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Abstract
Herein, we use the generalized Lucas polynomials to find an approximate numerical
solution for fractional initial value problems (FIVPs). The method depends on the
operational matrices for fractional differentiation and integration of generalized Lucas
polynomials in the Caputo sense. We obtain these solutions using tau and collocation
methods. We apply these methods by transforming the FIVP into systems of algebraic
equations. The convergence and error analyses are discussed in detail. The
applicability and efficiency of the method are tested and verified through numerical
examples.
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1 Introduction
Ordinary and partial derivatives are special cases of fractional order derivatives. Many
scientists are interested in linear and nonlinear fractional differential equations (FDEs).
Many phenomena are described using fractional-order differentiation and integration.
Their applications appeared in fluid, engineering, mechanics, physics, mathematics, op-
tics, and other fields of science. So the fractional calculus investigates the rules, properties
of derivatives, and integrals of noninteger orders. For handling these equations, the re-
searchers apply many numerical methods such as finite difference method [1–3], finite
element method [4–6], homotopy analysis method [7, 8], variational iteration method [9–
11], a domain decomposition method [12–15], and Haar wavelet method [16, 17].

Recently, the approximate solutions of the fractional differential equations have been
evaluated by the spectral methods. These methods help to solve different kinds of dif-
ferential equations with small error and a small number of unknowns; [18] solutions of
fractional differential equations by using Jacobi operational matrix, [19] solutions of third
and fifth-order differential equations by using Petrov–Galerkin methods, [20] solutions of
fractional differential equations by using shifted Jacobi spectral approximations. The most
used spectral methods are the Galerkin, collocation, and tau methods; [21] solutions of
time-fractional telegraph equation by using Legendre–Galerkin algorithm, [22] solution
for telegraph equation of space fractional order by using Legendre wavelets spectral tau
algorithm, [23] solutions of differential problems by using tau method, [24] solutions for
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the parabolic and elliptic partial equations by the ultra-spherical tau method, [25] solu-
tions for a class of variable-order fractional differential equations by using Jacobi wavelets
method. The choice of this method depends on the type of the investigated problem and
its initial and boundary conditions. For more applications about numerical and exact so-
lutions of fractional differential models, please see [26–37].

Multi-term fractional IVPs appear in many applications in various disciplines, most of
numerical studies use the orthogonal polynomials, only rare studies use nonorthogonal
polynomials, this motivates us to use these polynomials as a new basis functions, to test
their ability to handle these problems.

In this paper, we solve the fractional ordinary differential equations with initial and
boundary conditions applying generalized Lucas polynomials. We obtain the integrated
equations and solve them. We use tau and collocation methods to evaluate numerical so-
lutions. We have a system of nonlinear algebraic equations with initial and boundary con-
ditions. Then we solve them by using Mathematica. We compare our numerical results
with the Haar wavelet method [38].

There are many techniques in literature to handle multi-term fractional IVPs using or-
thogonal polynomials, i.e., Legendre, Chebyshev, Jacobi, and others, and there are very
few studies on nonorthogonal linearly independent set of polynomials, i.e., Lucas and Fi-
bonacci polynomials. The main advantages of the present technique is that new polyno-
mials can be used as a basis for spectral methods, the generation of these polynomials is
easy, and the exponential rate of convergence.

The results in this paper are more efficient and of higher accuracy than the other meth-
ods. The sections are organized as follows. In section 2 definitions, properties of fractional
calculus, and generalized Lucas polynomials, which are used in the following sections, are
introduced. In section 3 derivatives for generalized Lucas polynomials of integer and frac-
tional orders are stated. In section 4 the algorithm of this method is explained. In section
5 we investigate the convergence and error analysis. In section 6 we give some examples
and their numerical solutions. In the last section we introduce some conclusions.

2 Preliminaries
In this section, some definitions, properties for fractional calculus [39–41], and the gen-
eralized Lucas polynomials [42, 43] are stated. We introduce the important relations for
the generalized Lucas polynomials which will be used in the following sections.

2.1 Properties and definitions of fractional calculus
Definition 1 The fractional integral of order β (β ≥ 0) according to Riemann–Liouville
is

⎧
⎨

⎩

Iβg(z) = 1
Γ (β)

∫ z
0 (z – t)β–1g(t) dt, β > 0, z > 0,

I0g(z) = g(z).

