααCα

4 (ρ ′(s))α+1r(s)
(α + 1)α+1βαρα(s)

ds ≤ ρ(t)
πα(t)

. (2.34)
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Multiplying both sides of (2.34) by πα (t)
ρ(t) and taking lim sup on both sides of the resulting

inequality as t → ∞, we obtain a contradiction to (2.26). The proof is complete. �

Since ρ(t) can be taken appropriately, Theorem 2.10 is more flexible in studying the
oscillation of (1.1). When ρ(t) = πα(t), ρ(t) = πβ (t), ρ(t) = 1, respectively, the following
results are obtained.

Corollary 2.11 Assume that α > β , (1.3) and (2.6) hold. If

lim sup
t→∞

(∫ t

t2

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
πα–β (s) –

Cα
4 α2α+1

βα(α + 1)α+1r1/α(s)πα(s)
ds

)
> 1,

for any positive constants C4 > 0 and t2 ≥ t0, then Eq. (1.1) is oscillatory.

Corollary 2.12 Assume that α > β , (1.3) and (2.6) hold. If

lim sup
t→∞

(
πα–β (t)

∫ t

t2

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
–

Cα
4 ααβ

(α + 1)α+1r1/α(s)πα–β+1(s)
ds

)
> 1,

for any positive constants C4 > 0 and t2 ≥ t0, then Eq. (1.1) is oscillatory.

Corollary 2.13 Assume that α ≥ β , (1.3) and (2.6) hold. If

lim sup
t→∞

(
πα(t)

∫ t

t2

q(s)Qβ
2
(
σ (s)

)
(

π (σ (s))
π (s)

)β

ds
)

> 1,

for any t2 ≥ t0, then Eq. (1.1) is oscillatory.

Remark When α = β , we can choose C4 = 1 in Theorem 2.10, Corollary 2.11, Corol-
lary 2.12, respectively.

Lemma 2.14 Let α ≤ β . Assume that (1.3) and (2.6) hold. Suppose that equation (1.1) has
a positive solution x(t) on [t1,∞) and that γ and δ are constants satisfying

0 ≤ γ + δ < 1, (2.35)

0 ≤ γ ≤ Lq(t)Qβ
2
(
σ (t)

)
πβ

(
σ (t)

)
π (t)r

1
α (t), (2.36)

where L > 0 is a constant and such that (r(t)(z′(t))α)
β–α
α ≥ L for t ≥ t1, and

0 ≤ δ ≤ m1π
(
σ (t)

)(∫ t

t1

q(s)Qβ
1
(
σ (s)

)
ds

) 1
α

, (2.37)

where m1 > 0 is a constant and such that zβ–α(σ (t)) ≥ m1. Then there exists t∗ ∈ [t1,∞)
such that

z
π1–γ



Shi and Bai Advances in Difference Equations        (2019) 2019:468 Page 13 of 18

is nondecreasing and

z
πδ

is nonincreasing on [t∗,∞).

Proof From Lemma 2.4, we see that z(t) satisfies Case 2. Using (1.1), (2.3), (2.4) and (2.36),
we obtain

(
–r(t)

(
z′(t)

)α
πγ (t)

)′

= –
(
r(t)

(
z′(t)

)α)′
πγ (t) + γ r(t)

(
z′(t)

)α πγ –1(t)
r1/α(t)

= q(t)xβ
(
σ (t)

)
πγ (t) + γ r(t)

(
z′(t)

)α πγ –1(t)
r1/α(t)

≥ –q(t)Qβ
2
(
σ (t)

)
πγ (t)rβ/α(

σ (t)
)(

z′(σ (t)
))β

πβ
(
σ (t)

)

+ γ r(t)
(
z′(t)

)α πγ –1(t)
r1/α(t)

≥ –q(t)Qβ
2
(
σ (t)

)
πγ (t)r(t)

(
z′(t)

)α(
r
(
σ (t)

)(
z′(σ (t)

))α) β–α
α πβ

(
σ (t)

)

+ γ r(t)
(
z′(t)

)α πγ –1(t)
r1/α(t)

≥ –q(t)Qβ
2
(
σ (t)

)
πγ (t)r(t)

(
z′(t)

)αLπβ
(
σ (t)

)

+ γ r(t)
(
z′(t)

)α πγ –1(t)
r1/α(t)

= –r(t)
(
z′(t)

)α
πγ (t)

