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Abstract
This paper studies the preview tracking control of a class of fractional-order linear
systems. Firstly, we use the fractional derivative property to take the fractional
derivative of both sides of the state equation several times, and we obtain a formal
ordinary linear system. An augmented error system is constructed for the transformed
ordinary linear system, the appropriate performance index function is introduced and
relevant results of the optimal preview control are applied to design the optimal
preview controller for the augmented error system when the reference signal is
previewable. Based on the relationship between the original system and the
augmented error system, the preview tracking controller of the original system can
be obtained. It can guarantee the asymptotic tracking of the output of the original
closed-loop system to the reference signal. The validity of the theoretical results is
verified by numerical simulation.
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1 Introduction
The fractional-order system refers to the control system described by a fractional differen-
tial equation. In traditional control theory, the derivatives in the control system described
by ordinary differential equations are all of integer order. However, it was later discovered
that many physical systems exhibit fractional kinetic behavior because of their specific
material and chemical properties [1–4]. If the equations containing fractional derivatives
are used to describe such a system, the essential properties of the object of study can be
better revealed. Therefore, the fractional-order system theory has been propounded and
applied in many fields of engineering science [5–8]. For example, in [7], by employing the
spectral theorem, Duhamel’s formula is proved for the time-fractional-order Schrödinger
equations, and properties of solution operators are given. Reference [8] investigates the
existence, uniqueness and Hölder continuity of solutions to the time-fractional Navier–
Stokes equations. In recent years, the study of fractional-order systems has been extended
to the field of robust control, optimal control, sliding mode control, fault-tolerant control,
iterative learning control and other advanced control strategies [9–18]. Reference [9] stud-
ies the static output feedback control problem of fractional uncertain systems by using the
linear matrix inequality method. In Refs. [10–12], the variational method of classical op-
timal control is extended to fractional-order systems, and the Euler–Lagrange equation of
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fractional-order variational problems is obtained. The variational method and Lagrange
multiplier method are combined to solve the equations numerically. In [13], a sliding mode
controller is designed for fractional-order linear systems, a new fractional-order switching
surface is proposed, and the case with input delay and state delay is considered. In [14],
the problem of robust fault-tolerant control for continuous-time fractional-order systems
with interval parameters and sensor faults is studied by establishing sensor fault model and
state observer. Based on the properties of fractional derivative and generalized Gronwall
inequality, a P-type iterative learning control updating laws for a class of delay fractional-
order systems is given in [15]. In [16], a PDα-type distributed iterative learning control laws
is proposed for consensus tracking of nonlinear fractional multi-agent systems. Reference
[17] discusses the problem of complete tracking for a class of fractional-order systems in
a finite-time interval, and gives fractional-order iterative learning control laws involving
a local average operator associated with probability. In addition, the fractional-order sys-
tem has been successfully applied to the design of the fractional-order damper, antilock
braking systems, and other practical engineering problems [19–21].

In many practical cases, the future reference signal or the future disturbance signal of the
control system is partly or completely known, such as the flight path of aircraft, the pro-
cessing path of numerically-controlled machine tools, the driving path of vehicles, and
so on. The future information can be used to design the controller to improve the con-
trol quality of closed-loop systems. Such problems are problems of preview control. Since
Sheridan put forward the concept of preview control in the 1960s, it has received exten-
sive attention and formed a relatively complete set of theories and methods. At present,
preview control has made progress in the theoretical studies of integer-order systems such
as continuous-time linear systems, random systems and multi-agent systems. In [22], the
problem of optimal preview control for continuous-time systems is studied by using the
augmented system method. On the basis of [22], [23] studies the situation in which both
reference signal and disturbance signal can be previewed at the same time. Reference [24]
studies the coordinated optimal preview tracking control problem for continuous-time
multi-agent systems on directed graphs. In [25], the optimal preview control problem for
a class of continuous-time stochastic systems is studied by constructing an auxiliary sys-
tem. At the same time, preview control is being applied successfully to many engineering
control problems such as vehicle active suspension systems, electromechanical servo sys-
tems, robots, and aircraft [26–28].

