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Abstract
This paper is dedicated to neural networks-based adaptive finite-time control design
of switched nonlinear systems in the time-varying domain. More specifically, by
employing the approximation ability of neural networks system, an integrated
adaptive controller is constructed. The main aim is to make sure the closed-loop
system in arbitrary switching signals is semi-global practical finite-time stable (SGPFS).
A backstepping design with a common Lyapunov function is proposed. Unlike some
existing control schemes with actuator failures, the key is dealing with the
time-varying fault-tolerant job for the switched system. It is also proved that all signals
in the system are bounded and the tracking error can converge in a small field of the
origin in finite time. A practical example is presented to illustrate the validity of the
theory.

Keywords: Finite-time tracking; Neural networks (NNs); Unknown actuation failures;
Switched nonlinear systems

1 Introduction
With the quick development of society, there are increasingly complex control problems
[1]. Apart from the characteristics of non-linearity [2], being time-varying and showing
uncertainty, the problems also have the characteristics of complex structure [3], complex
behavior [4] and multi-subsystem integration [5]. Thus, a switched system as a special
class of hybrid control system has been widely investigated in various fields [6], since its
first introduction by Liberzon and Daniel et al. [7]. A switched system is composed of
a set of subsystems and switched strategy, which coordinates the operation of each sub-
system [8]. There are some characteristics of the switched system, for instance, even if
all subsystems are unstable, an appropriate switched function can ensure system glob-
ally asymptotic stability [9]. Assuming subsystems are stable, under the circumstances of
the switched control strategy, is strictly consistent, and the system performance is also
improved [10]. Similarly, all the subsystems are globally exponential stable, the switched
systems are also instable [11]. In a nutshell, in order to solve the existing control problems,
a switched nonlinear system has sparked a heated discussion [12].

There are many means to make the nonlinear switched system stable. Based on the com-
mon Lyapunov function method, switched systems can be made stable under an arbitrary
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switched signal [13–16]. Using the average dwell time method, the locally exponentially
stable of the closed-loop system can be guaranteed in [17, 18]. By an adaptive backstep-
ping control method, the input-to-state stability of the system can be obtained [19, 20].
The finite-time practical control problem was developed for nonlinear switched systems
subjected to nonlinear input [21]. The control design of cascade switched systems with
uncertainties was investigated in [22]. The authors of [23] studied the control and stabi-
lization problem for normal nonlinear switched systems with unknown dynamics. Then,
by a fuzzy logical system (FLS) method a radial basis function (RBF) NNs method is used
for the analysis of the system; see [24–30]. Applying FLS to identify the unknown func-
tions, this technique can ensure all switched signals are bounded [26]. A switched system
has been widely applied in substation switching, traffic control and electromechanical in-
tegration in recent years, which is the driving force for this paper.

Most control schemes are focused on the faultless system, such as the results of [13–30].
As is well known, actuator faults [31–36] occur frequently in techniques. When the sys-
tem encounters actuator failure, it can damage the stability of the system and even crash
the system. Therefore, this emphasizes the importance of designing fault-tolerant control
in practical applications. Furthermore, by using the approximation ability of FLS in [37],
an adaptive controller has been created to deal with the system uncertainty and unknown
actuator failure [31]. Thus, as an effective solution, designing appropriate fault-tolerant
controllers has been widely used in fault handling. An adaptive fault-tolerant controller
was designed for large systems with actuator failures [38]. The developed control scheme
can be used to avoid the problem of “explosion of complexity” [35]. Then several output
feedback control strategies have been developed for nonlinear switched systems with ac-
tuator faults, by using filter observers, adaptive methods and a backstepping technique
[39–43]. For instance, an adaptive compensation controller was constructed by utilizing
the backstepping technique [39]. An adaptive distributed controller was proposed to en-
sure the realization of tracking error [41]. However, the fault-tolerant control strategies in
[32–43] can guarantee system performances in infinite time.

In practice, fault-tolerant control in a finite time can reduce the defect caused by the
system faults. As a consequence, when faults occur, the tracking error of the nonlinear
system also need to converge to a small domain of the origin in finite time. The practical
finite-time stable of nonlinear systems was discussed in [44]. Adopting the sliding-mode
control method, the closed-loop system reached a small domain of the sliding surface in
finite time [45]. An adaptive controller was designed to ensure the boundedness of the
closed-loop system, while ensuring the state of the system was adjusted to the origin in
finite time [46]. Considering the time-varying actuator failure in this paper, NNs are used
to approximate the unknown function, this adds more difficulty in controller design for
the switched systems. Hence, a new type adaptive NNs under time-varying actuator failure
should be proposed in finite time.

