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Abstract
In this paper, a numerical approximation method for the two-dimensional
unsaturated soil water movement problem is established by using the discontinuous
finite volume method. We prove the optimal error estimate for the fully discrete
format. Finally, the reliability of the method is verified by numerical experiments. This
method is not only simple to calculate, but also stable and reliable.
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1 Introduction
The movement of water in soil is a very complicated problem. This paper mainly studies
the water movement in furrow irrigation, that is, the water movement in the trapezoidal
region to the soil diffusion on both sides and the infiltration of the underground pipeline
into the surrounding soil. Unsaturated soil water movement refers to the movement of
water in the soil when the water is not full of pores. It is an important form of fluid move-
ment in porous media. We assume that the soil is homogeneous and isotropic. Let the
x-axis be horizontal to the right and the z-axis vertically downward. According to Darcy’s
law and the continuity principle, the problem of unsaturated soil water movement can be
reduced to the following model (see [1]):
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where Q(x, z, t) is the soil moisture volume water content, D(Q) indicates the diffusion rate
of soil water, K(Q) indicates the hydraulic conductivity, –Sr is the absorption rate of the
root zone, the relationship between K(Q), D(Q) and Q is as follows:

⎧⎨
⎩

K(Q) = Ks( Q
Qs

)2b+3,

D(Q) = – bKsψs
Qs

( Q
Qs

)b+2, Qr ≤ Q(z, t) ≤ Qs,
(2)

where Qs is the soil water saturated water content, Qr is the residual moisture content of
the soil moisture, where 0 < Qs < 1, the saturated water conductivity Ks, the soil parameter
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b and the saturated soil water potential ψs are all related to the soil structure and are
known constants. Therefore, it can be determined that K(Q), D(Q), ∂K (Q)

∂Q , ∂K (Q)
∂z , ∂D(Q)

∂Q are
bounded, that is, there are two constants K1, K2, such that: K1 ≤ K(Q), ∂K (Q)

∂Q , ∂K (Q)
∂z , ∂D(Q)

∂Q ,
D(Q) ≤ K2.

The following conditions are given for (1):
(1) Initial condition: Q(x, z, 0) = Q0;
(2) Boundary condition:

⎧⎪⎪⎨
⎪⎪⎩

Q(0, 0, t) = Qs, t ∈ [0, T],

Q(L, z, t) = Q0, L → ±∞, t ∈ [0, T],

Q(x, M, t) = Q0, M → ±∞, t ∈ [0, T],

where Q0 represents the initial water content and Qs represents the saturated water
content.

According to the literature [2], the solution to the problem is existing and unique. Based
on the reliability of this problem and its practical significance in meteorology, agricultural
environmental engineering, hydrodynamics, etc., in recent years, many scholars have pro-
posed numerical methods to solve it. The numerical solutions of one-dimensional and
two-dimensional soil water movement problems are given by the finite difference method
in Ref. [2, 3]. However, because the finite difference method is very sensitive to bound-
ary conditions and soil parameters, the error is large. The authors of Ref. [4, 5] used the
finite volume element method to simulate the two-dimensional soil water flow problem
and overcome the weakness of the finite difference method. To the best of our knowl-
edge, there is no report on the discontinuous finite volume element method to deal with
two-dimensional unsaturated water movement. In this paper, we focus on the mathe-
matical model characteristics of the two-dimensional unsaturated water motion problem,
and we mainly discuss the discontinuous finite volume element method of the problem.
This method not only inherits the advantages of the format of the finite volume element
method, that is, a simple structure, high precision, simple calculation and local conserva-
tion between physical quantities, but it also has the characteristics of discontinuous finite
element, the finite element space does not need to meet any continuity requirements, the
space structure is simple, and there is good locality and parallelism.

This paper is organized as follows, in Sect. 2, we derive a discontinuous finite volume
element format for unsaturated soil water movement problems. In Sect. 3, we give some
lemmas related to error analysis. In Sect. 4, we obtain the optimal estimate of L2-norm
and ‖| · ‖|1,h-norm. In Sect. 5, numerical experiments are given to verify the validity of the
theoretical analysis.