To date, there are no published research results on preview control of fractional-order
systems. The combination of preview control and fractional-order systems has important
theoretical and practical significance. For a class of fractional-order linear systems, the
design method for a preview tracking controller is given in this paper. The main contribu-
tions of this paper can be summarized as follows. (1) Combining fractional-order system
with preview control for the first time, the problem of preview control for fractional-order
system is studied, and the theory of preview control is extended. (2) By using the proper-
ties of fractional calculus, the fractional derivatives on both sides of the equation of state
are calculated many times to obtain a formal ordinary linear system. The error system is
constructed for the obtained integer-order system, and the controller with preview effect
is designed by introducing appropriate performance indicators. (3) Research shows that
the preview control theory of ordinary systems is a special case of the preview control the-
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ory of fractional-order systems. The conclusions and methods of fractional-order systems
can be directly applied to ordinary control systems.

The research contents are arranged as follows. Section 1 is the introduction. Section 2
provides a few basic concepts, for completeness. Section 3 presents the problem of preview
control for fractional-order linear systems. The problem of preview controller design for
such systems is discussed in Sect. 4. Sections 5 and 6 discuss the conditions under which
the controller exists. Section 7 is for a numerical simulation. Finally, Sect. 8 is for a brief
conclusion.

2 Preliminaries
In its theoretical development, many definitions of fractional-order calculus have emerged
because of different angles of study. The scientific rationality of the definitions has been
convincingly tested in practice. The definitions used in this article are described below
and related properties are given. Additional definitions and properties of fractional-order
calculus can be found in [29–31].

Definition 1 (Fractional-order integral [29]) For any α ∈ C, Re(α) > 0, the order α integral
of the function f (t) is defined as

t0 D–α
t f (t) =

1
Γ (α)

∫ t

t0

(t – τ )α–1f (τ ) dτ , (1)

where Γ (α) =
∫ ∞

0 e–ttα–1 dt.

Remark 1 t0 Dα
t denotes the fractional integral operator, t is the independent variable, t0 is

the lower boundary of the variable.

Definition 2 (Caputo fractional derivative [29]) Set n as a positive integer and f (t) as a
differentiable function of order n. When n – 1 < α < n, the Caputo derivative of order α in
f (t) is specified as

C
t0 Dα

t f (t) = t0 D–(n–α)
t

(
Dnf (t)

)

=
1

Γ (n – α)

∫ t

t0

(t – τ )n–α–1f (n)(τ ) dτ . (2)

Remark 2 (1) Dn denotes the derivative operator of integral order, i.e., Dnf (t) = f (n)(t);
(2) from Definition 2, it can be seen that the order α Caputo derivative of f (t) is to take
the order n derivative of f (t) first, then the order n – α integral; (3) similarly, when n –
1 < α < n, the function that has the derivative of α must be the order n derivative first;
(4) lim

α→n–
C
t0 Dα

t f (t) = f (n)(t) [29].

Property 1 ([29]) The operation of the Caputo fractional derivative is linear, i.e., for ar-
bitrary constants λ1, λ2,

C
t0 Dα

t
[
λ1f1(t) + λ2f2(t)

]
= λ1

C
t0 Dα

t f1(t) + λ2
C
t0 Dα

t f2(t). (3)
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Property 2 ([29]) Let k, m, s all be positive integers, and k + s ≤ m, f (t) ∈ C1[0, T], where
T > 0, then

C
0 D

k
m
t

(C
0 D

s
m
t f (t)

)
= C

0 D
k+s
m

t f (t). (4)

Remark 3 For simplicity, we write C
0 D

k
m
t (C

0 D
s
m
t f (t)) as C

0 D
k
m
t

C
0 D

s
m
t f (t) in this paper.

Property 3 ([29]) Let α > 0, n – 1 < α < n, f (t) be continuously derivable on [0, T]. Then,
the compound formula of fractional integration and equal-order Caputo fractional deriva-
tive calculation is

0D–α
t

(C
0 Dα

t f (t)
)

= f (t) –
n–1∑
k=0

tk

k!
f (k)(0), (5)

where f (0)(t) = f (t).

Remark 4 When f (t) = [f1(t) f2(t) · · · fn(t)]T , let us say

C
t0 Dα

t f (t) =
[

C
t0 Dα

t f1(t) C
t0 Dα

t f2(t) · · · C
t0 Dα

t fn(t)
]T

,

and all the above properties can be proved to be correct.

The following two lemmas need to be used in this article.

Lemma 1 ([32]) (A, B) is stabilizable (controllable) if and only if the matrix [λI – A B]
has full row rank for all λ ∈ C̄

+ (for all λ), C̄+ is the closed right-half complex plane.

