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Abstract
A nonlinear degenerate parabolic equation related to the p(x)-Laplacian

ut = div(b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u)) +

N
∑

i=1

∂bi(u)
∂xi

+ c(x, t) – b0a(u)

is considered in this paper, where b(x)|x∈Ω > 0, b(x)|x∈∂Ω = 0, a(s)≥ 0 is a strictly

increasing function with a(0) = 0, c(x, t) ≥ 0 and b0 > 0. If
∫

Ω b(x)–
1

p––1 dx ≤ c and
|∑N

i=1 b
′
i (s)| ≤ ca′(s), then the solutions of the initial-boundary value problem is

well-posedness. When
∫

Ω b(x)–(p(x)–1) dx <∞, without the boundary value condition,
the stability of weak solutions can be proved.
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1 Introduction
The evolutionary p(x)-Laplacian equation

ut = div
(|∇u|p(x)–2∇u

)

, (x, t) ∈ QT = Ω × (0, T), (1.1)

with the initial value

u|t=0 = u0(x), x ∈ Ω , (1.2)

and the homogeneous boundary value

u|ΓT = 0, (x, t) ∈ ΓT = ∂Ω × (0, T), (1.3)

has been subject of a profound study from the beginning of this century [1–9], where
Ω ⊂ R

N is a bounded domain with smooth boundary ∂Ω , p(x) is a measurable function.
In 2013, Guo–Gao [10] and Gao–Gao [11] had considered the more general equation

ut = div
((|u|σ (x,t) + d0

)|∇u|p(x,t)–2∇u
)

+ c(x, t) – b0u(x, t), (1.4)
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where σ (x, t) > 1, d0 > 0, c(x, t) ≥ 0 and b0 > 0. This model may describe some properties
of image restoration in space and time, the functions u(x, t), p(x, t) represent a recovering
image and its observed noisy image, respectively. In [12], the authors obtained the exis-
tence and uniqueness of weak solutions with the assumption that the exponent σ (x, t) ≡ 0,
1 < p– < p+ < 2. In [10], when σ (x, t) ≡ 0 and b0 = 0, the authors applied the method of
parabolic regularization and Galerkin’s method to prove the existence of weak solutions.
In [11], the authors generalized the results obtained in [10], moreover, they proved the ex-
istence and uniqueness of weak solution not only in the case when σ (x, t) ∈ (2, 2p+

p+–1 ), but
also in the case when σ (x, t) ∈ (1, 2), 1 < p– < p+ ≤ 1 +

√
2. They applied energy estimates

and Gronwall’s inequality to obtain the extinction of solutions when the exponents p– and
p+ belong to different intervals.

If σ (x, t) = σ and p(x, t) = p are constants, Eq. (1.3) can be transformed to

ut = div

(∣
∣
∣
∣
∇ um

m

∣
∣
∣
∣

p–2

∇ um

m

)

+ d0 div
(|∇u|p–2∇u

)

+ c(x, t) – mb0
um

m
, (x, t) ∈ QT , (1.5)

where σ = (m – 1)(p – 1) or m = 1 + σ
p–1 . For this equation, whether d0 = 0 or d0 > 0, it is

well-known that the well-posedness problem of weak solutions had been solved perfectly.
However, since Eq. (1.4) is with nonstandard growth, it cannot been transformed to an-
other equation which has a similar type as Eq. (1.5). In fact, both in the uniformly estimates
related to the existence and in the proof of the uniqueness of weak solution, the condition
d0 > 0 acts as a very important role in [10–12]. In other words, if d0 = 0, how to obtain
the well-posedness of weak solutions is an important subject deserving to be pursued in
further research. In this paper, we will study a more general equation than Eq. (1.5),

ut = div
(

b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u)

)

+
N

∑

i=1

∂bi(u)
∂xi

+ c(x, t) – b0a(u), (x, t) ∈ QT , (1.6)

where 1 < p(x) ∈ C1(Ω), a(s) ≥ 0, a(0) = 0 and a(s) is a strictly increasing function, b0 > 0
is a constant. Meanwhile, b(x) ∈ C1(Ω) satisfies

b(x) > 0, x ∈ Ω , b(x) = 0, x ∈ ∂Ω , (1.7)

and bi(s) ∈ C1(R). We set

p+ = max
Ω̄

p(x), 1 < p– = min
Ω̄

p(x),

as usual.
A special case of Eq. (1.6) is a(u) = um, the equation reflects a polytropic filtration pro-

cess if p(x) = p is a constant. In this case, a lot of important results about the existence,
the uniqueness, the Harnack inequality, the regularity, the extinction and the large time
behavior of weak solutions have been obtained by many scholars; one can refer to [13–15]
and the references therein. Also, it is worth noting that the constant b0 > 0 is essential,
if b0 < 0, the weak solutions may blow up in a finite time [16–18]. While p(x) is a C1(Ω)
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function, only a few references could be found (for example, [19]). Moreover, since we only
require that a(s) is strictly increasing, it can be chosen as a(s) = sm(x) with m(x) > 0, and it
even can be chosen as

a(s) =

⎧

⎨

⎩

sm1 , if 0 ≤ s < 1,

sm2 , if s ≥ 1,
(1.8)

with m1 �= m2. Such a form is more appropriate to represent the model of image processing.
In this paper, we will use the parabolically regularized method to prove the existence

of the weak solution, and we use some ideas of [7, 20–22] to prove the stability of weak
solutions.

2 The definitions of weak solution and the main results
For completeness of the paper, we review the basic functional spaces firstly. For every fixed
t ∈ [0, T], we define

Vt(Ω) =
{

u(x) : u(x) ∈ L2(Ω) ∩ W 1,1
0 (Ω),

∣
∣∇u(x)

∣
∣
p(x) ∈ L1(Ω)

}

,

‖u‖Vt (Ω) = ‖u‖2,Ω + ‖∇u‖p(x),Ω ,

and define V ′
t (Ω) to be its dual space. At the same time, we denote the Banach space

⎧

⎨

⎩

W(QT ) = {u : [0, T] → Vt(Ω)|u ∈ L2(QT ), |∇u|p(x) ∈ L1(QT ), u = 0 on ΓT },
‖u‖W(QT ) = ‖∇u‖p(x),QT + ‖u‖2,QT ,

and define W′(QT ) to be its dual space.

w ∈ W′(QT ) ⇐⇒
⎧

⎨

⎩

w = w0 +
∑n

i=1 Diwi, w0 ∈ L2(QT ), wi ∈ Lp′(x,t)(QT ),

∀φ ∈ W(QT ), � w,φ �=
∫∫

QT
(w0φ +

∑

i wiDiφ) dx dt.