On the basis of the above analysis and by comparing with existing achievements on
adaptive control for nonlinear systems, this paper is committed to cope with the adaptive
finite-time tracking control problem of nonlinear systems under time-varying actuator
failure. The main contributions of this paper are as follows:

(1) In this paper, unknown actuator failure leads to time-varying control gains, which
is more general than those currently known. Besides, unknown functions are approxi-
mated by the RBF NNS. (2) All the signals in the closed-loop system are proved to show
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boundedness under arbitrary switching and designed controllers can guarantee stability
of switched nonlinear systems in finite time. (3) The system considered includes strict-
feedback switched nonlinear systems (when g = 1), so the system is more comprehensive
and universal.

The rest of this paper is organized as follows: Sect. 2 gives the problem formulation and
preliminaries. One introduces the RBF NNs and gets the main results in Sect. 3. Section 4
provides an example to illustrate the proposed results, and the conclusion is presented in
Sect. 5.

2 Problem formulation and preliminary knowledge
Consider a class of strict-feedback switching nonlinear systems described as

⎧
⎪⎪⎨

⎪⎪⎩

ẋj = fj,η(t)(x̄j) + gj(x̄j)xj+1, j = 1, 2, . . . , n – 1,

ẋn = fn,η(t)(x) + gn(x)uη(t),

y = x1,

(1)

where x̄j = [x1, x2, . . . , xj]T ∈ Rj, j = 1, . . . , n – 1. x = [x1, x2, . . . , xn]T ∈ Rn denotes a state vec-
tor, uη(t) ∈ R and y ∈ R denote the system input and output, respectively. η(t) : [0,∞) →
D = {1, . . . , ι} stands for a piecewise continuous switching signal, ι is the subsystem number,
η(t) = m (m ∈ D) when the mth subsystem is active, fj,m(x̄j) are unknown smooth nonlinear
functions of the mth subsystem, gj(x̄j) are the known smooth nonlinear functions.

One supposes uη(t) has encounter actuator faults. And the actuator failure model is de-
scribed as follows:

um = ρm(t, tρ)am + ub(t, tb), (2)

where ρm(t, tρ) ∈ [0, 1] stands for an actuation effectiveness, am represents the actual in-
put signal of the mth subsystem, ub(t, tb) denotes an uncontrollable time-varying additive
actuation fault, tρ reveals a time instant at which the loss of actuation effectiveness fault
occurs, and tb shows the moment when there is the additive actuation fault.

Remark 1 The scheme of control and stabilization was presented for nonlinear switched
systems without the time-varying actuation fault [22, 23]. In research on existing finite-
time control for switched nonlinear systems in [30, 47], it was supposed that time-
invariance or um = am was founded on healthy actuation. Nonetheless, unknown actu-
ator failure causes the control gain time-varying in application, and the actuation element
may encounter failure or faults, which let us consider both effectiveness and the additive
actuation fault simultaneously.

Thence, compared with the methods in [22, 23, 30, 47], in the above paper, efficiency loss
and additional actuator failure cannot occur simultaneously, the developed fault model (2)
can remedy this weakness. It means that two kinds of faults may occur at the same time,
expanding the range of application.

Next, some definitions and lemmas which are essential in our subsequent development
are given.
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Definition 1 ([48]) For the nonlinear system ℘̇ = f (℘, b), if for all ℘(t0) = ℘0, there exist
a > 0 and T(a,℘0) < ∞, such that ‖℘(t)‖ < a, for all t ≥ t0 + T , then the solution is semi-
global practical finite-time stable (SGPFS), where ℘ , b are the state vector and input vector,
respectively.

Lemma 1 ([49]) Suppose V (x) is a C1 smooth positive-definite function (defined on U ⊂
Rn) and V̇ (x) + λV α(x) is a negative semi-definite function on U ⊂ Rn for α ∈ (0, 1) and
λ ∈ R+, then there exists an area U0 ⊂ Rn such that any V (x) which starts from U0 ⊂ Rn

can reach V (x) ≡ 0 in finite time. Moreover, if Treach is the time needed to reach V (x) ≡ 0,
then

Treach ≤ V 1–α(x0)
λ(1 – α)

,

where V (x0) is the initial value of V (x).