And Iβ satisfies the following properties:

⎧
⎪⎪⎨

⎪⎪⎩

Iβ Iγ = Iβ+γ ,

Iβ Iγ = Iγ Iβ ,

Iβzυ = Γ (υ+1)
Γ (υ+β+1) zυ+β .
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Definition 2 The fractional derivative of order β according to Caputo

Dβg(z) = Im–βDmg(z) =
1

Γ (m – β)

∫ z

0
(z – t)m–β–1g(m)(t) dt, (1)

where m – 1 < β ≤ m, and Dβ satisfies the following properties:

⎧
⎨

⎩

(DβIβg)(z) = g(z),

Dβzυ = Γ (υ+1)
Γ (υ–β+1) zυ–β .

(2)

For more details about the properties of fractional derivatives, please see [43].

2.2 An overview and relations of generalized Lucas polynomials
Lucas polynomials Lj(z) [43] have the following recurrence relation:

Lj+2(z) = zLj+1(z) + Lj(z), (3)

with the initial values

L0(z) = 2, L1(z) = z. (4)

Lucas polynomials have Binet’s form

Lj(z) =
(z +

√
z2 + 4)j + (z –

√
z2 + 4)j

2j , j ≥ 0, (5)

and also have the power form

Lj(z) = j
� j

2 �
∑

i=0

1
j – i

(
j – i

i

)

zj–2i, j ≥ 1, (6)

where �j� represents the largest integer less than or equal to j. If a and b are nonzero
real numbers, the sequence of Lucas polynomials {Lj(z)}j≥0 is generalized by the sequence
{ϕa,b

j (z)}j≥0 generated by the recurrence relation

ϕ
a,b
j (z) = azϕa,b

j–1(z) + bϕ
a,b
j–2(z), j ≥ 2, (7)

with the initial values

ϕ
a,b
0 (z) = 2, ϕ

a,b
1 (z) = az, (8)

so Lucas polynomials Lj(z) are derived from ϕ
a,b
j (z) if a = b = 1. We have the following:

ϕ
a,b
2 (z) = az2 + 2b, ϕ

a,b
3 (z) = a3z3 + 3abz, (9)

ϕ
a,b
4 (z) = a4z4 + 4a2bz2 + 2b2, ϕ

a,b
5 (z) = a5z5 + 5a3bz3 + 5ab2z, (10)
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where ϕ
a,b
j (z) have the power form

ϕ
a,b
j (z) = j

� j
2 �

∑

n=0

aj–2nbn(j–n
n

)

j – n
zj–2n, j ≥ 1, (11)

and

ϕ
a,b
j (z) = 2j

j∑

m=0

amb
j–m

2 ζj+k
(j–n

n
)

j + m
zm, j ≥ 1, (12)

where

ζ� =

⎧
⎨

⎩

1, � even,

0, � odd.
(13)

ϕ
a,b
j (z) have Binet’s form

ϕ
a,b
j (z) =

(az +
√

a2z2 + 4b)j + (az –
√

a2z2 + 4b)j

2j , j ≥ 0. (14)

The following relations, used for solving the problems, are very important.

3 Integer and fractional derivatives of generalized Lucas vector
In this section, we state the integer and fractional derivatives of generalized Lucas poly-
nomials in a matrix form.

3.1 Integer derivatives for generalized Lucas matrix
Suppose that the function W (z) can be expanded in terms of generalized Lucas polyno-
mials

W (z) =
∞∑

i=0

eiϕ
a,b
i (z). (15)

If we approximate this function as

W (z) ≈ WN (z) =
N∑

i=0

eiϕ
a,b
i (z) = ETΦ(z), (16)

where

ET = [e0, e1, . . . , eN ], (17)

Φ(z) =
[
ϕ

a,b
0 (z),ϕa,b

1 (z), . . . ,ϕa,b
N (z)

]T . (18)

If the first derivative of dΦ(z)
dz is written as

dΦ(z)
dz

= H (1)Φ(z), (19)



Mokhtar and Mohamed Advances in Difference Equations        (2019) 2019:471 Page 5 of 13

where H (1) = (H (1)
nm) is (N + 1) × (N + 1) matrix of derivatives.