One can refer to [19, 20] for more information.

Definition 2.1 If 0 ≤ u(x, t) ∈ L∞(QT ) satisfies

ut ∈ W′(QT ), b(x)
∣
∣∇a(u)

∣
∣
p(x) ∈ L1(QT ), (2.1)

and, for any function ϕ ∈ L∞(0, T ; W 1,p(x)
0 (Ω)) ∩ W(QT ),

∫∫

QT

[

utϕ + b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) · ∇ϕ +

N
∑

i=1

bi(u)ϕxi

]

dx dt

=
∫∫

QT

[

c(x, t) – b0a(u)
]

ϕ(x, t) dx dt, (2.2)

then u(x, t) is said to be a weak solution of Eq. (1.6) with the initial value (1.2), provided
that

lim
t→0

∫

Ω

u(x, t)φ(x) dx =
∫

Ω

u0(x)φ(x) dx, ∀φ(x) ∈ C∞
0 (Ω). (2.3)
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Here, W 1,p(x)(Ω) is the variable exponent Sobolev space, W 1,p(x)
0 (Ω) is the closure of

C∞
0 (Ω) in W 1,p(x)(Ω), one can refer to [23–25] for the details. The following basic lemma

reflects some important characters of variable exponent Sobolev spaces [23–25].

Lemma 2.2
(i) The space (Lp(x)(Ω),‖ · ‖Lp(x)(Ω)), (W 1,p(x)(Ω),‖ · ‖W 1,p(x)(Ω)) and W 1,p(x)

0 (Ω) are
reflexive Banach spaces.

(ii) p(x)-Hölder’s inequality. Let q1(x) and q2(x) be real functions with 1
q1(x) + 1

q2(x) = 1.
Then, the conjugate space of Lq1(x)(Ω) is Lq2(x)(Ω). And for any u ∈ Lq1(x)(Ω) and
v ∈ Lq2(x)(Ω), we have

∣
∣
∣
∣

∫

Ω

uv dx
∣
∣
∣
∣
≤ 2‖u‖Lq1(x)(Ω)‖v‖Lq2(x)(Ω). (2.4)

(iii) ‖u‖Lp(x)(Ω) and
∫

Ω
|u|p(x) dx satisfy

If ‖u‖Lp(x)(Ω) = 1, then
∫

Ω

|u|p(x) dx = 1.

If ‖u‖Lp(x)(Ω) > 1, then |u|p–

Lp(x)(Ω) ≤
∫

Ω

|u|p(x) dx ≤ |u|p+

Lp(x)(Ω).

If ‖u‖Lp(x)(Ω) < 1, then |u|p+

Lp(x)(Ω) ≤
∫

Ω

|u|p(x) dx ≤ |u|p–

Lp(x)(Ω).

(iv) If the exponent p(x) is required to satisfy a logarithmic Hölder continuity condition,
then

W 1,p(x)
0 (Ω) = W̊ 1,p(x)(Ω). (2.5)

The main results are the following theorems.

Theorem 2.3 If 0 ≤ u0(x) ∈ L∞(Ω) satisfies

b(x)|∇u0|p(x) ∈ L1(Ω), (2.6)

then Eq. (1.6) with initial value (1.2) has a weak solution u(x, t). If

∫

Ω

b(x)– 1
p––1 dx < ∞, (2.7)

then Eq. (1.6) with the initial-boundary values (1.2)–(1.3) has a solution u. Moreover, let
u(x, t) and v(x, t) be two weak solutions of Eq. (1.6) with

u(x, t) = v(x, t) = 0, (x, t) ∈ ΓT ,

and with the initial values u(x, 0) and v(x, 0), respectively, bi(s) and a(s) satisfy

∣
∣
∣
∣
∣

N
∑

i=1

bi(s1) – bi(s2)
a(s1) – a(s2)

∣
∣
∣
∣
∣
≤ c, i = 1, 2, . . . , N . (2.8)
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Then
∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx. (2.9)

In fact, only if b(x) satisfies (1.7) and the condition (2.8) is true, even without boundary
value condition (1.3), by a similar method of [26], we can show that

∫

Ω

b(x)α
∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

Ω

b(x)α
∣
∣u0(x) – v0(x)

∣
∣dx, (2.10)

where α ≥ 2 is a constant. This inequality implies that uniqueness of weak solution to
Eq. (1.6) with the initial value (1.2) is always true only if (2.8) is true, no matter whether
there is the condition (2.7) or not.

Based on this fact, we are able to improve the stability theorem to the case without
boundary value condition (1.3).

Theorem 2.4 Let u(x, t) and v(x, t) be two weak solutions of Eq. (1.6) with the initial values
u(x, 0) and v(x, 0), respectively, the variable exponent p(x) satisfies the logarithmic Hölder
continuity condition. If b(x) satisfies (1.7), (2.8) and

∫

Ω

b(x)1–p(x) dx < ∞, (2.11)

then the stability (2.9) is true.

If a(s) = s and 1 < p– ≤ p+ < 2 and

∫

Ω

b(x)–1 dx < ∞, (2.12)

a similar result as Theorem 2.4 had been obtained in [22]. Clearly, (2.11) has a broader
sense than (2.12). Comparing Theorem 2.3 with Theorem 2.4, the essential improvements
lies in that, if b(x) only satisfies (2.11), the weak solutions u may lack the regularity to be
defined the trace on the boundary generally. Thus, we cannot impose the usual boundary
value condition (1.3), except for the case p(x) ≡ 2 (in which (2.11) is equivalent to (2.7)).
Theorem 2.4 tells us that the stability of the weak solutions is controlled by the initial value
completely, only if (2.11) is true.