Lemma 2 ([29]) Consider the nonlinear system ℘̇ = f (℘, u), for smooth positive-definite
function V (℘), suppose that there exist scalars λ > 0, 0 < α < 1, and 0 < η < ∞ such that

V̇ (℘) ≤ –λV α(℘) + η,

therefore, the nonlinear system ℘̇ = f (℘, u) is SGPFS.

Lemma 3 ([50]) For ∀(x, y) ∈ R2, the Young inequality is xy ≤ ap

p ‖x‖p + 1
qaq ‖y‖q, where

a > 0, p > 1, q > 1, and (p – 1)(q – 1) = 1.

Assumption 1 Unknown time-varying functions ρm(t, tρ), ub(t, tb) are bounded. That
is, there exist some positive constants ρmin and um such that ρmin < ρm(t, tρ) < 1 and
|ub(t, tb)| ≤ ūb.

Assumption 2 yd and its first nth-order time derivatives y(i)
d (i = 1, . . . , n) are smooth and

bounded.

Remark 2 As Assumption 1 claimed, the control gain ρm(t, tρ) and uncontrollable additive
actuation fault ub(t, tb) are assumed to be unknown, which makes the previous finite-time
stability criterion unavailable. For the subsequent stability analysis, one has Assumption 2,
which is used in tracking control of nonlinear systems (see [31, 40]).

3 RBF NNs and the main results
Under the following design, the RBF NNs will be utilized to approximate the unknown
function f (� ). The basis function Si(� ) are the Gaussian functions with the form

Si(� ) = exp

[

–
(� – ji)T (� – ji)


2
i

]

, i = 1, 2, . . . ,κ ,

where ji = [ji1, ji2, . . . , jiκ ]T and 
i are the centers and the widths of NNs, respectively, κ > 1
is the NNs node number.
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As mentioned in [27], for the continuous nonlinear function f (� ) defined on any com-
pact set Ω� ⊂ Rn, there exist NNs H∗T S(� ) and arbitrary ε > 0, such that

sup
�∈Ω�

∣
∣H∗T S(� ) – f (� )

∣
∣ ≤ ε,

where � ∈ Rn, H∗ ∈ Rκ are the input variable and the ideal constant weight vec-
tor, respectively. And the smooth basis vector of RBF NNs is S(� ), where S(� ) =
[S1(� ), . . . , Sκ (� )]T .

On account of the universal approximation theory of RBF NNs, for an unknown function
f (� ), it can be approximated as

f (� ) = H∗T S(� ) + ε(� ),

where ε(� ) is named the approximation error, and is supposed to be bounded by ε̄, thus
ε(� ) ≤ ε̄ with ε̄ > 0, for all � ∈ Ω� .

For the system (1), our aim is to design an adaptive controller in finite time. Next, one
defines Pi = ‖H∗

i ‖2, i = 1, 2, . . . , n, where H∗
i is the weight vector of NNs. Let Pi be esti-

mated as P̂i, the estimation error be expressed by P̃i = Pi – P̂i. Then we have the common
coordinate transformation

⎧
⎨

⎩

ξ1 = x1 – yd,

ξj = xj – αj–1, j = 2, . . . , n,
(3)

where yd , αj–1 express the reference signal and virtual controller to be designed later, re-
spectively.

Step 1: For the system (1) and ξ1 = x1 – yd , the differential of ξ1 is

ξ̇1 = g1(x̄1)x2 + f1,η(x̄1) + ε∗
1,η – ẏd

= g1(x̄1)x2 + H∗T
1,η S1(z1) + ε∗

1,η – ẏd, (4)

where S1(z1), z1 = x1 are the RBF and input vector of NNs, respectively, ε∗
1,η is the approx-

imate error.
Then, by the Lyapunov function and Lemma 3, one gets

V1 =
1
2
ξ 2

1 +
1
2

P̃2
1,

ξ1H∗T
1,η(t)S1(z1) ≤ 1

2
+

1
2
ξ 2

1 P1ST
1 (z1)S1(z1),

ξ1ε
∗
1,η ≤ 1

2
ξ 2

1 +
1
2
ε̄2

1.