[
Lq(t)Qβ

2
(
σ (t)

)
πβ

(
σ (t)

)
–

γ

π (t)r1/α(t)

]
≥ 0, (2.38)

where L > 0 is a constant and such that (r(t)(z′(t))α)
β–α
α ≥ L for t ≥ t1. Thus, –r(t)(z′(t))α ×

πγ (t) is nondecreasing eventually, that is, there exists a t2 ∈ [t1,∞) such that –r(t)(z′(t))α ×
πγ (t) is nondecreasing for t ≥ t2. So, we have

z(t) ≥ –
∫ ∞

t

r1/α(s)πγ (s)
r1/α(s)πγ (s)

z′(s) ds

≥ –r1/α(t)z′(t)πγ (t)
∫ ∞

t

1
r1/α(s)πγ (s)

ds. (2.39)

In view of

∫ ∞

t

1
r1/α(s)πγ (s)

ds =
π1–γ (t)
1 – γ

, (2.40)

we get

z(t) ≥ –r1/α(t)z′(t)
π (t)
1 – γ

. (2.41)
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Hence,

(
z(t)

π1–γ (t)

)′
=

r1/α(t)z′(t) π (t)
1–γ

+ z(t)
(1 – γ )r1/α(t)π2–γ (t)

≥ 0,

that is, z(t)
π1–γ (t) is nondecreasing.

Next, we prove that z
πδ is nonincreasing. Proceeding as in the proof of Theorem 2.5, we

obtain (2.15), that is,

z(t) ≤ –
1

m1
r1/α(t)z′(t)

π (t)
π (σ (t))

(∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

)– 1
α

, (2.42)

where m1 > 0 is a constant and such that zβ–α(σ (t)) ≥ m1. On the other hand, we see

(
z(t)
πδ(t)

)′
=

z′(t)
πδ(t)

+
δz(t)

πδ+1(t)r1/α(t)
.

Using the inequality (2.42), we obtain

(
z(t)
πδ(t)

)′
≤ z′(t)

πδ(t)
–

δz′(t)
m1πδ(t)π (σ (t))

(∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

)– 1
α

=
z′(t)
πδ(t)

(
1 –

δ

m1π (σ (t))

(∫ t

t0

q(s)Qβ
2
(
σ (s)

)
ds

)– 1
α
)

≤ 0. (2.43)

Thus, z(t)
πδ (t) is nonincreasing. The proof is complete. �

Theorem 2.15 Let α ≤ β . Assume that (1.3) and (2.6) hold. Suppose that γ and δ are
constants satisfying (2.35)–(2.37). Also, there exists a constant M > 0 such that

∫ t
t0

q(t) ds ≤
M for all t ≥ t0. If

lim sup
t→∞

πγ (t)π1–γ –δ
(
σ (t)

)∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds > (1 – γ )β

when α = β (2.44)

and

lim sup
t→∞

πγ (t)π1–γ –δ
(
σ (t)

)∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds = ∞

when α < β , (2.45)

for any t1 ≥ t0, then Eq. (1.1) is oscillatory.

Proof Suppose that x(t) is a positive solution of Eq. (1.1) on [t1,∞). From Lemma 2.4, we
see that z satisfies Case 2 for t ≥ t1.
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Integrating from t1 to t and combining Lemma 2.14, we have

W (t) := –r(t)
(
z′(t)

)α = –r(t1)
(
z′(t1)

)α +
∫ t

t1

q(s)xβ
(
σ (s)

)
ds

≥
∫ t

t1

(
z(σ (s))
πδ(σ (s))

)β

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds

≥
(

z(σ (t))
πδ(σ (t))

)β ∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds

≥
(

z(σ (t))π1–γ (σ (t))
πδ(σ (t))π1–γ (σ (t))

)β ∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds

≥
(

z(t)π1–γ –δ(σ (t))
π1–γ (t)

)β ∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds. (2.46)

Clearly, one can see that the function W (t) is bounded due to Eq. (1.1) and condition
∫ t

t0
q(t) ds ≤ M. Using (2.41) in the above inequality, we obtain

W (t) ≥ W
β
α (t)

(
πγ (t)π1–γ –δ(σ (t))

1 – γ

)β ∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds,

that is,

W 1– β
α (t)(t) ≥

(
πγ (t)π1–γ –δ(σ (t))

1 – γ

)β ∫ t

t1

πδβ
(
σ (s)

)
q(s)Qβ

2
(
σ (s)

)
ds.