2 Discontinuous finite volume element format for unsaturated soil water
movement problems

For convenience, it is assumed that the region Ω ∈ R2 is a suitably smooth and sufficiently
large bounded region. On the boundary ∂Ω of the region Ω , the initial moisture content
Q0 remains unchanged. We define the dual partition T∗

h of Th for the test function space as
follows. Let Th be a triangulation of Ω with diam(Ω), where h is the set of all the triangular
elements K , h(K) is the side length of the unit K ∈ Th. Let Γ denote the union of the
boundaries of the triangle K of Th, Γ0 = Γ \∂Ω , h = maxK∈Th h(K). We divide each K into
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Figure 1 Original subdivision and dual subdivision

three triangles by connecting the barycenter B and three corners of the triangle as shown
in Fig. 1. Let T∗

h consist of all these triangles Tj.
On the original split, we define the following broken Sobolev space:

Hm(Th) =
{

v ∈ L2(Ω) : v|k ∈ Hm(K),∀K ∈ Th
}

and its norm

‖v‖m,h =

( m∑
i=0

|v|2i,h
)1/2

, |v|i,h =
( ∑

K∈Th

|v|2Hi(K )

)1/2

,

where Hi(K) is the standard Sobolev space defined on unit K , m is a positive integer.
We define a finite dimensional trial function space Uh with the original partition Th:

Uh =
{

uh ∈ L2(Ω) : uh|K ∈ P1(K),∀K ∈ Th
}

.

Define the finite dimensional test function space on the dual partition T∗
h :

Vh =
{

vh ∈ L2(Ω) : vh|T ∈ P0(T),∀T ∈ T∗
h
}

,

where Pl denotes a polynomial with degree less than or equal to l (l = 0, 1) defined on
K(T).

Let U(h) = Uh + H2(Ω) ∩ H1
0 (Ω). Define a mapping γh : U(h) → Vh as

γhvh|T =
1
he

∫
e

vh|T ds, ∀T ∈ T∗
h ,

where he is the length of the boundary e of the unit K .
In order to facilitate theoretical analysis, take Q0 = 0, and let F(Q) = p · K(Q), we have

∂K(Q)
∂z

= ∇ · F(Q), p = (0, 1).

So (1) can be written as
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+ ∇ · F(Q) = Sr , (3)
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Multiplying (3) by vh ∈ Vh, integrating on the dual unit, summing over T , and using the
Green formula, we obtain

(
∂Q
∂t

, vh

)
–

∑
T∈T∗

h

∫
∂T

D(Q)∇Q · nvh ds =
(
Sr – ∇ · F(Q), vh

)
, (4)

where n is the unit outward normal vector on ∂T .
So

∑
T∈T∗

h

∫
∂T

D(Q)∇Q · nvh ds =
∑

K∈Th

3∑
i=1

∫
Pi+1BPi

D(Q)∇Q · nvh ds

+
∑

K∈Th

∫
∂T

D(Q)∇Q · nvh ds,

where P4 = P1, P5 = P2, P6 = P3.
Assume e = ∂K1 ∩ ∂K2, where K1, K2 are the adjacent two units in Th, and let n1 and

n2 be unit normal vectors on e pointing exterior to K1 and K2. For scalar functions p and
vector functions q, we define the average {·} and the jump [·] on e, as follows (see [6]).

If e ∈ Γ0 and e ⊂ ∂K1 ∩ ∂K2, then

[v]|e = v|∂K1 n1 + v|∂K2 n2, {v}|e =
1
2

(v|∂K1 + v|∂K2 ),

[w]|e = w|∂K1 · n1 + w|∂K2 · n2, {w}|e =
1
2

(w|∂K1 + w|∂K2 ).

If e ∈ Γ \Γ0, and e ⊂ ∂K , then

[v]|e = v|∂K nk , {v}|e = v|∂K ,

[w]|e = w|∂K · nk , {w}|e = w|∂K .

According to the above average and the definition of the jump, a straightforward com-
putation gives

∑
K∈Th

∫
∂K

pw · n ds =
∑
e∈Γ

∫
e
[p] · {w}ds +

∑
e∈Γ0

∫
e
{p}[w] ds. (5)

Using (5) and the fact that [D(Q)∇Q · nvh]|e = 0, ∀e ∈ Γ0, we have

∑
K∈Th

∫
∂K

D(Q)∇Q · nvh ds =
∑
e∈Γ

∫
e

{
D(Q)∇Q

} · [vh] ds.
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Define the following bilinear form:

A(Qh; Qh,γhvh) = –
∑

K∈Th

3∑
i=1

∫
Pi+1BPi

D(Qh)∇Qh · nγhvh ds

–
∑
e∈Γ

∫
e

{
D(Qh)∇Qh

}
[γhvh] ds

–
∑
e∈Γ

∫
e

{
D(Qh)∇vh

}
[γhQh] ds

+ α
∑
e∈Γ

[γhQh][γhvh],

where α is a real constant (see [7]).
The semi-discrete discontinuous finite volume element format of problem (1) is to find

Qh ∈ Uh, such that

⎧⎨
⎩

(a) ( ∂Qh
∂t ,γhvh) + A(Qh; Qh,γhvh) = (Sr – ∇ · F(Q),γhvh), ∀vh ∈ Uh,

(b) Qh(0) = 0.
(6)

Since Q is the solution to the problem (1), and [γhQ]|e = 0, the true solution Q satisfies

⎧⎨
⎩

(a) ( ∂Q
∂t ,γhvh) + A(Q; Q,γhvh) = (Sr – ∇ · F(Q),γhvh), ∀vh ∈ Uh,

(b) Q(0) = 0.
(7)

Next, we present the fully discrete discontinuous finite volume element method. Take
�t as the time step, recorded as �t = T

N , N > 0, and N is a positive integer, tj = j�t,when

t = tj. If we use the backward difference quotient ∂tQ
j
h = Qj

h–Qj–1
h

�t to approximate the differ-
ential quotient in the semi-discrete scheme, then we get the backward Euler fully discrete
discontinuous finite volume element format: find Qj

h ∈ Uh, (j = 1, . . . , N ), ∀vh ∈ Uh, satis-
fying

⎧⎨
⎩

(a) ( Qj
h–Qj–1

h
�t ,γhvh) + A(Qj

h; Qj
h,γhvh) = (Sj

r – ∇ · F(Qj
h),γhvh),

(b) Qh(0) = 0.
(8)

3 Some lemmas
We define a norm ‖| · ‖| for Uh as follows:

‖|u‖|21,h = |u|21,h +
∑
e∈Γ

[γhu]2
e +

∑
K∈Th

h2
k|u|22,K , ∀u ∈ U(h),

where |u|21,h =
∑

K∈Th
|u|21,K .

The following trace inequality can be found in [8]. If e is the edge of unit K with length
he, then

‖u‖2
e ≤ C

(
h–1

e ‖u‖2
K + he|u|21,K

)
, ∀u ∈ H2(K).
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For ∀Q ∈ H1(Ω), introduce the original equation solution Q to geta Ritz projection
Rh(t) : H1(Ω) → Uh which satisfies

A(Q; Q,γhvh) = A(Q; RhQ,γhvh), ∀vh ∈ Vh. (9)

According to the relevant theory of the Ritz projection Rh (see [3]), the following inter-
polation properties are obtained:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) ‖Q – RhQ‖ ≤ Ch2‖Q‖3,

(b) ‖(Q – RhQ)t‖ ≤ Ch2‖Q‖1,3,2,

(c) ‖|Q – RhQ‖|1,h ≤ Ch‖Q‖2,

(d) ‖|(Q – RhQ)t‖|1,h ≤ Ch‖Q‖1,2,2.

(10)

Lemma 1 (see [9]) The operator γh is self-adjoint with respect to the L2-inner product, that
is,

(uh,γhvh) = (vh,γhuh), ∀uh, vh ∈ Uh,

and if we define

‖|uh‖|0 = (uh,γhuh)1/2,

then ‖| · ‖|0 and ‖ · ‖ are equivalent, and

‖γhuh‖ = ‖uh‖, ∀uh ∈ Uh.

Lemma 2 (see [9]) The operator γh satisfies the following properties:

∫
K

(wh – γhwh) dx = 0, ∀wh ∈ U(h),∀K ∈ Th,
∫

e
(wh – γhwh) ds = 0, ∀wh ∈ U(h),∀e ∈ ∂K ,∀K ∈ Th,

[wh] = 0 �⇒ [γhwh] = 0, ∀wh ∈ U(h),

‖γhwh – wh‖0,K ≤ ChK |wh|1,K , ∀wh ∈ U(h),∀K ∈ Th.