From the above analysis, the first-order derivative of V1 is

V̇1 = ξ1
(
g1(x̄1)x2 + H∗T

1,η S1(z1) + ε∗
1,η – ẏd

)
– P̃1

˙̂P1

≤ ξ1

(

g1(x̄1)ξ2 + g1(x̄1)α1 +
1
2
ξ1P1ST

1 (z1)S1(z1) +
1
2
ξ1 – ẏd

)

+
1
2

+
1
2
ε̄2

1 – P̃1
˙̂P1. (5)
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We design the virtual controller α1 and adaptive law ˙̂P1 as

α1 =
1

g1(x̄1)

[

–
1
2

(1 + β1)ξ1 + ẏd – |ξ1|c –
1
2
ξ1P̂1ST

1 (z1)S1(z1)
]

, (6)

˙̂P1 =
1
2
ξ 2

1 ST
1 (z1)S1(z1) – γ1P̂1, (7)

where β1 > 0 is a constant.
Then (5) can be rewritten as

V̇1 ≤ g1(x̄1)ξ1ξ2 –
1
2
β1ξ

2
1 + γ1P̃1P̂1 +

1
2
ε̄1 +

1
2

.

By Lemma 3, one knows

γ1P̃1P̂1 ≤ –
γ1

2
P̃2

1 +
γ1

2
P2

1,

then V̇1 can be further expressed as

V̇1 ≤ –
β1

2
ξ 2

1 –
γ1

2
P̃2

1 + g1(x̄1)ξ1ξ2 +
γ1

2
P2

1 +
1
2
ε̄1 +

1
2

. (8)

Step j (j = 2, . . . , n – 1). Based on ξj = xj – αj–1, one gets

ξ̇j = gj(x̄j)xj+1 + fj,η(t)(x̄j) – α̇j–1

= gj(x̄j)xj+1 + H∗T
j,η(t)Sj(zj) + ε∗

j,η – α̇j–1, (9)

where zj = [x1, . . . , xj]T is the input vector of NNs, and

α̇j–1 =
j–1∑

i=1

[
(∂αj–1)/∂αj

]
(fi,η + gixi+1) +

j–1∑

i=0

[(
∂y(i)

d
)]

y(i+1)
d

+
j–1∑

i=1

[
(∂αj–1)/∂P̂i

] ˙̂Pi.

Applying Lemma 3 again, one has

Vj = Vj–1 +
1
2
ξ 2

j +
1
2

P̃2
j ,

ξjH∗T
j,η Sj(zj) ≤ 1

2
+

1
2
ξ 2

j PjST
j (zj)Sj(zj),

ξjε
∗
j,η ≤ 1

2
ξ 2

j +
1
2
ε̄2

j .

Adopting a similar procedure to Step 1, the time derivative of Vj is

V̇j = V̇j–1 + ξj
(
gj(x̄j)xj+1 + H∗T

j,η Sj(zj) + ε∗
j,η – α̇j–1

)
– P̃j

˙̂Pj

≤ –
j–1∑

i=1

βi

2
ξ 2

i –
j–1∑

i=1

γi

2
P̃2

i +
j–1∑

i=1

γi

2
P2

i + ξj

(

gj(x̄j)ξj+1 + gj(x̄j)αj

+
1
2
ξjPjST

j (zj)Sj(zj) +
1
2
ξj – α̇j–1 + ξj–1

)

+
j
2

+
j∑

i=1

1
2
ε̄2

j – P̃j
˙̂Pj. (10)
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The virtual controller and the adaptive law are designed thus:

αj =
1

gj(x̄j)

(

–
1
2

(1 + βj)ξj + α̇j–1 – ξj–1 – |ξj|c –
1
2
ξjP̂jST

j (zj)Sj(zj)
)

, (11)

˙̂Pj =
1
2
ξ 2

j ST
j (zj)Sj(zj) – γjP̂j. (12)

Consider the following fact:

γjP̃jP̂j = –
γj

2
P̃2

j –
γj

2
P̂2 +

γj

2
P2

1 ≤ –
γj

2
P̃2

j +
γj

2
P2

1.

Then (10) can be replaced by

V̇j ≤ –
j∑

i=1

βi

2
ξ 2

i –
j∑

i=1

γi

2
P̃2

i + ξjξj+1 +
j
2

+
j∑

i=1

γi

2
P2

i +
j∑

i=1

1
2
ε̄2

i . (13)

Step n: By Lemma 3, one obtains

Vn = Vn–1 +
1
2
ξ 2

n +
1
2

P̃2
n +

ι∑

b=1

ũ2
b,

ξnH∗T
n,ηSn(zn) ≤ 1

2
+

1
2
ξ 2

n PnST
n (zn)Sn(zn),

ξnε
∗
n,η ≤ 1

2
ξ 2

n +
1
2
ε̄2

n.