At the end of this section, comparing with our previous work [21, 22] and [26] etc., we
give a comprehensive overview of this paper.

It is well known that there are essential differences between the non-Newtonian fluid
equation

ut = div
(|∇u|p–2∇u

)

, (x, t) ∈ Ω × (0, T), (2.13)

and the polytropic diffusion equation

ut = div
(∣
∣∇um∣

∣
p–2∇um)

, (x, t) ∈ Ω × (0, T). (2.14)
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Inspired by this fact, roughly speaking, our original jumping-off point is to show the es-
sential differences between the electrorheological fluid equation

ut = div
(

a(x)|∇u|p(x)–2∇u
)

+ f (x, t, u,∇u), (x, t) ∈ Ω × (0, T), (2.15)

and the polytropic electrorheological fluid equation

ut = div
(

a(x)
∣
∣∇um∣

∣
p(x)–2∇um)

+ f (x, t, u,∇u), (x, t) ∈ Ω × (0, T). (2.16)

The well-posedness of solutions to Eq. (2.15) was considered in [21, 22] etc.: that the de-
generacy of a(x) on the boundary ∂Ω can take place of the boundary value condition (1.3)
had been shown in some special cases. But very few papers on the well-posedness of so-
lutions to Eq. (2.16) can be found. In this paper, we directly study a much more general
equation,

ut = div
(

b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u)

)

+
N

∑

i=1

∂bi(u)
∂xi

+ c(x, t) – b0a(u), (x, t) ∈ QT , (2.17)

a(s) ≥ 0, a(0) = 0 and a(s) is a strictly increasing function. As we have said before, Eq. (2.17)
admits a(s) satisfying (1.8) and has a wider applications.

In addition, condition (2.8) implies that equation (2.17) cannot be of the hyperbolic char-
acteristic, usually, such a restriction has demonstrated a strong preference for being un-
natural before. However, a model of strong degenerate parabolic equation arises in math-
ematical finance, which indicates that condition (2.8) is important and indispensable in
the decision theory under the risk [27]. We have given more details in our previous work
[28], so it is not appropriate to repeat the details here.

3 The proof of Theorem 2.3
Lemma 3.1 Let q ≥ 1. If uε ∈ L∞(0, T ; L2(Ω)) ∩ W(QT ), ‖uεt‖W′(QT ) ≤ c,
‖∇(|uε|q–1uε)‖p–,QT ≤ c, then there is a subsequence of {uε} which shows relatively com-
pactness in Ls(QT ) with s ∈ (1,∞).

This lemma can be found in [19].
Since a(s) is a strictly increasing function, by a limit process, we can assume that a(s) is

a C1 function in the proof. Consider the following regularized system:

uεt = div
((

b(x) + ε
)(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2 ∇a(uε)

)

+
N

∑

i=1

∂bi(uε)
∂xi

+ c(x, t) – b0a(u), (x, t) ∈ QT , (3.1)

uε(x, t) = ε, (x, t) ∈ ∂Ω × (0, T), (3.2)

uε(x, 0) = u0ε(x) + ε, x ∈ Ω , (3.3)

where uε,0 ∈ C∞
0 (Ω) and (b(x) + ε)|∇a(uε,0)|p(x) ∈ L1(Ω) are uniformly bounded, and uε,0

converges to u0 in W 1,p(x)
0 (Ω). Since we assume that a(s) is a strictly increasing function, by
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the monotone convergence method, according to the classical parabolic equation theory
[29, 30], there is a unique classical solution uε of the initial-boundary value problem (3.1)–
(3.3), and

‖uε‖L∞(QT ) ≤ c. (3.4)

Throughout this paper, the constants c may be different from one place to another.

Theorem 3.2 There is a weak solution u of Eq. (1.6) with the initial value (1.2) in the sense
of Definition 2.1.

Proof For any t ∈ [0, T), we multiply (3.1) by a(uε) – a(ε) and integrate it over Qt = Ω ×
[0, t). By (3.3), (3.4) and

∫∫

Qt

[

a(uε) – a(ε)
]∂bi(uε)

∂xi
dx dt = –

∫∫

Qt

∂uε

∂xi
a′(uε)bi(uε) dx dt

= –
∫∫

Qt

∂

∂xi

∫ uε

ε

bi(s)a′(s) ds dx dt

= 0, i = 1, 2, . . . , N , (3.5)

we have
∫

Ω

A(uε) dx +
∫∫

Qt

(

b(x) + ε
)(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2

∣
∣∇a(uε)

∣
∣
2 dx dt

≤
∫

Ω

A
(

u0(x)
)

dx + a(ε)
∫

Ω

∣
∣u(x, t) – u0(x)

∣
∣dx + c

≤ c, (3.6)

where A′(s) = a(s).
Since b(x) > 0 in Ω , for any Ω1 ⊂⊂ Ω , (3.6) yields

∫ T

0

∫

Ω1

(

b(x) + ε
)(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2

∣
∣∇a(uε)

∣
∣
2 dx dt ≤ c (3.7)

and

∫ T

0

∫

Ω1

∣
∣∇a(uε)

∣
∣dx dt ≤ c

(∫ T

0

∫

Ω1

∣
∣∇a(uε)

∣
∣
p–

dx dt
) 1

p–

≤ c(Ω1). (3.8)

Now, for any v ∈ W(QT ), ‖v‖W (QT ) = 1,

〈uεt , v〉

= –
∫∫

QT

b(x)
(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε)∇v dx dt –

N
∑

i=1

∫∫

QT

∂v
∂xi

bi(uε) dx dt

+
∫∫

QT

[

c(x, t) – b0a(uε)(x, t)
]

v dx dt.
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By the Young inequality

∫∫

QT

b(x)
(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε)∇v dx dt

≤ c
∫∫

QT

b(x)
[(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2

p(x)
p(x)–1

∣
∣∇a(uε)