Lemma 3 (see [10]) There is a normal number β that is independent of h, such that

β‖|uh‖|21,h ≤ A(q; uh,γhuh), ∀uh ∈ Uh. (11)

Lemma 4 (see [6]) For ∀uh, vh ∈ Uh, there exists a positive constant C independent of h,
and we have

A(q; uh,γhvh) ≤ C‖|uh‖|1,h‖|vh‖|1,h. (12)
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Lemma 5 (see [2, 5, 6]) There is a constant C independent of h such that

∣∣A(q; uh,γhvh) – A(q; vh,γhuh)
∣∣ ≤ Ch‖|uh‖|1,h‖|vh‖|1,h, ∀uh ∈ Uh. (13)

∣∣A(p; uh,γhvh) – A(q; uh,γhvh)
∣∣ ≤ C|uh|1,∞

(‖p – q‖ + h‖|p – q‖|1,h
)
)‖|vh‖|1,h. (14)

Lemma 6 (see [9]) There is a constant C independent of h such that

h‖|uh‖|1,h ≤ C‖uh‖, ∀uh ∈ Uh. (15)

‖uh‖ ≤ C‖|uh‖|1,h, ∀uh ∈ Uh. (16)

Lemma 7 If Q, Qt ∈ W 2,∞(Ω) ∩ H3(Ω), there is a constant C0, C1 independent of h such
that, for small enough, we have

|RhQ|1,∞ ≤ C0, (17)

|RhQt|1,∞ ≤ C1. (18)

Proof Let QI ∈ Uh be the interpolation of Q, it is well known that

|Q – QI |s,p,k ≤ Ch2–s|Q|2,p,k ∀K ∈ Th, s = 0, 1, 1 ≤ p ≤ ∞. (19)

By the definition of ‖| · ‖|1,h, we have

‖|Q – QI‖|1,h ≤ Ch|Q|2. (20)

Using Lemma 3 and Lemma 4, we have

β‖|RhQ – QI‖|21,h ≤ A
(
Q; RhQ – QI ,γh(RhQ – QI)

)
= A

(
Q; Q – QI ,γh(RhQ – QI)

)
≤ C‖|Q – QI‖|1,h · ‖|RhQ – QI‖|1,h.

Using triangular inequalities, inverse inequalities and (19), we obtain

|RhQ|1,∞ ≤ |RhQ – QI |1,∞ + |QI – Q|1,∞ + |Q|1,∞.

So

‖|RhQ – QI‖|1,h ≤ Ch|Q|2.

Therefore

|RhQ|1,∞ ≤ C
(|Q|2 + |Q|1

)
.

For (18), the proof is similar to that of (17). �
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4 Convergence analysis
Theorem 1 Let Q, Qn

h be the solutions of (1) and (8), if Q ∈ L2(0, T ; H3(Ω)), Qt ∈
L2(0, T ; L2(Ω)), Qtt ∈ L2(0, T ; L2(Ω)), Qh(0) = RhQ(0) = 0, then there is a constant C in-
dependent of h and �t, such that

∥∥Q
(
tn) – Qn

h
∥∥ ≤ Ch2

(∫ tn

0
‖Qt‖2

3 dt
) 1

2
+ C�t

(∫ tn

0
‖Qtt‖2 dt

) 1
2

, (21)

∥∥∣∣Q(
tn) – Qn

h
∥∥∣∣

1,h ≤ Ch
(∥∥Qn∥∥

3 +
∥∥Qn∥∥

2 +
∫ tn

0
‖Qt‖2

3 dt
) 1

2

+ C�t
(∫ tn

0
‖Qtt‖2 dt

) 1
2

. (22)

Proof Let Qn
h = Q(tn), RhQn = RhQ(tn), Qn

t = ∂Qn

∂t , ρn = Qn – RhQn, θn = RhQn – Qn
h . Now

we estimate ‖θn‖.
Subtracting (8) from (7) gives the error equation

(
Qj

t –
Qj – Qj–1

�t
,γhvh

)
+ A

(
Qj; Qj,γhvh

)
– A

(
Qj

h; Qj
h,γhvh

)

=
(∇ · (F

(
Qj

h
)

– F
(
Qj)),γhvh

)
, (23)

where

A
(
Qj; Qj,γhvh

)
– A

(
Qh

j; Qh
j,γhvh

)
= A

(
Qj;ρ j + θ j,γhvh

)
+ A

(
Qj; Qj

h,γhvh
)

– A
(
Qj

h; Qj
h,γhvh

)
,

Qj
t –

Qj – Qj–1

�t
= Qj

t + ∂tθ j – ∂tRhQj.

