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Abstract
In this article, we study the fourth-order problem with the first and second derivatives
in nonlinearity under nonlocal boundary value conditions

{
u(4)(t) = h(t)f (t,u(t),u′(t),u′′(t)), t ∈ (0, 1),
u(0) = u(1) = β1[u], u′′(0) + β2[u] = 0, u′′(1) + β3[u] = 0,

where f : [0, 1]×R+ ×R×R– → R+ is continuous, h ∈ L1(0, 1) and βi[u] is Stieltjes
integral (i = 1, 2, 3). This equation describes the deflection of an elastic beam. Some
inequality conditions on nonlinearity f are presented that guarantee the existence of
positive solutions to the problem by the theory of fixed point index on a special cone
in C2[0, 1]. Two examples are provided to support the main results under mixed
boundary conditions involving multi-point with sign-changing coefficients and
integral with sign-changing kernel.
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1 Introduction
In this article, we study the existence of positive solutions for fourth-order boundary value
problem (BVP) with dependence on the first and second derivatives in nonlinearity subject
to boundary conditions of Stieltjes integral type

{
u(4)(t) = h(t)f (t, u(t), u′(t), u′′(t)), t ∈ (0, 1),
u(0) = u(1) = β1[u], u′′(0) + β2[u] = 0, u′′(1) + β3[u] = 0,

(1.1)

where βi[u] =
∫ 1

0 u(t) dBi(t) is Stieltjes integral with Bi of bounded variation (i = 1, 2, 3).
This equation describes the deflection of an elastic beam.

Alves et al. [1] established the existence of positive solutions for the beam equation

u(4)(t) = f
(
t, u(t), u′(t)

)

under boundary conditions

u(0) = u′(0) = 0, u′′′(1) = g
(
u(1)

)
, u′(1) = 0 or u′′(1) = 0,
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where g is a continuous function. Using of the monotonically iterative technique, Yao [2]
investigated the positive solution for fourth-order two-point boundary value problem

{
u(4)(t) = f (t, u(t), u′(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Li [3] and Ma [4] dealt with the existence of positive solutions for the fourth-order bound-
ary value problem

{
u(4)(t) = f (t, u(t), u′′(t)), t ∈ (0, 1),
u(0) = u′′(0) = u(1) = u′′(1) = 0.

Their methods are respectively based on fixed point index theory on cones and global bi-
furcation techniques. Bai [5] and Guo et al. [6] explored the existence of positive solutions
respectively for the nonlocal fourth-order problems

u(4)(t) + βu′′(t) = λf
(
t, u(t), u′′(t)

)

and

u(4)(t) + βu′′(t) = λf
(
t, u(t), u′(t), u′′(t), u′′′(t)

)

subject to the same boundary conditions

u(0) = u(1) =
∫ 1

0
p(s)u(s) ds, u′′(0) = u′′(1) =

∫ 1

0
q(s)u′′(s) ds,

where p, q ∈ L[0, 1] are nonnegative. Li [7] discussed the existence of positive solutions for
a local fully nonlinear problem

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

where f : [0, 1] ×R
3
+ ×R– → R+ is continuous. Under the conditions that the nonlinearity

f (t, x1, x2, x3, x4) may have superlinear or sublinear growth in x1, x2, x3, x4, the existence of
positive solutions is obtained. We also refer to some previous studies, for instance, [8–12].
Recently the existence of positive solutions was proved in [13] to the following problems:

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u′(0) + β1[u] = 0, u′′(0) + β2[u] = 0, u(1) = β3[u], u′′′(1) = 0,

(1.2)

and
{

–u(4)(t) = g(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],
u(0) = α1[u], u′(0) = α2[u], u′′(0) = α3[u], u′′′(1) = 0,

(1.3)

where βi[u] and αi[u] (i = 1, 2, 3) are Stieltjes integrals of signed measures. All the signs of
the derivatives from the first to the third with respect to t of the Green’s functions cor-
responding to (1.2) and (1.3) do not change, which plays an essential role in [13] when
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estimating the norms. The readers are referred to [14, 15] for more information and tech-
niques about the issue considered.