Lemma 2 ([32]) (A, B) is controllable if and only if for any eigenvalue λ of A and the cor-
responding left eigenvector x, we have x∗B �= 0, where x∗ represents the conjugate transpose
of vector x.

3 Problem formulation
Consider a fractional-order linear system

C
0 D

1
m
t x(t) = Ax(t) + Bu(t), (6a)

y(t) = Cx(t), (6b)

where m > 1 is a given positive integer, x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the control
input and y(t) ∈ Rp is the output vector; A, B and C are constant matrices of dimensions
n × n, n × r, p × n, respectively.

Let yd(t) ∈ Rp be the desired tracking, or reference signal. Define the difference between
the reference signal and the output signal as the error signal e(t), i.e.,

e(t) = y(t) – yd(t). (7)

In addition, we make the following basic assumptions.
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Assumption 1 (Am, B) is stabilizable.

Assumption 2 The matrix [ Am B
C 0] has full row rank.

Assumption 3 (C, Am) is detectable.

Assumption 4 The reference signal yd(t) is a piecewise-continuously differentiable func-
tion satisfying

lim
t→∞ yd(t) = ȳd, lim

t→∞ ẏd(t) = 0, (8)

where ȳd is constant vector. Furthermore, the reference signal is previewable, namely, the
future value of yd(τ ) is available in {τ |t ≤ τ ≤ t + lr} at each instant of time t, where lr is
the preview length.

Remark 5 Consider an ordinary system { ẋ(t) = Amx(t) + Bu(t)
y(t) = Cx(t) : Assumption 1 is equivalent to say-

ing that the system is stabilizable, and Assumption 3 is equivalent to saying that the system
is detectable. This indicates that the fractional-order control system we consider has some
internal relationship with the ordinary control system. In fact, based on this relationship,
we can apply the preview control theory of ordinary systems to solve the design problem
of the fractional-order system controller.

This paper aims at designing a controller to allow the output of System (6a)–(6b) to
asymptotically track the reference signal, or to make the error signal asymptotically ap-
proach the zero vector. System (6a)–(6b) will be transformed into one that can design the
controller through the optimal preview control method so as to achieve this goal.

4 System transformation and its optimal tracking controller
Firstly, we use properties 1 and 2 of the Caputo fractional derivatives to transform System

(6a)–(6b) and obtain a formal ordinary control system. Taking notice of C
0 D

k
m
t

C
0 D

s
m
t = C

0 D
k+s
m

t ,

by applying C
0 D

1
m
t to both sides of (6a), we get

C
0 D

2
m
t x(t) = C

0 D
1
m
t

(
Ax(t) + Bu(t)

)
= AC

0 D
1
m
t x(t) + BC

0 D
1
m
t u(t), (9)

then substitute (6a) into the right side of the above equation and get

C
0 D

2
m
t x(t) = A

(
Ax(t) + Bu(t)

)
+ BC

0 D
1
m
t u(t) = A2 + ABu(t) + BC

0 D
1
m
t u(t). (10)

We apply C
0 D

1
m
t to both sides of (10) repeatedly, and substitute in (6a) until the left side

becomes C
0 D

m
m
t x(t), namely ẋ(t), thus getting

ẋ(t) = Amx(t) + Am–1Bu(t) + Am–2BC
0 D

1
m
t u(t) + · · · + ABC

0 D
m–2

m
t u(t)

+ BC
0 D

m–1
m

t u(t). (11)
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Denote

Ā = Am ∈ Rn×n, B̄ =
[

Am–1B Am–2B · · · AB B
]

∈ Rn×mr ,

v(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t)
C
0 D

1
m
t u(t)

C
0 D

2
m
t u(t)
...

C
0 D

m–1
m

t u(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Rmr .

Equation (11) can be expressed as

ẋ(t) = Āx(t) + B̄v(t). (12)

Obviously, the problem is transformed into one of designing the appropriate controller
for System (12) so that the output y(t) = Cx(t) of its closed-loop system can asymptotically
track the reference signal yd(t). For this purpose, a quadratic performance index function
is taken for System (12),

J =
1
2

∫ ∞

0

[
eT (t)Qee(t) + v̇T (t)Rv̇(t)

]
dt, (13)

where Qe and R are p×p and (mr)× (mr) positive definite matrices, respectively. Note that
the v̇(t) is introduced in the performance indicator function, which allows the integrator
to be included in the controller, thus helping to eliminate static errors [23].