(24)

Using (10), the error equation is equivalent to

(
∂tθ

j,γhvh
)

+ A
(
Qj; θ j,γhvh

)
=

(
∂tRhQj – Qj

t ,γhvh
)

+ A
(
Qj

h; Qj
h,γhvh

)
– A

(
Qj; Qj

h,γhvh
)

+
(∇ · (F

(
Qj

h
)

– F
(
Qj)),γhvh

)
. (25)

Choosing vh = θ j in (25), using Lemma 3, we have

(
∂tθ

j,γhθ
j) + A

(
Qj; θ j,γhθ

j) =
(

θ j – θ j–1

�t
,γhθ

j
)

+ A
(
Qj; θ j,γhθ

j)

≥ ‖θ j‖2 – ‖θ j–1‖2

2�t
+ β

∥∥∣∣θ j–1∥∥∣∣2
1,h. (26)

The right side of Eq. (25) is recorded as I1, I2, I3, and is estimated item by item.
Using the Hölder inequalities and ε inequalities, we get

|I1| ≤ C
∥∥∣∣∂tRhQj – Qj

t
∥∥∣∣2

0 + C
∥∥θ j∥∥2.
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Using Lemma 5, the triangular inequalities and the ε inequalities, we have

|I2| ≤ C
∣∣Qj

h
∣∣
1,∞

(∥∥Qj – Qj
h
∥∥ + h

∥∥∣∣Qj – Qj
h
∥∥∣∣

1,h

)∥∥∣∣θ j∥∥∣∣
1,h

≤ C
(∥∥ρ j∥∥ +

∥∥θ j∥∥ + h
∥∥∣∣ρ j∥∥∣∣

1,h + h
∥∥∣∣θ j∥∥∣∣

1,h

)∥∥∣∣θ j∥∥∣∣
1,h

≤ C
(∥∥ρ j∥∥2 +

∥∥θ j∥∥2 + h2∥∥∣∣ρ j∥∥∣∣2
1,h

)
+

β

2
∥∥∣∣θ j∥∥∣∣2

1,h.

Assume |Qj
h|1,∞ ≤ C0, j = 0, 1, . . . , N . Proof of it will be given later.

From the Hölder inequalities and the ε inequalities, we have

|I3| ≤ C
∥∥Qj – Qj

h
∥∥2 + C

∥∥θ j∥∥2 ≤ C
∥∥ρ j∥∥2 +

∥∥θ j∥∥2.

Let ξ j = ∂tRhQj – Qj
t and use the above estimate; (25) is transformed into

‖θ j‖2 – ‖θ j–1‖2

2�t
+ β

∥∥∣∣θ j∥∥∣∣2
1,h

≤ C
∥∥∣∣ξ j∥∥∣∣2

0 + C
∥∥θ j∥∥2 + C

∥∥ρ j∥∥2 + C
∥∥θ j∥∥2 + Ch2∥∥∣∣ρ j∥∥∣∣2

1,h. (27)

Multiplying 2�t on both sides of type (27), summing over j from 1 to n at both sides of
(27) and noting that θ0 = 0,

∥∥θn∥∥2 + �tβ
n∑

j=1

∥∥∣∣θ j∥∥∣∣2
1,h

≤ C�t
n∑

j=1

∥∥∣∣ξ j∥∥∣∣2
0 + C�t

n∑
j=1

(∥∥ρ j∥∥2 + h2∥∥∣∣ρ j∥∥∣∣2
1,h

)
+ C�t

n∑
j=1

∥∥θ j∥∥2, (28)

where

n∑
j=1

∥∥∣∣ξ j∥∥∣∣2
0 ≤ 1

�t

n∑
j=1

∫ tj

tj–1
‖Qt – RhQt‖2 dt + �t

n∑
j=1

∫ tj

tj–1
‖Qtt‖2 dt

≤ C
h4

�t

∫ tn

0
‖Qt‖2

3 dt + C�t
∫ tn

0
‖Qtt‖2 dt. (29)

Taking (10) and the discrete Gronwall lemma,

∥∥θn∥∥2 + �tβ
n∑

j=1

∥∥∣∣θ j∥∥∣∣2
1,h

≤ Ch4
∫ tn

0
‖Qt‖2

3 dt + C�t2
∫ tn

0
‖Qtt‖2 dt + Ch4(∥∥Qn∥∥2

3 +
∥∥Qn∥∥2

2

)