Note that the boundary conditions in (1.1) are different from those in (1.2) and (1.3), and
both the first and third derivatives with respect to t of the Green’s function correspond-
ing to (1.1) may be sign-changing. We reformulate BVP (1.1) as an integral equation by the
method due to Webb and Infante [16], see also [17, 18]. If u(0) = u(1), the existence of posi-
tive solutions to the resulting integral equation is tackled by the theory of fixed point index
on a special cone in C2[0, 1] under the inequality conditions posed on the nonlinearity. In
particular, the fixed point indexes are computed via the cone expansion and compression
conditions of functional type. Two examples are provided to support the main results un-
der mixed boundary conditions involving multi-point with sign-changing coefficients and
integral with sign-changing kernel.

2 Preliminaries
In order to prove the main theorems, we need the notion of a fixed point index; see, for
example, [19, 20]. Let X be a Banach space, a nonempty subset K is called a cone in X if it
is a closed convex set and satisfies the properties that λx ∈ K for any λ > 0, x ∈ K , and that
±x ∈ K implies x = 0 (the zero element in X). We say that α : K → [0, +∞) is a sublinear
functional if α(tx) ≤ tα(x) for all x ∈ K , t ∈ [0, 1]. The following lemmas come from [21].

Lemma 2.1 Let K be a cone in Banach space X and Ω be a bounded open subset relative
to K with 0 ∈ Ω , S : Ω → K is a completely continuous operator. Suppose that α : K →
[0, +∞) is a continuous and sublinear functional with α(0) = 0, α(x) �= 0 for x �= 0. If Sx �= x
and α(Sx) ≤ α(x) for all x ∈ ∂Ω , then the fixed point index i(S,Ω , K) = 1.

Lemma 2.2 Let K be a cone in Banach space X and Ω be a bounded open subset rel-
ative to K with 0 ∈ Ω , S : Ω → K is a completely continuous operator. Suppose that
α : K → [0, +∞) is a continuous and sublinear functional with α(0) = 0, α(x) �= 0 for x �= 0,
and infx∈∂Ω α(x) > 0. If Sx �= x, α(Sx) ≥ α(x) for all x ∈ ∂Ω , then the fixed point index
i(S,Ω , K) = 0.

Let X = C2[0, 1] be the Banach space consisting of all twice continuously differentiable
functions on [0, 1] with the norm

‖u‖C2 = max
{‖u‖C ,

∥∥u′∥∥
C ,
∥∥u′′∥∥

C

}
,

where ‖u‖C = max{|u(t)| : t ∈ [0, 1]} for u ∈ C[0, 1]. Define an operator in C2[0, 1] as

(Tu)(t) =
3∑

i=1

βi[u]γi(t) +
∫ 1

0
k0(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds, (2.1)

where γ1(t) = 1, γ2(t) = 1
6 t(1 – t)(5 – t), γ3(t) = 1

6 t(1 – t)(1 + t),

k0(t, s) =

{
1
6 t(1 – s)(2s – t2 – s2), 0 ≤ t ≤ s ≤ 1,
1
6 s(1 – t)(2t – s2 – t2), 0 ≤ s ≤ t ≤ 1,

(2.2)
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in which βi[u] =
∫ 1

0 u(t) dBi(t) (i = 1, 2, 3). We set

(Bu)(t) =:
3∑

i=1

βi[u]γi(t), (Fu)(t) =:
∫ 1

0
k0(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds,

so (Tu)(t) = (Bu)(t) + (Fu)(t).
We assume throughout this paper that
(C1) f : [0, 1] × R+ × R × R– → R+ is continuous; here R+ = [0,∞) and R– = (–∞, 0],

h ∈ L1(0, 1) with h(t) ≥ 0 and
∫ 1

0 h(t) dt > 0.
(C2) For each i ∈ {1, 2, 3}, Bi is of bounded variation and

Ki(s) :=
∫ 1

0
k0(t, s) dBi(t) ≥ 0, ∀s ∈ [0, 1].