Then, adopting the methods of preview control theory, an augmented error system is
constructed to transform the tracking problem into a regulation problem.

Differentiating both sides of (7), we have

ė(t) = ẏ(t) – ẏd(t) = Cẋ(t) – ẏd(t). (14)

Differentiating both sides of (12), there is

d
dt

ẋ(t) = Āẋ(t) + B̄v̇(t). (15)

Combining (14) and (15) we get

Ẋ(t) = ÃX(t) + B̃v̇(t) – D̃ẏd(t), (16)

where X(t) = [ e(t)
ẋ(t) ] ∈ Rp+n, Ã = [ 0 C

0 Ā] ∈ R(p+n)×(p+n), B̃ = [ 0
B̄ ] ∈ R(p+n)×mr , D̃ = [ I

0 ] ∈ R(p+n)×p.
According to the output of the original system and the previewable characteristics of

the reference signal, the error vector e(t) should now be taken as the output, that is, the
output equation should be taken as e(t) = [I 0]X(t), and finally we get

⎧⎨
⎩

Ẋ(t) = ÃX(t) + B̃v̇(t) – D̃ẏd(t),

e(t) = C̃X(t),
(17)

where C̃ = [I 0] ∈ Rp×(p+n).
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Equation (17) is the augmented error system we need. The basic idea to solve the prob-
lem is to design the controller for System (17) through the method of optimal preview
control, then obtain the controller of (12), which is the controller of System (6a)–(6b). It is
not difficult to see that if we can design a state feedback to make part of component e(t) of
System (17) asymptotically stable to the zero vector, our goal is achieved. It is well known
from optimal control theory that the controller which minimizes the performance index
function given in Equation (13) allows the closed-loop system to have this property.

Using the relevant variable in (17), we can represent the quadratic index (13) as follows:

J =
1
2

∫ ∞

0

[
XT (t)Q̃X(t) + v̇T (t)Rv̇(t)

]
dt, (18)

where Q̃ = C̃T QeC̃ = [ Qe 0
0 0] ∈ R(n+p)×(n+p).

It is noted that System (17) is similar in form to the system of [23], and the performance
index function (18) is also similar in form to the literature [23]. Therefore, employing a
similar derivation from the literature [23], the following theorem can be obtained.

Theorem 1 Suppose (Ã, B̃) is stabilizable, (Q̃1/2, Ã) is detectable, and Assumption 4 holds.
Let x(t) = 0, v(t) = 0 and yd(t) = 0 for t < 0. Then, the optimal input of the system (12) with
the minimum of the performance index function of (13) is

v(t) = –Ke

∫ t

0
e(σ ) dσ – Kx

[
x(t) – x(0)

]
+ R–1B̃T

∫ lr

0
exp

(
σ ÃT

c
)
PD̃yd(t + σ ) dσ , (19)

where

Ãc = Ã – B̃R–1B̃T P (20)

is stable, P is the unique semidefinite solution of the following algebraic Riccati equation:

ÃT P + PÃ – PB̃R–1B̃T P + Q̃ = 0. (21)

In addition, Ke = R–1B̃T Pe, Kx = R–1B̃T Px, P = [Pe Px].

5 The condition that the controller exists
In this section, we discuss the condition that the controller exists, that is, the condition of
Theorem 1 is satisfied when the original system (6a)–(6b) satisfies the desired condition,
rendering (Ã, B̃) stabilizable and (Q̃1/2, Ã) detectable.

Lemma 3 ([23]) The pair (Ã, B̃) is stabilizable (controllable) if and only if (Ā, B̄) is stabi-
lizable (controllable) and [ Ā B̄

C 0
] has full row rank.

The proof of Lemma 3 is shown in the literature [23].

Theorem 2 If (Am, B) is stabilizable (controllable), then (Ā, B̄) (that is, (Am, B̄)) is stabiliz-
able (controllable).
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Proof We know from the obvious inequality

rank
[
λI – Am Am–1B Am–2B · · · AB B

]
≥ rank

[
λI – Am B

]

that if [λI – Am B] has full row rank, then [λI – Ā B̄], or

[
λI – Am Am–1B Am–2B · · · AB B

]

is full row rank. The conclusion of the present theorem is obtained from Lemma 1. �

According to Lemma 3 and Theorem 2, the following theorem holds.