≤ Ch4
∫ tn

0
‖Qt‖2

3 dt + C�t2
∫ tn

0
‖Qtt‖2 dt,

which is

∥∥θn∥∥ ≤ Ch2
(∫ tn

0
‖Qt‖2

3 dt
) 1

2
+ �t

(∫ tn

0
‖Qtt‖2 dt

) 1
2

. (30)
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Combining (10) with the triangle inequality, we obtain the desired result (21).
The following proves |Qj

h|1,∞ ≤ C0, j = 0, 1, . . . , N .
Assume C0 = 1 + sup[0,T] |RhQ|1,∞, actually, when t = 0, Q0

h = RhQ0 = 0, obviously

∣∣Q0
h
∣∣
1,∞ ≤ sup

[0,T]
|RhQt|1,∞ < C0.

Let us assume that j = 0, 1, . . . , k – 1, |Qj
h|1,∞ ≤ C0 is established. So when �t = O(h) and

h is full,

∣∣Qj
h
∣∣
1,∞ ≤ ∣∣Qj

h – RhQj
t
∣∣
1,∞ +

∣∣RhQj∣∣
1,∞

≤ C| ln h| 1
2
∣∣Qj

h – RhQj∣∣
1,∞ +

∣∣RhQj∣∣
1,∞

≤ C0.

Next we estimate ‖|θn‖|1,h.
By letting vh = ∂tθ

j in (24), we have

(
∂tθ

j,γh∂tθ
j) + A

(
Qj; θ j,γh∂tθ

j)
=

(
∂tRhQj – Qj

t ,γh∂tθ
j) + A

(
Qj

h; Qj
h,γh∂tθ

j) – A
(
Qj; Qj

h,γh∂tθ
j)

+
(∇ · (F

(
Qj

h
)

– F
(
Qj)),γh∂tθ

j). (31)

The left end item is obtained by Lemma 1

(
∂tθ

j,γh∂tθ
j) =

∥∥∣∣∂tθ
j∥∥∣∣2

0,

A
(
Qj; θ j,γh∂tθ

j) =
1

2�t
[
A

(
Qj; θ j + θ j–1,γh

(
θ j – θ j–1))

+ A
(
Qj; θ j – θ j–1,γh

(
θ j – θ j–1))]

≥ 1
2�t

A
(
Qj; θ j + θ j–1,γh

(
θ j – θ j–1))

=
1

2�t
[
A

(
Qj; θ j,γhθ

j) – A
(
Qj; θ j–1,γhθ

j–1)]

–
1
2
[
A

(
Qj; ∂tθ

j,γhθ
j) – A

(
Qj; θ j,γh∂tθ

j)].

Therefore, the error equation is transformed:

∥∥∣∣∂tθ
j∥∥∣∣2

0 +
1

2�t
[
A

(
Qj; θ j,γhθ

j) – A
(
Qj; θ j–1,γhθ

j–1)]

≤ (
∂tRhQj – Qj

t ,γh∂tθ
j) + A

(
Qj

h; Qj
h,γh∂tθ

j) – A
(
Qj; Qj

h,γh∂tθ
j)

+
(∇ · (F

(
Qj

h
)

– F
(
Qj)),γh∂tθ

j)

+
1
2
[
A

(
Qj; ∂tθ

j,γhθ
j) – A

(
Qj; θ j,γh∂tθ

j)]

= J1 + J2 + J3 + J4. (32)
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Let ξ j = ∂tRhQ(tj) – Qt(tj), similar to the previous estimates

|J1| ≤ C
∥∥∣∣ξ j∥∥∣∣2

0 +
1
4
∥∥∣∣∂tθ

j∥∥∣∣2
0,

|J2| ≤ C
∣∣Qj

h
∣∣
1,∞

(∥∥Q
(
tj) – Qj

h
∥∥ + h

∥∥∣∣ρ j∥∥∣∣
1,h + h

∥∥∣∣θ j∥∥∣∣
1,h

)∥∥∣∣∂tθ
j∥∥∣∣

1,h

≤ C
∣∣Qj

h
∣∣
1,∞

(∥∥ρ j∥∥ +
∥∥θ j∥∥ + h

∥∥∣∣ρ j∥∥∣∣
1,h + h

∥∥∣∣θ j∥∥∣∣
1,h

)
Ch–1∥∥∂tθ

j∥∥
≤ Ch–2∥∥ρ j∥∥2 + Ch–2∥∥θ j∥∥2 + C

∥∥∣∣ρ j∥∥∣∣2
1,h + C

∥∥∣∣θ j∥∥∣∣2
1,h +

1
4
∥∥∣∣∂tθ

j∥∥∣∣2
0,

|J3| ≤ C
∥∥Q

(
tj) – Qj

h
∥∥2 +

1
4
∥∥∣∣∂tθ

j∥∥∣∣2
0.