H (1)
nm =

⎧
⎨

⎩

(–1) n–m+1
2 nab n–m–1

2 ξm, n > m, (n + m) odd,

0, otherwise,
(20)

and

ξk =

⎧
⎨

⎩

1
2 , k = 0,

1, otherwise.
(21)

From (15) we can write diΦ(z)
dzi , i ≥ 1,

diΦ(z)
dzi = H (i)Φ(z) =

(
H (1))i

Φ(z). (22)

3.2 Fractional derivatives for generalized Lucas matrix
We state in this section the fractional derivative of generalized Lucas matrix, which is the
general case for integer derivative.

Theorem 1 The fractional derivatives of generalized Lucas vector, which is defined in (14),
have the form [42]

DβΦ(z) =
dβΦ(z)

dzβ
= z–βH (β)Φ(z), β > 0, (23)

where H (β) = (Hβ
nm) is (N + 1) × (N + 1) lower triangular matrix of the form

H (β) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0,
...

...
...

...
γβ (	β
, 0) γβ (	β
, 1) · · · 0

...
...

...
...

γβ (N , 0) γβ (N , 1) · · · γβ (N , N)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (24)

where 	β
 represents the smallest integer greater than or equal to β . And Hβ
nm and γβ (n, m)

have the elements in the form

Hβ
nm =

⎧
⎨

⎩

γβ (n, m), n ≥ 	β
, m ≥ n,

0, otherwise,
(25)

γβ (n, m) =
n∑

i=	β


(–1) i–m
2 ni!ζn+iζm+iξmb n–m

2 ( n+i
2 – 1)!

( n–i
2 )!( i–m

2 )!( m+i
2 )!Γ (1 + i – β)

. (26)

4 The algorithm of the method
In this section, we explain the method for solving the boundary FDE with constant coef-
ficients by using generalized Lucas polynomials

DβW (z) + DαW (z) + W ′′(z) + W (z) = g(z), (27)
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with the boundary conditions

W (i)(0) = ai, i = 0, 1, 2, . . . , (28)

where 0 < α ≤ 1, 1 < β ≤ 2. Suppose that equation (27) has the approximating solution

W (z) ≈ WN (z) = ETΦ(z). (29)

By using Theorem 1, we have

DβW (z) ≈ z–βET H (β)Φ(z), (30)

and now the residual of equation (27) has the form

R(z) = z–βET H (β)Φ(z) + z–αET H (α)Φ(z) + ET H (2)Φ(z) + ETΦ(z) – g(z). (31)

Then we have

zβR(z) = ET H (β)Φ(z) + zβ–αET H (β)Φ(z) + zβET H (2)Φ(z) + zβETΦ(z) – zβg(z). (32)

By using the tau method, we obtain the system of equations

∫ 1

0
zβR(z)ϕa,b

i (z) dz = 0, i = 0, 1, . . . . (33)

With the boundary conditions (28), we have

ET H (i)Φ(0) = ai, i = 0, 1, 2, . . . . (34)

Equations (33)–(34) give a linear system of equations in coefficients ei, i = 0, 1, . . . , N .
These coefficients can be efficiently solved by Gaussian elimination.

5 Investigation of convergence and error analysis
In this section, we explain the convergence and error analysis of generalized Lucas expan-
sion. The following lemmas are satisfied.

Lemma 1 For all t ∈ [0, 1], the following inequality holds for generalized Lucas polynomi-
als:

ϕ
a,b
i ≤ 2

(
a +

√
a2 + b

)i. (35)

Proof See Abd-Elhameed and Youssri (2017) [43]. �

Lemma 2

ϕ
a,b
i = 2i

i∑

k=0

λi,ktk , (36)
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where

λi,k =
akb i–k

2 ζi+k
( i+k

2
i–k
2

)

i + k
. (37)

Proof See Abd-Elhameed and Youssri (2017) [43]. �

Theorem 2 If W (z) is defined on [0, 1] and |W (i)(0)| ≤ Li, i ≥ 0, where L is a positive con-
stant and if W (z) has the expansion

W (z) =
∞∑

i=0

eiϕ
a,b
i (z). (38)

Then one has

|ei| ≤ |a|–iLi cosh(2|a|–1b 1
2 L)

i!
. (39)

Proof See Abd-Elhameed and Youssri (2017) [43]. �

If εN = max |W (z) – WN (z)|, then we have the following truncation error.

Theorem 3 We have the following truncation error estimate:

εN <
2eL(1+

√
1+a–2b) cosh(2L(1+

√
1+a–2b))(1+

√
1+a–2b)N+1

(N + 1)!
(40)

or

εN <
2eLρ cosh(2Lρ)ρN+1

(N + 1)!
, (41)

where ρ = 1 +
√

1 + a–2b.