By (13), one knows

V̇n–1 ≤ –
n–1∑

i=1

βi

2
ξ 2

i –
n–1∑

i=1

γi

2
P̃2

i +
n – 1

2
+ ξn–1ξn +

n–1∑

i=1

γi

2
P2

i +
n–1∑

i=1

1
2
ε̄2

i . (14)

Performing in the same way as in Step j, from the above analysis, the time derivative of
Vn is

V̇n = V̇n–1 + ξn
(
gn(x)ρη(t, tρ)aη + gn(x)ub(t, tb) + H∗T

n,ηSn(zn) + ε∗
n,η

– α̇n–1
)

– P̃n
˙̂Pn –

ι∑

b=1

ũb ˙̂ub

≤ –
n–1∑

i=1

βi

2
ξ 2

i –
n–1∑

i=1

γi

2
P̃2

i +
n–1∑

i=1

γi

2
P2

i + ξn

(

gn(x)ρη(t, tρ)aη

+ gn(x)ub(t, tb) +
1
2
ξnPnST

n (zn)Sn(zn) +
1
2
ξn – α̇n–1 + ξn–1

)

– P̃n
˙̂Pn –

ι∑

b=1

ũb ˙̂ub +
n
2

+
n∑

i=1

1
2
ε̄2

i . (15)

The actual fault-tolerant controller and adaptive laws are developed as

am =
1

gn(x)ρm(t, tρ)

(

–
1
2

(1 + βn)ξn + α̇n–1 – ξn–1 –
1
2
ξnP̂nST

n (zn)Sn(zn) – ûb

)

, (16)
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˙̂Pn = –γnP̂n +
1
2
ξ 2

n ST
n (zn)Sn(zn), (17)

˙̂ub = –λbûb + ξn. (18)

Then, by putting (16)–(18) into (15), one has

V̇n ≤ –
n–1∑

i=1

βi

2
ξ 2

i –
n–1∑

i=1

γi

2
P̃2

i +
n–1∑

i=1

γi

2
P2

i + ξn(ub – ūb) –
1
2
βnξ

2
n + γnP̃nP̂n

+
ι∑

b=1

λbũbûb +
n
2

+
n∑

i=1

1
2
ε̄2

i . (19)

From (19) and Lemma 3, one obtains

γnP̃nP̂n ≤ –
γn

2
P̃n +

γn

2
P2

n,
ι∑

b=1

λbũbûb ≤
ι∑

b=1

λb

2
(
–ũ2

b + ū2
b
)
,

ξnub ≤ 1
2
ξ 2

n +
1
2

ūb.

Then one gets

V̇n ≤ –
n–1∑

i=1

βi

2
ξ 2

i –
1
2

(βn – 1)ξ 2
n –

n∑

i=1

γi

2
P̃2

i –
ι∑

b=1

λb

2
ũ2

b +
n∑

i=1

γi

2
P2

i +
n
2

+
n∑

i=1

1
2
ε̄2

i +
ι∑

b=1

λb

2
ū2

b +
1
2

ū2
b. (20)

Hitherto, one gets the following theorem to summarize the main result of this paper.

Theorem 1 For the switched nonlinear strict-feedback system (1) affected by actuator fail-
ure (2), RBF NNs are developed to approximate the nonlinear system, the designed virtual
controllers (11), the subsystems controllers (16), and the adaptive laws (17), it is guaranteed
that all the signals in a closed-loop system are bounded and SGPFS, i.e., the output y can
track the given signal yd in finite-time.

Proof Consider Lyapunov function as follows:

V̇ = Vn =
n∑

i=1

1
2
ξ 2

i +
n∑

i=1

1
2

P̃2
n +

ι∑

b=1

ũ2
b. (21)

Together with (20), if βn > 1, then

V̇ ≤ –aV + d, (22)

where

a = min{βi,βn – 1,γj,λb, i = 1, . . . , n – 1, j = 1, . . . , n, b ∈ ι},

d =
n∑

i=1

γi

2
P2

i +
n
2

+
n∑

i=1

1
2
ε̄2

i +
ι∑

b=1

λb

2
ū2

b +
1
2

ū2
b.
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For (22), the integral of inequality from 0 to t, the following inequality can be obtained:

V (t) ≤ e–atV (0) +
d
a

. (23)

From (21) and (23), one has ξi, P̃i, i = 1, . . . , n and ũb, b ∈ ι are bounded for initial con-
ditions. Moreover, based on P̃i = Pi – P̂i, thus P̂i is bounded because of the boundedness
of Pi. Similarly, ûb is also bounded. Therefore, all the signals in the closed-loop system are
bounded under arbitrary switching signals.