∣
∣

p(x)
p(x)–1 + |∇v|p(x)]dx dt

≤ c
∫∫

QT

b(x)
[∣
∣∇a(uε)

∣
∣
p(x) + |∇v|p(x) + 1

]

dx dt

≤ c,

we easily obtain

∣
∣〈uεt , v〉∣∣ ≤ c,

which implies

∥
∥(uε)t

∥
∥

W′(QT ) ≤ c (3.9)

and

∥
∥a(uε)t

∥
∥

W′(QT ) =
∥
∥a′(uε)uεt

∥
∥

W′(QT ) ≤ c. (3.10)

Now, let Dλ = {x ∈ Ω : d(x) > λ} and d(x) = dist(x, ∂Ω) be the distance function from ∂Ω .
For any given ϕ ∈ C1

0(Ω), 0 ≤ ϕ ≤ 1, which satisfies

ϕ |D2λ
= 1, ϕ |Ω\Dλ

= 0,

then

∣
∣
〈[

ϕa(uε)
]

t , v
〉∣
∣ =

∣
∣
〈

ϕa(uε)t , v
〉∣
∣

and

∥
∥
[

ϕa(uε)
]

t

∥
∥

W′(QT ) ≤ ∥
∥a(uε)t

∥
∥

W′(QT ) ≤ c.

If we denote u1ε = a(uε), then

∥
∥(u1ε)t

∥
∥

W′(QT ) ≤ c. (3.11)

At the same time, from (3.8),

∫∫

QT

∣
∣∇[

ϕa(uε)
]∣
∣
p–

dx dt ≤ c(λ)
(

1 +
∫ T

0

∫

Ωλ

∣
∣∇a(uε)

∣
∣
p–

dx dt
)

≤ c(λ),

i.e.

∥
∥∇(|ϕu1ε)

∥
∥

p–,QT
=

∥
∥∇[|ϕa(uε)

]∥
∥

p–,QT
≤ c(λ). (3.12)
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Thus ϕu1ε shows relative compactness in Ls(QT ) with s ∈ (1,∞) by Lemma 3.1. Accord-
ingly, ϕu1ε → ϕu1 a.e. in QT and so u1ε → u1 a.e. in QT .

Since a′(s) ≥ 0 and a(s) is a strictly monotone increasing function, uε = a–1(u1ε), setting
u = a–1(u), we know that uε → u a.e. in QT .

From (3.4), there exists a function u such that

uε ⇀ ∗u, in L∞(QT ),

and

u ∈ L∞(QT ), ut ∈ W′(QT ).

From (3.6), (3.8), there is a n-dimensional vector function
−→
ζ = (ζ1, . . . , ζn) satisfying

|−→ζ | ∈ L1(0, T ; L
p(x)

p(x)–1 (Ω)
)

,

such that

(

b(x) + ε
)∣
∣∇a(uε)

∣
∣
p(x)–2∇a(uε) ⇀

−→
ζ in L1(0, T ; L

p(x)
p(x)–1 (Ω)

)

.

In what follows, we want to prove that u satisfies Eq. (1.6). At first,

∫∫

QT

[

uεtϕ +
(

b(x) + ε
)(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2 ∇a(uε) · ∇ϕ +

N
∑

i=1

bi(uε) · ϕxi

]

dx dt

=
∫∫

QT

[

c(x, t) – b0a(uε)
]

ϕ dx dt, (3.13)

for any function ϕ ∈ L∞(0, T ; W 1,p(x)
0 (Ω)) ∩ W(QT ). Since uε → u almost everywhere,

bi(uε) → bi(u) and a(uε) → a(u). Letting ε → 0 in (3.13) yields

∫∫

QT

[

∂u
∂t

ϕ + �ς · ∇ϕ +
N

∑

i=1

bi(u) · ϕxi

]

dx dt

=
∫∫

QT

[

c(x, t) – b0a(u)
]

ϕ dx dt. (3.14)

Secondly, we will prove that

∫∫

QT

b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) · ∇ϕ dx dt =

∫∫

QT

−→
ζ · ∇ϕ dx dt, (3.15)

for any function ϕ ∈ C∞
0 (QT ).

Let 0 ≤ ψ ∈ C∞
0 (QT ) and ψ = 1 in suppϕ, and let v ∈ L∞(QT ), b(x)|∇v|p(x) ∈ L1(QT ).

Then
∫∫

QT

ψ
(

b(x) + ε
)[∣

∣∇a(uε)
∣
∣
p(x)–2∇a(uε) – |∇v|p(x)–2∇v

] · (∇a(uε) – ∇v
)

dx dt

≥ 0. (3.16)
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We choose ϕ = ψa(uε) in (3.13), then

∫∫

QT

ψ
(

b(x) + ε
)(∣

∣∇a(uε)
∣
∣
2 + ε

) p(x)–2
2

∣
∣∇a(uε)

∣
∣
2 dx dt

=
∫∫

QT

ψtA(uε) dx dt –
∫∫

QT

(

b(x) + ε
)

a(uε)
(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε) · ∇ψ dx dt

–
N

∑

i=1

∫∫

QT

bi(uε)
(

a′(uε)uεxiψ + a(uε)ψxi

)

dx dt

+
∫∫

QT

[

c(x, t) – b0a(uε)
]

ψa(uε) dx dt. (3.17)

By (3.16), we can extrapolate to

∫∫

QT

ψtA(uε) dx dt –
∫∫

QT

(

b(x) + ε
)

a(uε)
(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε) · ∇ψ dx dt

–
N

∑

i=1

∫∫

QT

bi(uε)
(

a′(uε)uεxiψ + a(uε)ψxi

)

dx dt

+ ε
p–
2 c(Ω) –

∫∫

QT

(

b(x) + ε
)

ψ
∣
∣∇a(uε)

∣
∣
p(x)–2∇a(uε)∇v dx dt

–
∫∫

QT

(

b(x) + ε
)

ψ |∇v|p(x)–2∇v · ∇(

a(uε) – v
)

dx dt

+
∫∫

QT

[

c(x, t) – b0a(uε)
]

ψa(uε) dx dt

≥ 0. (3.18)