For J4, using Lemma 5, the ε inequality and the boundedness of D(Qh), we get

|J4| ≤ Ch
∥∥∣∣∂tθ

j∥∥∣∣
1,h

∥∥∣∣θ j∥∥∣∣
1,h ≤ C

∥∥∂tθ
j∥∥∥∥∣∣θ j∥∥∣∣

1,h ≤ C
∥∥∣∣θ j∥∥∣∣2

1,h +
1
4
∥∥∣∣∂tθ

j∥∥∣∣2
0.

In summary,

A
(
Qj; θ j,γhθ

j) – A
(
Qj; θ j–1,γhθ

j–1)
≤ C�t

∥∥∣∣ξ j∥∥∣∣2
0 + C�t

∥∥∣∣θ j∥∥∣∣2
1,h + C�t

(∥∥∣∣ρ j∥∥∣∣2
1,h + h–2∥∥ρ j∥∥2 +

∥∥ρ j∥∥2). (33)

Summing over j from 1 to n at both sides of (32) and, noting that θ0 = 0, we have

β
∥∥∣∣θn∥∥∣∣2

1,h ≤ C�t
n∑

j=1

∥∥∣∣ξ j∥∥∣∣2
0 + C�t

n∑
j=1

∥∥∣∣θ j∥∥∣∣2
1,h

+ C�t
n∑

j=1

(∥∥∣∣ρ j∥∥∣∣2
1,h + h–2∥∥ρ j∥∥2 +

∥∥ρ j∥∥2).

It follows from (10) and the Gronwall lemma that

∥∥∣∣θn∥∥∣∣2
1,h + �tβ

n∑
j=1

∥∥∣∣θ j∥∥∣∣2
1,h

≤ Ch4
∫ tn

0
‖Qt‖2

3 dt + C�t2
∫ tn

0
‖Qtt‖2 dt + Ch2(∥∥Qn∥∥2

3 +
∥∥Qn∥∥2

2

)
.

So

∥∥∣∣θn∥∥∣∣
1,h ≤ Ch

(∥∥Qn∥∥
3 +

∥∥Qn∥∥
2 +

∫ tn

0
‖Qt‖2

3 dt
) 1

2
+ C�t

(∫ tn

0
‖Qtt‖2 dt

) 1
2

. (34)

Finally, the conclusions are proved by (10), (34) and the triangular inequalities. �
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Table 1 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2563 1.5192
1/4 1/8 0.0683 1.9079 0.7697 0.9809
1/8 1/32 0.0180 1.9239 0.3795 1.0202

Table 2 c = 1
40 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2139 1.5188
1/4 1/8 0.0516 2.0515 0.7759 0.9690
1/8 1/32 0.0105 2.2970 0.3628 1.0967
1/16 1/128 0.0023 2.1907 0.1724 1.0734

5 Numerical experiments
5.1 Experiment 1
First consider the following questions:

⎧⎪⎪⎨
⎪⎪⎩

ut – ∇ · ∇u = t sin x sin y, (x, y, t) ∈ [0,π ] × [0,π ] × [0, 1),

u(x, y, 0) = 0, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω .

(35)

where Ω is our solution area, T = 1, let h be the space step, t be the time step, and the
numerical solution be uh. The calculation results are shown in Table 1. We use Matlab to
calculate the numerical solution.

5.2 Experiment 2
In order to verify the correctness of the theoretical analysis results, consider the following
questions:

⎧⎪⎪⎨
⎪⎪⎩

ut – ∇ · (A(u)∇u)) + ∇ · F(u) = f (x), (x, y, t) ∈ [0, 1] × [0, 1] × [0, 1),

u(x, y, 0) = 0, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω .

(36)

Take a true solution u = t sin(pix) sin(piy), F(u) = p · K(u), p = (0, 1), K(u) = cu10. Obvi-
ously, the true solution satisfies 0 ≤ u ≤ 1, the solution interval is Ω = (0, 1) × (0, 1), and
the time interval is [0, 1]. h is the space step, �t is the time step and f is the source and sink
item. We take A(u), K(u) with different values, calculate the numerical solution uh, and
give the corresponding L2 mode error and H1 mode error and the corresponding error
order.