Taking lim sup on both sides of this inequality, we arrive at a contradiction to (2.44) when
α = β and (2.45) when α < β . The proof is complete. �

3 Examples
In this section, we present two examples to illustrate our main results.

Example 3.1 Consider the following second order differential equation:

[
t4

(
x(t) +

1
9

x
(

t
2

))′]′
+ t6x

5
3 (3t) = 0, t ≥ 1. (3.1)

Clearly,

r(t) = t4, p1(t) =
1
9

, p2(t) = 0, q(t) = t6,

τ (t) =
t
2

, σ (t) = 3t, α = 1, β =
5
3

.

By π (t) =
∫ ∞

t r– 1
α (s) ds, we have π (t) = 1

3 t–3, and condition (1.3) holds. Notice that
π (τ (σ (t)))
π (σ (t)) =

1
3 ( 3t

2 )–3

1
3 (3t)–3 = 8, and

Qβ
1 (t) =

(
1 – p1

(
σ (t)

)
– p2

(
σ (t)

)R(λ(σ (t)))
R(σ (t))

)β

=
(

8
9

) 5
3

,
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Qβ
2 (t) =

(
1 – p1

(
σ (t)

)π (τ (σ (t)))
π (σ (t))

– p2
(
σ (t)

))β

=
(

1
9

) 5
3

.

Letting t1 = t0 = 1, we have

lim sup
t→∞

∫ t

1
s6

(
8
9

) 5
3

ds = ∞,

and condition (2.6) is satisfied. To verify conditions (2.19) and (2.21), we find

∫ t

t1

q(s)Qβ
2
(
σ (s)

)
πβ

(
σ (s)

)
ds =

∫ t

1
s6

(
1
9

) 5
3
(

1
3

) 5
3

(3s)–5 ds = ∞

and

lim sup
t→∞

πβ
(
σ (t)

)∫ t

t1

q(s)Qβ
2
(
σ (s)

)
ds = lim sup

t→∞

(
1
3

) 5
3

(3t)–5
∫ t

1
s6

(
1
9

) 5
3

ds > 0,

which show that (2.19) and (2.21) hold. Hence, by Theorem 2.7, Eq. (3.1) is oscillatory.

Example 3.2 Consider the following second order differential equation:

[
t4

(
x(t) +

1
9

x
(

t
2

))′]′
+ t6x

1
3 (3t) = 0, t ≥ 1. (3.2)

It is easy to find that

r(t) = t4, p1(t) =
1
9

, p2(t) = 0, q(t) = t6,

τ (t) =
t
2

, σ (t) = 3t, α = 1, β =
1
3

.

From π (t) =
∫ ∞

t r– 1
α (s) ds, we have π (t) = 1

3 t–3 and condition (1.3) holds. In view of
π (τ (σ (t)))
π (σ (t)) =

1
3 ( 3t

2 )–3

1
3 (3t)–3 = 8, we obtain

Qβ
1 (t) =

(
1 – p1

(
σ (t)

)
– p2

(
σ (t)

)R(λ(σ (t)))
R(σ (t))

)β

=
(

8
9

) 1
3

,

Qβ
2 (t) =

(
1 – p1

(
σ (t)

)π (τ (σ (t)))
π (σ (t))

– p2
(
σ (t)

)
)β

=
(

1
9

) 1
3

.

Letting t1 = t0 = 1, we see that

lim sup
t→∞

∫ t

1
s6

(
8
9

) 1
3

ds = ∞
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and condition (2.6) is satisfied. Setting ρ(t) = 1, we have

lim sup
t→∞

(
πα(t)

∫ t

t2

q(s)Qβ
2
(
σ (s)

)(π (σ (s))
π (s)

)β

ds
)

= lim sup
t→∞

1
3

t–3
∫ t

1
s6

(
1
9

) 1
3 1

3
ds > 1.

Now, all conditions of Corollary 2.13 hold. Hence, Eq. (3.2) is oscillatory.

4 Conclusions
In this paper, we have obtained several new oscillation criteria for a second order nonlinear
advanced differential equation with mixed neutral terms. Our results improve and com-
plement some well-known results which were published recently in the literature. Two
examples are given to illustrate the efficiency of our results. We believe that the proof
method and the obtained results may be generalized to the differential equations, such as
those in [11, 13, 18].
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