Accordingly,

∫∫

QT

ψtA(uε) dx dt –
∫∫

QT

(

b(x) + ε
)

a(uε)
(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε) · ∇ψ dx dt

–
N

∑

i=1

∫∫

QT

bi(uε)
(

a′(uε)uεxiψ + a(uε)ψxi

)

dx dt

+ ε
p–
2 c(Ω) –

∫∫

QT

(

b(x) + ε
)

ψ
∣
∣∇a(uε)

∣
∣
p(x)–2∇a(uε)∇v dx dt

–
∫∫

QT

ψb(x)|∇v|p(x)–2∇v · (∇a(uε) – ∇v
)

dx dt

– ε

∫∫

QT

ψ |∇v|p(x)–2∇v · (∇a(uε) – ∇v
)

dx dt

+
∫∫

QT

[

c(x, t) – b0a(uε)
]

ψa(uε) dx dt

≥ 0. (3.19)
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Now, since

(∣
∣∇a(uε)

∣
∣
2 + ε

) p(x)–2
2 ∇a(uε)

=
∣
∣∇a(uε)

∣
∣
p(x)–2∇a(uε) +

p(x) – 2
2

ε

∫ 1

0

(∣
∣∇a(uε)

∣
∣
2 + εs

) p(x)–4
2 ds∇a(uε),

we have

lim
ε→0

∫∫

QT

p(x) – 2
2

ε

∫ 1

0

(∣
∣∇a(uε)

∣
∣
2 + εs

) p(x)–4
2 ds∇a(uε)∇ψa(uε) dx dt = 0. (3.20)

At the same time, using the Hölder inequality

∫

Ω

b(x)|∇v|p(x)–1∣∣∇a(uε)
∣
∣dx ≤ ∥

∥b
1

s(x) |∇v|p(x)–1∥∥
Ls(x)(Ω)

∥
∥b

1
p(x)

∣
∣∇a(uε)

∣
∣
∥
∥

Lp(x)(Ω),

we have
∫∫

QT

b(x)|∇v|p(x) dx dt +
∫∫

QT

b(x)|∇v|p(x)–1∣∣∇a(uε)
∣
∣dx dt ≤ c. (3.21)

Here s(x) = p(x)
p(x)–1 .

By (3.20)–(3.21), we have

lim
ε→0

ε

∣
∣
∣
∣

∫∫

QT

ψ |∇v|p(x)–2∇v · (∇a(uε) – ∇v
)

dx dt
∣
∣
∣
∣

≤ lim
ε→0

ε sup
(x,t)∈QT

|ψ |
b(x)

∫∫

QT

b(x)|∇v|p(x)–1∣∣∇a(uε) – ∇v
∣
∣dx dt

≤ lim
ε→0

ε sup
(x,t)∈QT

|ψ |
b(x)

(∫∫

QT

b(x)|∇v|p(x) dx dt

+
∫∫

QT

b(x)|∇v|p(x)–1∣∣∇a(uε)
∣
∣dx dt

)

= 0. (3.22)

Let ε → 0. By (3.19) and (3.22), we have

∫∫

QT

ψtA(u) dx dt –
∫∫

QT

a(u)
−→
ζ · ∇ψ dx dt

–
N

∑

i=1

∫∫

QT

bi(u)
(

a′(u)uxiψ + a(u)ψxi

)

dx dt

–
∫∫

QT

ψ
−→
ζ · ∇v dx dt –

∫∫

QT

ψb(x)|∇v|p(x)–2∇v · (∇a(u) – ∇v
)

dx dt

+
∫∫

QT

[

c(x, t) – b0a(u)
]

ψa(u) dx dt

≥ 0.
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Let ϕ = ψu in (3.14). We get

∫∫

QT

ψ
−→
ζ · ∇a(u) dx dt –

∫∫

QT

a(u)ψt dx dt

+
∫∫

QT

a(u)
−→
ζ · ∇ψ dx dt

+
N

∑

i=1

∫∫

QT

bi(u)(a′(u)uxiψ + a(u)ψxi dx dt

+
∫∫

QT

[

c(x, t) – b0a(u)
]

ψa(u) dx dt

= 0.

From the above formulas, we can extrapolate to

∫∫

QT

ψ
(−→

ζ – b(x)|∇v|p(x)–2∇v
) · (∇a(u) – ∇v

)

dx dt ≥ 0. (3.23)

If we choose v = a(u) – λϕ and choose λ > 0 or λ < 0, respectively, letting λ → 0, we can
deduce

∫∫

QT

ψ
(−→

ζ – b(x)
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u)

) · ∇ϕ dx dt = 0.

Since ψ = 1 on suppϕ, we know that (3.15) is true.
At last, (2.3) can be showed as in [19], the proof of Theorem 3.2 finishes. �

Lemma 3.3 Let u(x, t) be a solution of Eq. (1.6) with the initial value (1.2). If
∫

Ω
b(x)– 1

p––1 dx < ∞, then

∫

Ω

∣
∣∇a(u)

∣
∣dx < ∞.

Proof

∫

Ω

∣
∣∇a(u)

∣
∣dx

=
∫

{x∈Ω :b(x)
1

p––1 |∇a(u)|≤1}

∣
∣∇a(u)

∣
∣dx +

∫

{x∈Ω :b(x)
1

p––1 |∇a(u)|>1}

∣
∣∇a(u)

∣
∣dx

≤
∫

Ω

b(x)– 1
p––1 dx +

∫

Ω

b(x)
∣
∣∇a(u)

∣
∣
p–

dx

≤ c. �

For small η > 0, we define

Sη(s) =
∫ s

0
hη(τ ) dτ ,
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where hη(s) = 2
η

(1 – |s|
η

)+, and clearly

lim
η→0+

sS′
η(s) = lim

η→0
shη(s) = 0,

lim
η→0+

Sη(s) = sgn(s),

where sgn(s) is the sign function.