Theorem 3 If Assumption 1 and Assumption 2 hold together, then (Ã, B̃) is stabilizable.

Proof We know from the obvious inequality

rank

[
Ā B̄
C 0

]
= rank

[
Am Am–1B Am–2B · · · AB B
C 0 0 · · · 0 0

]
≥ rank

[
Am B
C 0

]

that when Assumption 2 is true, the matrix [ Ā B̄
C 0

] has full row rank. Besides, we know
from Theorem 2 that when Assumption 1 holds, (Ā, B̄) is stabilizable. Then, according
to Lemma 3, (Ã, B̃) is stabilizable when both Assumption 1 and Assumption 2 are true.
Theorem 3 is proved. �

Theorem 4 If Assumption 3 is true and Qe is a positive definite matrix, then (Q̃1/2, Ã) is
detectable.

Since Ā = Am, this is a result of the literature [23].
To sum up, the main theorem in this paper is obtained.

Theorem 5 Suppose Assumption 1–Assumption 4 are all true and Qe is a positive definite
matrix. Let x(t) = 0, u(t) = 0 and yd(t) = 0 for t < 0. Then, the input of System (6a)–(6b)
with the minimum of the performance index function of (13) is

u(t) = –Keu

∫ t

0
e(σ ) dσ – Kxu

[
x(t) – x(0)

]
+ Ku

∫ lr

0
exp

(
σ ÃT

c
)
PD̃yd(t + σ ) dσ , (22)

where

Ke =

[
Keu

Ke2

]
, Kx =

[
Kxu

Kx2

]
,

R–1B̃T =

[
Ku

Ku2

]
, Keu ∈ Rr×p, Kxu ∈ Rr×n, Ku ∈ Rr×(p+n).

P is the unique semi-positive definite solution of the Riccati equation (21). In addition,

Ke = R–1B̃T Pe, Kx = R–1B̃T Px, P =
[
Pe Px

]
.
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Proof According to Theorem 3 and Theorem 4, when Assumption 1, Assumption 2, and
Assumption 3 are all true, (Ã, B̃) is stabilizable and (Q̃1/2, Ã) is detectable. Therefore, when
the assumptions of this theorem are satisfied, all of the conditions of Theorem 1 are sat-
isfied. The optimal input of System (12) is obtained from Theorem 1 as shown in (19).
Further, the first component vector of (19) is taken out and the input of System (6a)–(6b)
is obtained.

To do this, dividing the matrix Ke, Kx and R–1B̃T into blocks, namely,

Ke =

[
Keu

Ke2

]
, Kx =

[
Kxu

Kx2

]
, R–1B̃T =

[
Ku

Ku2

]
,

Keu ∈ Rr×p, Kxu ∈ Rr×n, Ku ∈ Rr×(p+n),

we substitute them into (19), take the first row on both sides of the equal sign, and get (22),
so Theorem 5 can be proved. �

6 A little discussion
Remark 5 has indicated that the tracking problem studied in this paper is closely related to
ordinary systems { ẋ(t) = Amx(t) + Bu(t)

y(t) = Cx(t) . This section further discusses the relationship between
the problem and system { ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) . One result follows.

Theorem 6 A necessary condition for (Am, B) to be able to control is that (A, B) is control-
lable.

Proof Using contradiction, let (Am, B) be controllable. According to Lemma 2, if (A, B) is
uncontrollable, there must be a vector w �= 0 and a complex number λ for

w∗A = λw∗, w∗B = 0.

Repeating right multiplication A for w∗A = λw∗ m – 1 times to get

w∗Am = λmw∗,

we have

w∗Am = λmw∗, w∗B = 0.

This is in contradiction with (Am, B) being controllable. Therefore, (A, B) is controllable.
Furthermore, is the inverse of Theorem 6 true? The answer is no. For example, take

A =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦ .

By utilizing Lemma 1, it is seen that (A, B) is controllable, but (A2, B) is uncontrol-
lable. �
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According to the dual principle, Theorem 7 is obtained from Theorem 6.

Theorem 7 The necessary condition for (C, Am) to be observable is that (C, A) is observ-
able.

Theorem 6 and Theorem 7 are only necessary, but they are also meaningful. Because, if
(A, B) cannot be controlled, (Am, B) must not be controlled; if (C, A) is unobservable, then
(C, Am) must be unobservable. This provides some reference for us to judge the condition
of Theorem 1.