Next, denote |P̃i| ≤ PiM and |ũb| ≤ ubM .
Step 1: In this section, from the Lyapunov function

Vξ1 =
1
2
ξ 2

1 . (24)

By (6), one has

V̇ξ1 ≤ –
1
2
β1ξ

2
1 +

1
2
ξ 2

1 P̃1HT
1 (z1)H1(z1) – ξ1|ξ1|c + ξ1ξ2 +

1
2

+
1
2
ε̄1

≤ –
1
2

(β1 – P1M)ξ 2
1 – |ξ1|c+1 + ξ1ξ2 +

1
2

+
1
2
ε̄1. (25)

Step j (j = 2, . . . , n – 1). We use the Lyapunov function

Vξ j = Vξ ,j–1 +
1
2
ξ 2

j . (26)

By (11), the first-order derivative of Vξ j is

V̇ξ j ≤ –
j–1∑

i=1

1
2

(βi – PiM)ξ 2
i –

j–1∑

i=1

|ξi|(c+1) –
1
2
βjξ

2
j +

1
2
ξ 2

j P̃jHT
j (zj)Hj(zj)

– ξj|ξj|c + ξjξj+1 +
j
2

+
j∑

i=1

1
2
ε̄2

i

≤ –
j∑

i=1

1
2

(βi – PiM)ξ 2
i –

j∑

i=1

|ξi|(c+1) + ξjξj+1 +
j
2

+
j∑

i=1

1
2
ε̄2

i . (27)

Step n: The Lyapunov function is as follows:

Vξn = Vξ ,n–1 +
1
2
ξ 2

n , (28)

by Lemma 3, one knows

ξnub ≤ 1
2
ξ 2

n +
1
2

ū2
b, ξnũb ≤ 1

2
ξ 2

n +
1
2

u2
bM.

Substitute (16) into the derivative of Vξn, and define βi > PiM , i = 1, . . . , n–1, βn > PnM +2,
then

V̇ξn ≤ –
n–1∑

i=1

1
2

(βi – PiM)ξ 2
i –

n–1∑

i=1

|ξi|c+1 –
1
2
βnξ

2
n +

1
2
ξ 2

n P̃nHT
n (zn)Hn(zn)
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– ξn|ξn|c + ξn(ub – ūb + ũb)

≤ –
n–1∑

i=1

1
2

(βi – PiM)ξ 2
i –

n∑

i=1

|ξi|c+1 +
1
2

ū2
b +

1
2

u2
bM

–
1
2

(βn – PnM – 2)ξ 2
n

≤ –
n∑

i=1

|ξi|c+1 +
1
2

ū2
b +

1
2

u2
bM

≤ –V c̄
ξn + d̄, (29)

where c̄ = [(c + 1)/2], d̄ = 1
2 ū2

b + 1
2 u2

bM .
Thus choosing the following common Lyapunov function:

Vξ = Vξn =
n∑

i=1

1
2
ξ 2

i , (30)

from the above analysis procedure, one obtains

V̇ξ ≤ –V c̄
ξ + d̄, (31)

by Lemma 2, ξi (i = 1, . . . , n) are SGPFS, i.e., the output tracks the reference signal and y(t)
tracks the given signal to a small compact set in finite time.

Then by Lemma 1, the convergence time satisfies

Treach ≤ V 1–c̄
ξ (0)

ν0(1 – c̄)
, ν ∈ (0, 1],

where Vξ (0) is the initial value of Vξ .
This completes the proof. �

Remark 3 The actuator faults which contain both the loss of effectiveness and the additive
faults can be written as um = ρm(t, tρ)am + ub(t, tb), the parameters ρm(t, tρ), ub(t, tb) are
time-varying. In order to ensure the stability of the closed-loop systems, one chooses the
parameters satisfying βn > 1, 0 < c < 1. The tracking error can converge in finite time, we
claim, the parameters are chosen as βi > PiM , i = 1, . . . , n – 1 and βn > PnM + 2, where the
other parameters are chosen to be positive.