Proof See Abd-Elhameed and Youssri (2017) [43]. �

Lemma 3 The derivatives of ϕ
(α)
i , ϕ(β)

i , and ϕ′′
i are denoted by the following estimates:

(i)
∣
∣ϕ

(α)
i

∣
∣ ≤ 2i3,

(ii)
∣
∣ϕ

(β)
i

∣
∣ ≤ 2i3,

(iii)
∣
∣ϕ′′

i
∣
∣ ≤ 2i3.

Proof By applying the differential operators to the right-hand side of equation (29) and
noting that t < 1, and finally by induction on i, we get the desired results. �

Theorem 4 If W (z) =
∑∞

i=0 eiϕ
a,b
i (z) is the exact solution of equation (21) satisfies the hy-

potheses of Eq. (6) and W (z) is approximated by WN (z) =
∑N

i=0 eiϕ
a,b
i (z), then we have the

following global error estimate:

εN =
∣
∣W ′′

N + W (α)
N + W (β)

N + WN – g
∣
∣ <

ΩN ξ

2N , (42)
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where Ω is a generic constant and

ξ = 3A + 1, A =
L
|a| . (43)

Proof Now the global error estimate

εN =
∣
∣W ′′

N + W (α)
N + W (β)

N + WN – g
∣
∣. (44)

�

From equation (21) we have

εN =
∣
∣W ′′

N – W ′′ + W (α)
N – W (α) + W (β)

N – W (β) + WN – W
∣
∣. (45)

By the triangle inequality

εN ≤ ∣
∣W ′′

N – W ′′∣∣ +
∣
∣W (α)

N – W (α)∣∣ +
∣
∣W (β)

N – W (β)∣∣ + |WN – W |. (46)

And hence

εN ≤
∞∑

i=N+1

|ei|
∣
∣ϕ′′

i
∣
∣ +

∞∑

i=N+1

|ei|
∣
∣ϕ

(α)
i

∣
∣ +

∞∑

i=N+1

|ei|
∣
∣ϕ

(β)
i

∣
∣ +

2eLρ cosh(2Lρ)ρN+1

(N + 1)!
, (47)

where A = L
|a| , B = 2

√
bL

|a| , by Theorem 2, Lemma 3, and Theorem 3, and application of the
series comparison test, we have

∞∑

i=N+1

(
Ai cosh(B)

i!

)
(∣
∣ϕ′′

i
∣
∣ +

∣
∣ϕ

(α)
i

∣
∣ +

∣
∣ϕ

(β)
i

∣
∣
)

+
2eLρ cosh(2Lρ)ρN+1

(N + 1)!
(48)

<
∞∑

i=N+1

6Ai cosh(B)i3

i!
+

2eLρ cosh(2Lρ)ρN+1

(N + 1)!
. (49)

Therefore

εN < 6 cosh(B)
N3A+1

2N +
2eLρ cosh(2Lρ)ρN+1

(N + 1)!
(50)

= Ω1
N3A+1

2N + Ω2
ρN+1

(N + 1)!
< Ω

N3A+1

2N , (51)

where Ω = max(Ω1,Ω2).

6 Numerical examples
In this section, we solve some examples on equations (21), (22) using the generalized Lucas
polynomials.

Example 1 Consider the following fractional-order initial value problem [38]:

DβW (z) +
3

57
W (z) = z +

3zβ+1

57Γ (β + 2)
, 0 < z < 1, 1 < β ≤ 2, (52)
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with the boundary conditions

W (0) = 0, W (1) =
1

Γ (β + 2)
. (53)

The exact solution of equation (52) is W (z) = zβ+1

Γ (β+1) . The residual of this equation:

zβR(z) = ET H (β)Φ(z) +
3

57
zβETΦ(z) – zβ+1 –

3z2β+1

57Γ (β + 2)
. (54)

For N = 3, we have H (β) in the form

H (β) =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1

Γ (2–β) 0 0
–2b

Γ (3–β) 0 2
Γ (3–β) 0,

0 3b(β–5)β
Γ (4–β) 0 6

Γ (4–β)

⎤

⎥
⎥
⎥
⎥
⎦

. (55)

We apply the generalized Lucas tau method and obtain the following equations:

2
65,835

√
π

(
–294 – 47,025

√
π + 2772

√
πe0 + 990

√
πae1 + 87,780a2e2 + 770

√
πa2e2

+ 2772
√

πbe2 + 131,670a3e3 + 630
√

πa3e3 + 2970
√

πabe3
)

= 0,
a

855,855
√

π

(
–10,010 – 475,475

√
π + 25,740

√
πe0 + 10,010

√
πae1 + 855,855a2e2

+ 8190
√

πa2e2 + 25,740
√

πbe2 + 1,369,368a3e3 + 6930
√

πa3e3

+ 30,030
√

πabe3
)

= 0,

with the boundary conditions

e0 + be2 = 0,

2e0 + ae1 +
1
4
((

a –
√

a2 + 4b
)2 +

(
a +

√
a2 + 4b

)2)e2

+
1
8
((

a –
√

a2 + 4b
)3 +

(
a +

√
a2 + 4b

)3)e3 =
4

3
√

π
.

We solve these equations by Mathematica, we obtain

e0 = –
33b(–222,794 + 3,871,765

√
π + 57,000π )

10a3√π (107,324,217 – 341,088
√

π + 320π )
, (56)

e1 =
1

6a3(107,324,217 – 341,088
√

π + 320π )

× [
715b

√
π (–27,588 – 393,483

√
π + 11,400π )+

+ a2(1,430,989,560 + 3,581,424
√

π – 468,479,005π – 1,045,000π
3
2
)]

,
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Table 1 Maximum absolute errors E of Example 1

z m = 32
β = 1.4

N = 16
β = 1.4

m = 32
β = 1.6

N = 16
β = 1.6

m = 32
β = 1.8

N = 16
β = 1.8

m = 32
β = 2

N = 16
β = 2

0.1 1.4 · 10–6 1.9 · 10–7 1.5 · 10–7 6.9 · 10–8 1.4 · 10–7 1.6 · 10–8 3.5 · 10–8 5.5 · 10–18
0.2 6.9 · 10–9 7.2.0 · 10–7 3.8 · 10–8 7.3 · 10–8 8.9 · 10–7 1.7 · 10–8 6.5 · 10–8 2.6 · 10–19
0.3 3.3 · 10–8 6.02 · 10–7 5.7 · 10–7 6.0 · 10–8 1.1 · 10–7 1.3 · 10–8 8.7 · 10–8 6.0 · 10–18
0.4 3.1 · 10–7 9.6 · 10–8 3.8 · 10–7 3.4 · 10–8 1.8 · 10–7 7.7 · 10–9 9.7 · 10–8 2.0 · 10–18
0.5 7.8 · 10–7 8.1 · 10–10 3.6 · 10–7 2.8 · 10–10 2.6 · 10–7 6.6 · 10–11 8.9 · 10–8 1.1 · 10–17
0.6 1.5 · 10–6 9.6 · 10–8 2.3 · 10–7 2.8 · 10–8 6.0 · 10–7 5.6 · 10–9 5.9 · 10–8 4.1 · 10–18
0.7 4.8 · 10–7 1.1 · 10–7 3.6 · 10–8 3.3 · 10–8 1.0 · 10–6 6.7 · 10–9 4.8 · 10–9 5.5 · 10–18
0.8 7.9 · 10–7 1.1 · 10–7 2.2 · 10–7 2.9 · 10–8 1.8 · 10–7 5.3 · 10–9 8.0 · 10–8 6.1 · 10–17
0.9 1.1 · 10–6 6.5 · 10–8 5.5 · 10–7 1.5 · 10–8 3.5 · 10–7 2.6 · 10–9 1.9 · 10–7 2.2 · 10–17

Table 2 Comparison between different errors E of Example 2

z [38] [44] a = 1, b = 2, N = 10 Exact

0.1 0.05934820 0.05934300 2.9074 · 10–15 0.05934303
0.2 0.11014318 0.11013418 2.75252 · 10–14 0.11013421
0.3 0.15103441 0.15102438 2.28456 · 10–14 0.15102441
0.4 0.18048329 0.18047531 1.94317 · 10–14 0.18047535
0.5 0.19673826 0.19673463 5.55112 · 10–18 0.19673467
0.6 0.19780653 0.19780792 1.97675 · 10–14 0.19780797
0.7 0.18142196 0.18142718 2.36283 · 10–14 0.18142725
0.8 0.14500893 0.14501532 2.90212 · 10–14 0.14501540
0.9 0.08564186 0.08564623 3.13083 · 10–15 0.08564632

e2 =
33(–222,794 + 3,871,765

√
π + 57,000π )

5a2(107,324,217 – 341,088
√

π + 320π )
,

e3 = –
143(–27,588 – 393,483

√
π + 11,400π )

6a3(107,324,217 – 341,088
√

π + 320π )
.