Take A(u) = u + 1, K(u) = cu10, the results are shown in Tables 2–4.
When we take A(u) = u + 1, K(u) = cu10, we find that: when the nonlinear property of the

nonlinear term A(u)is not strong and the nonlinear property of the nonlinear term K(u) is
strong, if the convection term is not dominant, as shown in Table 2, the error orders of L2-
mode and H1-mode obtained are approximately equal to 2 and 1, respectively, consistent
with the theoretical analysis; if the convection term is dominant, as shown in Tables 3 and
4, the discontinuous finite volume element method is far from the expected result.
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Table 3 c = 1 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2144 1.5207
1/4 1/8 0.0534 2.0054 0.7765 0.9697
1/8 1/32 0.0109 2.2925 0.3697 1.0706
1/16 1/128 0.0053 1.0403 0.1976 0.9038

Table 4 c = 2 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2156 1.5263
1/4 1/8 0.0561 1.9423 0.7822 0.9644
1/8 1/32 0.0138 2.0233 0.3983 0.9737
1/16 1/128 0.0781 0.7738

Table 5 c = 1
40 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2508 1.5153
1/4 1/8 0.0629 1.9954 0.7779 0.9619
1/8 1/32 0.0125 2.3311 0.3644 1.0941
1/16 1/128 0.0025 2.3219 0.1726 1.0781

Table 6 c = 1 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2512 1.5178
1/4 1/8 0.0654 1.9415 0.7817 0.9573
1/8 1/32 0.0130 2.3308 0.3769 1.0524
1/16 1/128 0.0079 0.7186 0.2103 0.8417

Table 7 c = 2 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2526 1.5252
1/4 1/8 0.0698 1.8556 0.7977 0.9351
1/8 1/32 0.0213 1.7124 0.4391 0.8613
1/16 1/128 0.9234 1.0149

Take A(u) = u8 + 1, K(u) = c · u10, the results are shown in Tables 5–7.
Take A(u) = u9 + 1, K(u) = c · u10, the results are shown in Tables 8–10.
When we take A(u) = u8 + 1 and A(u) = u9 + 1, K(u) = cu10, we find that: when the non-

linear property of the nonlinear term A(u) and K(u) is strong, if the convection term is
not dominant, as shown in Tables 5 and 8, the error orders of the L2-mode and H1-mode
obtained are approximately equal to 2 and 1, respectively, which are consistent with the
theoretical analysis; if the convection term is dominant, from Tables 6 and 7 and 9 and 10,
the discontinuous finite volume element method is far from the theoretical analysis.

6 Conclusion
In this paper, we mainly apply discontinuous finite volume element method to study two-
dimensional unsaturated soil water movement. Firstly, we give semi-discrete discontinu-
ous finite volume element scheme. Secondly, the convergence analysis is carried out on
the basis of the fully discrete scheme. It is proved that the L2-modulus estimation and
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Table 8 c = 1
40 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2509 1.5154
1/4 1/8 0.0651 1.9464 0.7737 0.9699
1/8 1/32 0.0138 2.2380 1.3764 1.0395
1/16 1/128 0.0099 0.4792 0.2169 0.7952

Table 9 c = 1 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2514 1.5179
1/4 1/8 0.0662 1.9251 0.7793 0.9618
1/8 1/32 0.0131 2.3372 0.3744 1.0576
1/16 1/128 0.0058 1.1754 0.2049 0.8697

Table 10 c = 2 t = 1

�t h L2 error L2 error order H1 error H1 error order

1/2 1/2 0.2527 1.5252
1/4 1/8 0.0699 1.8541 0.7998 0.9313
1/8 1/32 0.0193 1.8567 0.3919 1.0292
1/16 1/128 0.0135 0.2266 0.7903

the H1-modulus estimation of the scheme reach 2 and 1, respectively. Finally, the valid-
ity of the theoretical analysis is verified by numerical experiments. Through numerical
experiments, it is found that: when the convection term of the nonlinear problem is not
dominant, the discontinuous finite volume element method can be considered to deal with
such problems.

This paper is the research result of the 2019 Zaozhuang University Research Fund
Project “Numerical Simulation of Discontinuous Finite Volume Element Method for Un-
saturated Soil Water Flow Problem”.
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