7 Numerical simulation
7.1 Numerical simulation algorithm
In this section, the numerical solution of Eq. (6a) is discussed. The initial state x(0) is
known.

Firstly, the initial value problem of (6a) is transformed into the initial value problem of
the corresponding integral equation. By applying 0D– 1

m
t to both sides of (6a), we can obtain

0D– 1
m

t
(C

0 D
1
m
t x(t)

)
= 0D– 1

m
t

(
Ax(t) + Bu(t)

)
. (23)

Utilizing Property 3, the above formula is further reduced to

x(t) = x(0) +
1

Γ (1/m)

∫ t

0
(t – τ )

1
m –1(Ax(τ ) + Bu(τ )

)
dτ . (24)

Equation (24) is the integral equation corresponding to fractional differential (6a). It is
well known that (6a) is the same as (24) in solution, so we only need to solve the integral
equation (24) [31].

Taking the sampling interval as h, the interval [0, kh] is divided into k equal points. We
solve (24) on the interval [0, kh]. We obtain from Eq. (24)

x(kh) = x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1(Ax(τ ) + Bu(τ )

)
dτ

= x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ +

1
Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Bu(τ ) dτ

= x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ

+
1

Γ (1/m)

k–1∑
i=0

∫ (i+1)h

ih
(kh – τ )

1
m –1Bu(τ ) dτ . (25)

Adopting zero-order holder on [ih, (i + 1)h], thus we have

x(kh) = x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ

+
1

Γ (1/m)

k–1∑
i=0

∫ (i+1)h

ih
(kh – τ )

1
m –1Bu(ih) dτ
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= x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ

+
1

Γ (1/m)

k–1∑
i=0

[∫ (i+1)h

ih
(kh – τ )

1
m –1 dτ

]
Bu(ih). (26)

Denote

bik =
∫ (i+1)h

ih
(kh – τ )

1
m –1 dτ

and let us take the integral

bik = mh
1
m

[
(k – i)

1
m –

(
k – (i + 1)

) 1
m
]
. (27)

As we know, when the size of k – i is close to that of k – (i + 1), directly calculating (k – i) 1
m –

(k – (i + 1)) 1
m will lose a lot of effective numbers and thus generate large errors. Therefore,

we use the results of the following transformation:

bik =
m m√h

( m√k – i)m–1(1 + b0 + · · · + bm–1
0 )

, b0 = m

√
k – 1 – i

k – i
, (28)

and get

x(kh) = x(0) +
1

Γ (1/m)

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ +

1
Γ (1/m)

k–1∑
i=0

bikBu(ih). (29)

Further, by the properties of the integral, we have

∫ kh

0
(kh – τ )

1
m –1Ax(τ ) dτ =

k–1∑
i=0

∫ (i+1)h

ih
(kh – τ )

1
m –1Ax(τ ) dτ . (30)

Since the function (kh – τ ) 1
m –1 of τ is monotonous on the interval [ih, (i + 1)h], the integral

mean value theorem can be applied to the integral
∫ (i+1)h

ih (kh – τ ) 1
m –1Ax(τ ) dτ . Because we

can get the value of x(ih),

∫ (i+1)h

ih
(kh – τ )

1
m –1Ax(τ ) dτ ≈

[∫ (i+1)h

ih
(kh – τ )

1
m –1 dτ

]
Ax(ih) = bikAx(ih). (31)

Substituting (31) into (29),

x(kh) = x(0) +
1

Γ (1/m)

k–1∑
i=0

bik
[
Ax(ih) + Bu(ih)

]
. (32)
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Let k = 1, 2, . . . , we can obtain a numerical solution. Note that the input is (22) and the
final iteration format is obtained. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x((k + 1)h) = x(0) + 1
Γ (1/m)

∑k
i=0 bi,k+1[Ax(ih) + Bu(ih)],

y(kh) = Cx(kh),

e(kh) = y(kh) – yd(kh),

u(kh) = –Keu
∫ kh

0 e(σ ) dσ – Kxu[x(kh) – x(0)]

+ Ku
∫ lr

0 exp(σ ÃT
c )PD̃yd(kh + σ ) dσ .

(33)

Remark 6 Let us show that the results of this paper take ordinary control system (m = 1)
as a special case. When m = 1, System (6a)–(6b) becomes

⎧⎨
⎩

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t).
(34)

At this time, whatever the value of i and k, always bik = h, Therefore, the first formula of
iteration format (33) is

x
(
(k + 1)h

)
= x(0) +

k∑
i=0

hAx(ih) +
k∑

i=0

hBu(ih),

which is

x
(
(k + 1)h

)
= x(kh) + hAx(kh) + hBu(kh).