Theorem 3.4 Suppose
∫

Ω
b(x)– 1

p––1 dx < ∞, a(s) and bi(s) satisfying (1.7) and (2.8). If
u(x, t) and v(x, t) are two weak solutions with the same homogeneous boundary value (1.3)
and with different initial values u(x, 0), v(x, 0), respectively, we have

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T). (3.24)

Proof By Definition 2.1, b(x)|∇a(u)|p(x), b(x)|∇a(v)|p(x) ∈ L1(QT ), and for any

ϕ ∈ L∞(

0, T ; W 1,p(x)
0 (Ω)

) ∩ W(QT )

we have

∫∫

Qt

ϕ
∂(u – v)

∂t
dx dt

= –
∫∫

Qt

b(x)
(∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

) · ∇ϕ dx dt

–
N

∑

i=1

∫∫

Qt

[

bi(u) – bi(v)
] · ϕxi dx dt –

∫∫

Qt

b0
[

a(u) – a(v)
]

ϕ dx dt, (3.25)

where Qt = Ω × (0, t).
Thus, if we choose Sη(a(u) – a(v)) as the test function, we have

∫∫

Qt

Sη

(

a(u) – a(v)
)∂(u – v)

∂t
dx dt

+
∫∫

Qt

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇(

a(u) – a(v)
)

hη

(

a(u) – a(v)
)

dx dt

+
N

∑

i=1

∫∫

Qt

[

bi(u) – bi(v)
] · (a(u) – a(v)

)

xi
hη(u – v) dx dt

= –
∫∫

Qt

b0
[

a(u) – a(v)
]

Sη

(

a(u) – a(v)
)

dx dt. (3.26)

Since a(s) is a monotone increasing function, we can easily show that

lim
η→0+

∫

Ω

Sη

(

a(u) – a(v)
)∂(u – v)

∂t
dx =

d
dt

‖u – v‖L1(Ω), (3.27)
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and clearly

∫∫

Qt

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇(

a(u) – a(v)
)

hη

(

a(u) – a(v)
)

dx dt ≥ 0. (3.28)

Now, by that |shη(s)| ≤ 1, we have

∣
∣
∣
∣
∣

∫∫

Qt∩{|a(u)–a(v)|<η}

N
∑

i=1

[

bi(u) – bi(v)
][

Sη

(

a(u) – a(v)
)]

xi
dx dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫∫

Qt∩{|a(u)–a(v)|<η}

N
∑

i=1

[

bi(u) – bi(v)
]

hη

(

a(u) – a(v)
)(

a(u) – a(v)
)

xi
dx dt

∣
∣
∣
∣
∣

≤ c
∫∫

Qt∩{|a(u)–a(v)|<η}

N
∑

i=1

∣
∣
∣
∣

bi(u) – bi(v)
a(u) – a(v)

∣
∣
∣
∣

∣
∣
(

a(u) – a(v)
)

xi

∣
∣dx dt

= c
∫∫

Qt∩{|a(u)–a(v)|<η}

∣
∣
∣
∣
∣
b(x)– 1

p–
N

∑

i=1

bi(u) – bi(v)
a(u) – a(v)

∣
∣
∣
∣
∣
b(x)

1
p–

∣
∣
(

a(u) – a(v)
)

xi

∣
∣dx dt

≤ c

[
∫∫

Qt∩{|a(u)–a(v)|<η}

(∣
∣
∣
∣
∣
b(x)– 1

p–
N

∑

i=1

bi(u) – bi(v)
a(u) – a(v)

∣
∣
∣
∣
∣

) p–
p––1

dx dt

] p––1
p–

·
(∫∫

Qt∩{|a(u)–a(v)|<η}

∣
∣b(x)∇(

a(u) – a(v)
)∣
∣
p–

dx dt
) 1

p–

. (3.29)

Since
∫

Ω
b(x)– 1

p––1 dx < ∞, by the assumption (2.8), we have

∫∫

Qt∩{|a(u)–a(v)|<η}

(∣
∣
∣
∣
∣
b(x)– 1

p–
N

∑

i=1

bi(u) – bi(v)
a(u) – a(v)

∣
∣
∣
∣
∣

) p
p––1

dx dt

≤ c
∫∫

Qt

b(x)– 1
p––1 dx dt ≤ c. (3.30)

Let η → 0+ in (3.29). If {x ∈ Ω : |a(u) – a(v)| = 0} is a set with 0 measure, then

lim
η→0+

∫∫

Qt∩{|a(u)–a(v)|<η}

∣
∣b(x)

–1
p––1

∣
∣dx dt =

∫∫

Qt∩{|a(u)–a(v)|=0}

∣
∣b(x)

–1
p––1

∣
∣dx dt = 0. (3.31)

If the set {x ∈ Ω : |a(u) – a(v)| = 0} has a positive measure, then

lim
η→0+

∫∫

Qt∩{|a(u)–a(v)|<η}
b(x)

∣
∣∇(

a(u) – a(v)
)∣
∣
p–

dx dt

=
∫∫

Qt∩{|a(u)–a(v)|=0}
b(x)

∣
∣∇(

a(u) – a(v)
)∣
∣
p–

dx dt

= 0. (3.32)

Therefore, in both cases, (3.29) tends to 0 as η → 0+.
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Thus,

lim
η→0+

∫∫

Qt

[

bi(u) – bi(v)
]

hη

(

a(u) – a(v)
)(

a(u) – a(v)
)

xi
dx dt = 0, (3.33)

– lim
η→0+

∫∫

Qt

b0
[

a(u) – a(v)
]

Sη

(

a(u) – a(v)
)

dx dt

= –
∫∫

Qt

b0
∣
∣a(u) – a(v)

∣
∣dx dt ≤ 0. (3.34)

Let η → 0+ in (3.26). Then, by (3.27)–(3.34), we have

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx –

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx =

∫ t

0

d
dt

‖u – v‖L1(Ω) dt ≤ 0.

Then
∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T).

Theorem 3.4 is proved. �

Theorem 2.3 is the directly corollary of Theorem 3.2, Lemma 3.3 and Theorem 3.4.