(57)

In Table 1, we compare our results for the case a = b = 1 and N = 16 with the results of [38]
for m = 32 for different values of β . In Table 2, we compare between different solutions of
Example 2.

Example 2 Consider the following fractional-order initial value problem [38]:

DβW (z) – DαW (z) = ez–1 + 1, 0 < β ≤ 1, 1 < α ≤ 2, (58)

with the boundary conditions

W (0) = 0, W (1) = 0. (59)

The exact solution of equation (38) is W (z) = z(1 – ez–1). The residual of this equation is

zβR(z) = ET H (β)Φ(z) – zβ–αET H (α)Φ(z) – zβez–1 – zβ . (60)

Example 3 Consider the following fractional-order initial value problem [38]:

DβW (z) +
e–3π

√
π

W (z)

=
e–3π

40
√

π

(
z2(40z2 – 74z + 33

)
+ 4e3π

√
z
(
128z2 – 148z + 33

))
, 1 ≤ β < 2, (61)
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with the boundary conditions

W (0) = 0, W (1) = –
1

40
. (62)

The exact solution of equation (41) is W (z) = z2(z3 – 37
20 z + 33

40 ). The residual of this equa-
tion is

zβR(z) = ET H (β)Φ(z) +
e–3π

√
π

zβETΦ(z)

–
(

e–3π

40
√

π

(
z2(40z2 – 74z + 33

)
+ 4e3π

√
z
(
128z2 – 148z + 33

))
)

zβ .

We apply our algorithm for the case a = 1, b = 2, N = 5, β = 3
2 , which yields

e1 = 511/10, e3 = –237/20, e5 = 1,

e0 = –33/2, e2 = 233/4, e4 = 0,

and consequently,

W (z) = –(33/2)2 + (511/10)z + (233/4)
(
4 + z2) – (237/20)

(
6z + z3) + 20z + 10z3 + z5,

which is the exact solution.

Example 4 Consider the following fractional-order initial value problem [38]:

W ′′(z) +
8

17
DβW (z) +

13
51

W (z) =
z –1

2

89,250
√

π

(
48p(z) + 7

√
zq(z)

)
, 1 ≤ β < 2, (63)

where

p(z) = 16,000z4 – 32,480z3 + 21,280z2 – 4746z + 189, (64)

q(z) = 3250z5 – 9425z4 + 264,880z3 – 44 (65)

with the boundary conditions

W (0) = 0, W (1) = 0. (66)

The exact solution of equation (45) is W (z) = z5 – 29z4

10 + 76z3

25 – 339z2

250 + 27z
125 . The residual

of this equation is

zβR(z) = zβET H (2)Φ(z) +
8

17
ET H (β)Φ(z) +

13
51

zβETΦ(z)

–
(

z –1
2 +β

89,250
√

π

(
48p(z) + 7

√
zq(z)

)
)

. (67)
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We apply our algorithm for the case a = 2, b = 1, N = 5, β = 3
2 , which yields

e1 = –1439/2000, e3 = 179/800, e5 = 1/32,

e0 = –819/4000, e2 = 193/500, e4 = –29/160,

and consequently,

W (z) = –(819/4000)2 – (1439/2000)2z + (193/500)
(
2 + 4z2) + (179/800)

(
6z + 8z3)

– (29/160)
(
2 + 16z2 + 16z4) + (1/32)

(
10z + 40z3 + 32z5),

which is the exact solution.

7 Conclusion
Herein, a generalized Lucas polynomial sequence approach based on the operational ma-
trix of fractional derivatives Lucas polynomials to spectrally solve fractional multi-term
initial value problem was successfully applied to handle these equations. Four examples
to a system of linear algebraic equations were solved by Mathematica software showing
the exponential rate of convergence of the method. This method can be modified in the
future work to solve different types of ordinary and partial FDEs with nonhomogeneous
conditions and with variable coefficients.
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