This is precisely the result of the discretization of System (34) by the Euler method.

7.2 Simulation case
In this section, the effectiveness of the designed controller is verified by numerical simu-
lation. Two examples are given here.

Example 1 According to Ref. [1], a class of viscoelastic systems can be represented by the
following fractional differential equations:

⎧⎨
⎩

Mẍ(t) + ηC
0 D

1
2
t x(t) + kx(t) = u(t),

x(0) = a1, ẋ(0) = a2,
(35)

where M, η and k represent mass, damping coefficient, and elastic coefficient, respectively,
x(t) is the displacement function, and u(t) is the input quantity.

Selecting a set of state variables

x1(t) = x(t), x2(t) = C
0 D

1
2
t x(t), x3(t) = ẋ(t), x4(t) = C

0 D
3
2
t x(t),

we have

C
0 D

1
2
t x1(t) = x2(t), C

0 D
1
2
t x2(t) = x3(t), C

0 D
1
2
t x3(t) = x4(t) (36)
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and we use Eq. (35) to get

C
0 D

1
2
t x4(t) = ẍ(t) =

1
M

(
–ηC

0 D
1
2
t x(t) – kx(t) + u(t)

)
=

1
M

(
–kx1(t) – ηx2(t) + u(t)

)
. (37)

The three expressions of (36) and (37) are written as matrix vectors, namely

C
0 D

1
2
t

⎡
⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

– k
M – η

M 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
0
0
1
M

⎤
⎥⎥⎥⎦u(t).

The output of System (35) is x(t). Let M = 1, η = 1.5, k = 1, a1 = 0.1, a2 = 0, We have

⎧⎨
⎩

C
0 D

1
2
t X(t) = AX(t) + Bu(t),

y(t) = CX(t),
(38)

where

X(t) �=

⎡
⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

x(t)
C
0 D

1
2
t x(t)

ẋ3(t)
C
0 D

3
2
t x4(t)

⎤
⎥⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

–1 –1.5 0 0

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦ , C =

[
1 0 0 0

]
.

The initial state is X(0) = [0.1 0 0 0]T .
For this example, it is verified that (A2, B) can be controlled, (C, A2) can be observed,

and the matrix [ A2 B
C 0

] has full row rank. Let

Qe = 1, R =

[
15 14
14 15

]
.

The reference signal is set as

yd(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ 10,

0.2(t – 10), 10 < t ≤ 15,

1, t > 15.

(39)

Since the reference signal is piecewise-continuously differentiable, all the conditions of
Theorem 5 are satisfied.

We conducted numerical simulation for lr = 0 (without reference signal preview), lr = 1.5
and lr = 3.0, respectively. According to Theorem 5, the solution of the Riccati equation and
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the feedback gain matrix of the controller are obtained:

P =

⎡
⎢⎢⎣

2.715493353897455 3.035936029440240 –1.242510196107315 1.608803950946188 0.236743393846281
3.035936029440240 5.685568170113166 –2.392087410321241 2.407705257751323 0.950278182238873

–1.242510196107315 –2.392087410321241 3.136796987702080 –2.938618940017380 0.826127889263837
1.608803950946188 2.407705257751323 –2.938618940017380 2.969986982371575 –0.838897582427755

0.236743393846281 0.950278182238873 0.826127889263837 –0.838897582427755 0.978748459579978

⎤
⎥⎥⎦ ,

Keu = 0.717850060356720,

Kxu =
[

0.786609803962952 –1.918795674136359 1.941185203088351 –0.906411798984001
]

,

Ku =
[
0 0 0 0.517241379310345 –0.482758620689655

]
.

The step length h = 0.01 is selected and the tracking effect is shown in Fig. 1. Figure 2
shows the tracking error of the system output to the reference signal under different pre-
view lengths.

It can be seen from Fig. 1 that the output of the closed-loop system can track the ref-
erence signal by taking different preview lengths. In fact, the adjustment time is 20.24 s,
18.82 s, and 17.90 s, respectively. As can be seen from Fig. 2, the tracking error decreases
with the increase of the preview length.