4 The proof of Theorem 2.4

Proof of Theorem 2.4 For any small λ > 0, denote

Ωλ =
{

x ∈ Ω : b(x) > λ
}

, (4.1)

let β > 0 and

φ(x) =
(

b(x) – λ
)β

+. (4.2)

Let uε and vε be the mollified function of the solutions u and v, respectively, χ[s,t] be the
characteristic function of [s, t] ⊂ (0, T) and let us choose χ[s,t]Sη(φ(a(uε) – a(vε))) as a test
function. Then

∫ t

s

∫

Ωλ

Sη

(

φ
(

a(uε) – a(vε)
))∂(u – v)

∂t
dx dt

+
∫ t

s

∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· φ∇(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx dt

+
∫ t

s

∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇φ
(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx dt

+
N

∑

i=1

∫ t

s

∫

Ωλ

[

bi(u) – bi(v)
]

φ
(

a(uε) – a(vε)
)

xi
hη

(

φ
(

a(uε) – a(vε)
))

dx dt
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+
N

∑

i=1

∫ t

s

∫

Ωλ

[

bi(u) – bi(v)
]

φxi

(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx dt

= –
∫ t

s

∫

Ωλ

b0
(

a(uε) – a(vε)
)

Sη

(

φ
(

a(uε) – a(vε)
))

dx dt. (4.3)

For any given λ > 0, by (2.1) in Definition 2.1, |∇a(u)| ∈ Lp(x)(Ωλ), |∇a(v)|p(x) ∈ Lp(x)(Ωλ).
Thus according to the definition of the mollified function, since the exponent p(x) is re-
quired to satisfy the logarithmic Hölder continuity condition, we have

a(uε) ∈ L∞(QT ), a(vε) ∈ L∞(QT ), a(uε) → a(u),

a(vε) → a(v), a.e. in QT ,
(4.4)

∥
∥
∣
∣∇a(uε)

∣
∣
p(x)∥

∥
1,Ωλ

≤ ∥
∥
∣
∣∇a(u)

∣
∣
p(x)∥

∥
1,Ωλ

,
∥
∥
∣
∣∇a(vε)

∣
∣
p(x)∥

∥
1,Ωλ

≤ ∥
∥
∣
∣∇a(v)

∣
∣
p(x)∥

∥
1,Ωλ

,
(4.5)

∇a(uε) → ∇a(u), ∇a(vε) → ∇a(v), in Lp(x)(Ωλ). (4.6)

We give some explanations. Denoting w = a(u) ∈ W 1,p(x)(Ωλ), there is a series wε ∈
W 1,p(x)(Ωλ) such that

wε → w = a(u), in W 1,p(x)(Ωλ). (4.7)

Since a(s) is a strictly monotone increasing function, by (4.7), it is easy to show that

a–1(wε) → a–1(w) = u, in W 1,p(x)(Ωλ) (4.8)

by the uniqueness of the limit, then wε = a(uε), accordingly, we have (4.4)–(4.6).
By

0 ≤ hη

(

φ
(

a(uε) – a(vε)
)) ≤ 2

η
, (4.9)

we have

∣
∣∇(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))∣

∣
Lp(x)(Ωλ)

≤ c(η)
∣
∣∇(

a(uε) – a(vε)
)∣
∣
Lp(x)(Ωλ) ≤ c(η). (4.10)

If we denote

∫

Ωλ

∇(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

ϕ dx

–
∫

Ωλ

∇(

a(u) – a(v)
)

hη

(

φ
(

a(u) – a(v)
))

ϕ dx

=
∫

Ωλ

∇(

a(uε) – a(vε)
)[

hη

(

φ
(

a(uε) – a(vε)
))

– hη

(

φ
(

a(u) – a(v)
))]

ϕ dx
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+
∫

Ωλ

[∇(

a(uε) – a(vε)
)

– ∇(

a(u) – a(v)
)]

hη

(

φ
(

a(u) – a(v)
))

ϕ dx

= I1 + I2, (4.11)

for any ϕ ∈ L
p(x)

p(x)–1 (Ωλ), by ∇a(uε) → ∇a(u), ∇a(vε) → ∇a(v), in Lp(x)(Ωλ), we obtain

lim
ε→0

I2 = 0, (4.12)

Moreover,

lim
ε→0

I1 ≤ lim
ε→0

∥
∥∇(

a(uε) – a(vε)
)∥
∥

Lp(x)(Ωλ)

· ∥∥[

hη

(

φ
(

a(uε) – a(vε)
))

– hη

(

φ
(

a(u) – a(v)
))]

ϕ
∥
∥

L
p(x)

p(x)–1 (Ωλ)

≤ lim
ε→0

∥
∥∇(

a(u) – a(v)
)∥
∥

Lp(x)(Ωλ)

· ∥∥[

hη

(

φ
(

a(uε) – a(vε)
))

– hη

(

φ
(

a(u) – a(v)
))]

ϕ
∥
∥

L
p(x)

p(x)–1 (Ωλ)

= 0, (4.13)

by the Lebesgue dominated convergence theorem. By (4.11)–(4.13), we obtain

∇(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

⇀ ∇(

a(u) – a(v)
)

hη

(

φ
(

a(u) – a(v)
))

, in Lp(x)(Ωλ). (4.14)

By (4.14)

lim
ε→0

∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· φ∇(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx

=
∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· φ∇(

a(u) – a(v)
)

hη

(

φ
(

a(u) – a(v)
))

dx, (4.15)

due to
∣
∣b(x)φ

[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]∣
∣ ∈ L

p(x)
p(x)–1 (Ωλ).