4 Numerical example
A continuous stirred tank reactor (CSTR) with two modes feed stream in [51] is the ex-
ample to verify our results, which is modeled as a switched nonlinear system,

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = g1(x̄1)x2 + f1,η(x̄1),

ẋ2 = g2(x̄2)u + f1,η(x̄2),

y = x1,

(32)
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Figure 1 Switching signal

Figure 2 Tracking performance of example

where f1,1 = f2,1 = (5/6)x2 – x2, f1,2 = –0.02x1 – (5/6)x2, f2,2 = –0.01x1 – (5/6)x2, g1(x̄1) =
g1(x̄2) = 1, η = 1, 2. One chooses the reference signal yd as

yd = 0.25 sin(2t),

and the actuator fault um as

um =

⎧
⎨

⎩

am, t < 10,

ρm(t, tρ)am + ub(t, tb), t ≥ 10,

where m = {1, 2}, ρ1 = 0.4 + 0.1 exp(–0.2t), ρ2 = 0.6 + 0.1 sin(–t), ub(t, tb) = 0.5 sin(t), and
a1, a2 represent the input signal.
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Figure 3 Responses control input u1 of example

Figure 4 Responses of the adaptive laws P̂1 of example

From Theorem 1, the virtual controller, actual controllers and the adaptive laws are given
as

α1 = –
1
2

(1 + β1)ξ1 + ẏd – |ξ1|c –
1
2
ξ1P̂1HT

1 (z1)H1(z1),

am =
1

ρm

[

–
1
2

(1 + β2)ξ2 + α̇1 – |ξ2|c – ξ1 – ûb(t, tb) –
1
2
ξ2P̂2ST

2 (z2)S2(z2)
]

,

˙̂P1 = –γ1P̂1 +
1
2
ξ 2

1 HT
1 (z1)H1(z1),

˙̂P2 = –γ2P̂2 +
1
2
ξ 2

2 HT
2 (z2)H2(z2),

˙̂ub(t, tb) = –λûb(t, tb) + ξ2,

where ξ1 = x1 – yd , ξ2 = x2 – α1, β1 = 1.25, β2 = 3.75, c = 0.45, γ1 = 0.3, γ2 = 0.6, λ = 0.2.
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Figure 5 Responses of control input u2 of example

Figure 6 Responses of the adaptive laws P̂2 of Example

Further, z1 = x1, z2 = [x1, x2]T are input vectors of RBF NNs. The centers j1, j2 are
spaced on [–2, 2] simultaneously, the widths are defined as 
1 = 
2 = 2, the initial values of
the system states are x1(0) = 0.01, x2(0) = 0.2, respectively, and ξ̂1(0) = 0.01, ξ̂2(0) = 0.02,
û1(0) = û2(0) = 0.04 denote the initial values of the actuator fault.

By the above analysis, Fig. 1 expresses the arbitrarily chosen switching signal. From
Fig. 2, a good tracking performance is obtained. The subsystem controllers u1, u2 are given
in Figs. 3 and 5. Figures 4 and 6 correspond to the adaptive law. From the above figures,
it is shown that all the signals in the closed-loop system are bounded. Then, in order to
illustrate the effectiveness of our method, with the other parameters unchanged, we verify
whether the system has good tracking performance when the reference signal is selected
as yd = 0.1(sin(1.5t) + sin(t)). From Fig. 7, one can see the tracking performance is nice.
Thus our method is effective.



Liu et al. Advances in Difference Equations        (2019) 2019:482 Page 14 of 16

Figure 7 Another compared tracking performance of example

5 Conclusion
This paper deals with the problem of adaptive finite-time stability for a class of strict-
feedback switched nonlinear systems. One takes the backstepping technique and the RBF
NNs method, an adaptive finite-time control strategy is formed. In this paper, the actua-
tor failure model is time-varying, and the control scheme can ensure system performances
SGPFS in finite-time. Although some progresses have been made in this article, the estab-
lished adaptive control result is based on a backstepping method. Recently, we notice that
there are many other approaches to obtain a controller for nonlinear switched systems,
such as stated in [22, 23]; an adaptive control algorithm or a robust sliding-mode control
strategy is also an effective tool to model the nonlinearities. In future, we will also make
more efforts to obtain something unique in using RBF NNs, such as nonlinear system with
time-varying state constraints.
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