Example 2 Consider the fractional-order system (6a)–(6b), where

m = 3, A =

[
1 1
0 –4

]
, B =

[
2
0

]
, C =

[
1 1

]
.

After verification, (A3, B) can be stabilized, (C, A3) can be observed, and the matrix [ A3 B
C 0

]
has full row rank. Let

Qe = 1, R = 10I3.

Figure 1 The output response of System (38)
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Figure 2 The tracking error of System (38)

The reference signal is taken as a step function

yd(t) =

⎧⎨
⎩

0, t < 10,

1, t ≥ 10.
(40)

Notice that yd(t) is piecewise-continuously differentiable, so all of the conditions of The-
orem 5 are satisfied.

We also carried out numerical simulations for three cases lr = 0, lr = 1.5 and lr = 3.5.
Respectively, the solutions of the Riccati equation and the feedback gain matrix of the
controller are

P =

⎡
⎢⎣

1.630667100202825 0.912870929175287 0.202762262890926
0.912870929175287 2.321921924271059 0.475792303348216
0.202762262890926 0.475792303348216 0.097691175263477

⎤
⎥⎦ ,

Keu = 0.182574185835057,

Kxu =
[

0.464384384854212 0.095158460669643
]

,

Ku =
[
0 0.2000000000000000 0

]
.

Selecting the constant step length h = 0.01, the initial value is set as x(0) = [0 0.05]T.
The tracking effect is shown in Fig. 3. It can be seen from Fig. 3 that the overshoot and the
adjustment time decrease as the preview length increases. It is known that the adjustment
time of the three cases is 22.75 s, 21.63 s and 21.36 s, respectively. Similarly, as the preview
length increases, the overall tracking error gradually decreases.

Further, we continued to increase the preview length, and found that when it exceeds
a certain value, the effect of the preview effect changes little. Figure 4 shows the step re-
sponse of Example 2 when lr = 3, lr = 5 and lr = 20. As can be seen from the figure, the
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Figure 3 The step response of the system in Example 2

Figure 4 The step responses of the system in Example 2 for different preview lengths

output response curves of lr = 5 and lr = 20 are completely identical, and only the output
response of lr = 3 is slightly different. It can be seen from Figs. 3 and 4 that all features
of the preview control theory of ordinary systems are completely retained in the preview
control of fractional-order systems.

In Example 2, when m = 1 is the ordinary control system, let

Qe = 1, R = 13.

The reference signal is still taken (40), so all the conditions of Theorem 4.3 in Ref. [11] are
satisfied.



Liao and Xie Advances in Difference Equations        (2019) 2019:472 Page 17 of 19

Figure 5 The step response of an ordinary system

The three cases of lr = 0, lr = 1.5 and lr = 3.0 are numerically simulated. The solution of
the Riccati equation and the feedback gain matrix of the controller are obtained:

P =

⎡
⎢⎣

2.618310767549180 1.802775637731997 0.835457432601274
1.802775637731997 7.970226863749043 1.945657640326236
0.835457432601274 1.945657640326236 0.549679396948806

⎤
⎥⎦ ,

Keu = 0.277350098112615,

Kxu =
[

1.226188748269084 0.299331944665575
]

,

Ku =
[
0 0.153846153846154 0

]
.

Selecting the step length h = 0.01, the initial value is x(0) = [0 0.05]T. The tracking
effect is shown in Fig. 5.

Figure 5 shows that increasing the preview length can shorten the adjustment time and
reduce overshoot. The calculation shows that the adjustment time is 17.18 s, 15.92 s and
15.42 s, respectively. Thus, up to now, the ordinary system preview control theory is a
special case of the fractional system preview control theory. The conclusion and method
of fractional-order systems can be directly applied to ordinary control systems.

8 Conclusion
The basic theory of preview control is extended to the fractional control system. We study
the preview tracking control problem for a class of fractional linear systems. By taking
the fractional derivative of both sides of the state equation repeatedly until the left end of
the equation becomes the first derivative of the state vector, the fractional linear system
is transformed into a formal integer linear system. An error system is constructed for the
ordinary integer-order system, and the appropriate performance index is introduced to
design the preview controller. Further, the controller of the original fractional-order sys-
tem is derived. The numerical simulation method of the fractional-order linear system is
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also given in the paper. It is shown that the preview controller of the ordinary integer-
order system is a special case of the preview controller of fractional-order systems given
in this paper. Numerical simulation shows that the designed controller is very effective.
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