At the same time, clearly

lim
ε→0

∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇(v)

]

· ∇φ
(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx

=
∫

Ωλ

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇φ
(

a(u) – a(v)
)

hη

(

φ
(

a(u) – a(v)
))

dx, (4.16)

by the Lebesgue dominated convergence theorem.
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Once more, we can obtain
(

a(uε) – a(vε)
)

xi
hη

(

φ
(

a(uε) – a(vε)
))

⇀
(

a(u) – a(v)
)

xi
hη

(

φ
(

a(u) – a(v)
))

, in Lp(x)(Ωλ), (4.17)

by a similar method to (4.14). Thus

lim
ε→0

∫

Ω

[

bi(u) – bi(v)
]

φ
(

a(uε) – a(vε)
)

xi
hη

(

φ
(

a(uε) – a(vε)
))

dx

=
∫

Ω

[

bi(u) – bi(v)
]

φ
(

a(u) – a(v)
)

xi
hη

(

φ
(

a(u) – a(v)
))

dx. (4.18)

Meanwhile, we have

lim
ε→0

∫

Ω

[

bi(u) – bi(v)
]

φxi

(

a(uε) – a(vε)
)

hη

(

φ
(

a(uε) – a(vε)
))

dx

=
∫

Ω

[

bi(u) – bi(v)
]

φxi

(

a(u) – a(v)
)

hη

(

φ
(

a(u) – a(v)
))

dx. (4.19)

In addition, since

ut , vt ∈ W′(QT ), (4.20)

according to [3], we have

lim
ε→0

∫

Ωλ

Sη

(

φ
(

a(uε) – a(vε)
))∂(a(u) – a(v))

∂t
dx

=
∫

Ωλ

Sη

(

φ
(

a(u) – a(v)
))∂(a(u) – a(v))

∂t
dx. (4.21)

Now, only if we let ε → 0, and let λ → 0 in (4.3), we have
∫ t

s

∫

Ω

Sη

(

bβ
(

a(u) – a(v)
))∂(u – v)

∂t
dx dt

+
∫ t

s

∫

Ω

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· bβ∇(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

dx dt

+
∫ t

s

∫

Ω

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

dx dt

+
N

∑

i=1

∫ t

s

∫

Ω

[

bi(u) – bi(v)
]

bβ
(

a(u) – a(v)
)

xi
hη

(

bβ
(

a(u) – a(v)
))

dx dt

+
N

∑

i=1

∫ t

s

∫

Ω

[

bi(u) – bi(v)
]

bβ
xi

(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

dx dt

= 0. (4.22)

Let us analyze every term on the left hand side of (4.22).
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For the first term, by a(s) being strictly increasing,

lim
η→0+

∫

Ω

Sη

(

bβ
(

a(u) – a(v)
))∂(u – v)

∂t
dx

=
∫

Ω

sgn
(

bβ
(

a(u) – a(v)
))∂(u – v)

∂t
dx

=
∫

Ω

sgn(u – v)
∂(u – v)

∂t
dx

=
d
dt

‖u – v‖L1(Ω). (4.23)

For the second term,
∫

Ω

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

φ(x) dx ≥ 0. (4.24)

For the third term, from (iii) of Lemma 2.2, since
∫

Ω
b(x)–(p(x)–1) dx < ∞, and using the

Lebesgue dominated convergence theorem, we have

∥
∥b(x)– p(x)–1

p(x)
∣
∣bβ

(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))∣

∣
∥
∥

Lp(x)({x:bβ |a(u)–a(v)|<η})

≤
(∫

Ω

b(x)–(p(x)–1)bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

dx
) 1

p+

, (4.25)

which goes to zero as η → 0+.
By (4.2), we have

lim
η→0+

∣
∣
∣
∣

∫

Ω

b(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]

· ∇bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

dx
∣
∣
∣
∣

≤ c lim
η→0

∫

{x:bβ |a(u)–a(v)|<η}

∣
∣
∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

∣
∣

· ∣∣bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))∣

∣dx

≤ c lim
η→0

∥
∥b(x)– p(x)–1

p(x) bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))∥

∥
Lp(x)({x:bβ |a(u)–a(v)|<η})

· ∥∥b(x)
p(x)–1

p(x)
[∣
∣∇a(u)

∣
∣
p(x)–2∇a(u) –

∣
∣∇a(v)

∣
∣
p(x)–2∇a(v)

]∥
∥

L
p(x)

p(x)–1 ({x:bβ |a(u)–a(v)|<η})

= 0. (4.26)

For the fourth term, we have
∣
∣
∣
∣

∫

Ω

[

bi(u) – bi(v)
]

bβ
(

a(u) – a(v)
)

xi
hη

(

bβ
(

a(u) – a(v)
))

dx
∣
∣
∣
∣

≤
∫

Ω

∣
∣b(x)

1
p(x)

(

a(u) – a(v)
)

xi

∣
∣
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·
∣
∣
∣
∣
b(x)– 1

p(x)
bi(u) – bi(v)
a(u) – a(v)

bβ
(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))

∣
∣
∣
∣
dx

≤ c
∥
∥b(x)

1
p(x)

(∣
∣∇a(u)

∣
∣ +

∣
∣∇a(v)

∣
∣
)∥
∥

Lp(x)(Ω)

· ∥∥b(x)– 1
p(x) bβ

(

a(u) – a(v)
)

hη

(

bβ
(

a(u) – a(v)
))∥

∥

L
p(x)

p(x)–1 (Ω)
, (4.27)

which goes to 0 as η → 0+. Moreover, for the last term, since u, v ∈ L∞(QT ), |bi(u)–bi(v)| ≤
c, by the dominated convergence theorem, we have

∣
∣
∣
∣

∫

Ω

[

bi(u) – bi(v)
]

bβ
xi

(

a(u) – a(v)
)

S′
η

(

bβ
(

a(u) – a(v)
))

dx
∣
∣
∣
∣

≤ c
∫

Ωλ

b–1(x)
∣
∣bβ

(

a(u) – a(v)
)

S′
η

(

bβ
(

a(u) – a(v)
))∣

∣dx

≤ c
λ

∫

Ωλ

∣
∣bβ

(

a(u) – a(v)
)

S′
η

(

bβ
(

a(u) – a(v)
))∣

∣dx

→ 0, (4.28)

as η → 0+. Here, Ωλ = {x ∈ Ω : b(x) > λ}.
Then, by (4.23)–(4.28),

∫ t

0

d
dt

‖u – v‖L1(Ω) dt ≤ c
∫ t

0
‖u – v‖1 dt.

It implies that

∫

Ω

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c(T)

∫

Ω

∣
∣u0(x) – v0(x)

∣
∣dx.

Theorem 2.4 is proved. �
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