(C3) βi[γj] ≥ 0 (i, j = 1, 2, 3) and for the 3 × 3 matrix

[B] =

⎛
⎜⎝

β1[γ1] β1[γ2] β1[γ3]
β2[γ1] β2[γ2] β2[γ3]
β3[γ1] β3[γ2] β3[γ3]

⎞
⎟⎠ ,

its spectral radius r([B]) < 1.
Writing 〈β ,γ 〉 =

∑3
i=1 βiγi for the inner product in R

3, we define the operator S in
C2[0, 1] as

(Su)(t) =
〈(

I – [B]
)–1

β[Fu],γ (t)
〉
+ (Fu)(t), (2.3)

where β[Fu] = (β1[Fu],β2[Fu],β3[Fu])T is the transposed vector. Similar to [16] we have
the following lemmas.

Lemma 2.3 Suppose that (C1) holds. Then BVP (1.1) has a solution if and only if there
exists a fixed point of T in C2[0, 1].

Lemma 2.4 Suppose that (C1)–(C3) hold. Then S can be written as

(Su)(t) =
(
(I – B)–1Fu

)
(t)

=
∫ 1

0

(〈(
I – [B]

)–1K(s),γ (t)
〉
+ k0(t, s)

)
h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

=:
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds, (2.4)

where K(s) = (K1(s),K2(s),K2(s))T , i.e.,

kS(t, s) =
〈(

I – [B]
)–1K(s),γ (t)

〉
+ k0(t, s) =

3∑
i=1

κi(s)γi(t) + k0(t, s) (2.5)

and κi(s) is the ith component of (I – [B])–1K(s).
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Lemma 2.5 If (C2) and (C3) hold, then κi(s) ≥ 0 (i = 1, 2),

kS(0, s) = kS(1, s) = κ1(s),

and for t, s ∈ [0, 1],

c0(t)Φ0(s) ≤ kS(t, s) ≤ Φ0(s), (2.6)

where

Φ0(s) =
3∑

i=1

κi(s) + Φ̃0(s), c0(t) = c̃0(t) + γ3(t),

c̃0(t) =

{
3
√

3
2 t(1 – t2), 0 ≤ t ≤ 1

2 ,
3
√

3
2 t(1 – t)(2 – t), 1

2 < t ≤ 1,

Φ̃0(s) =

{ √
3

27 s(1 – s2)3/2, 0 ≤ s ≤ 1
2 ,√

3
27 (1 – s)s3/2(2 – s)3/2, 1

2 < s ≤ 1;

and

c1(t)Φ1(s) ≤ –
∂2kS(t, s)

∂t2 ≤ Φ1(s), (2.7)

where Φ1(s) = 2κ2(s) + κ3(s) + s(1 – s), c1(t) = min{t, (1 – t)/2}.

Proof Inequality κi(s) ≥ 0 is due to [16] and we can find in [18] the inequalities

c̃0(t)Φ̃0(s) ≤ k0(t, s) ≤ Φ̃0(s).

As for (2.7), it can be checked easily. �

Define a cone K in C2[0, 1] as follows:

P =
{

u ∈ C2[0, 1] : u(t) ≥ 0, u′′(t) ≤ 0,∀t ∈ [0, 1]
}

,

K =
{

u ∈ P : u(0) = u(1), u(t) ≥ c0(t)‖u‖C ,

–u′′(t) ≥ c1(t)
∥∥u′′∥∥

C ,∀t ∈ [0, 1];βi[u] ≥ 0 (i = 1, 2, 3)
}

. (2.8)

Lemma 2.6 If (C1)–(C3) hold, then S : P → K is a completely continuous operator.

Proof For u ∈ P and t ∈ [0, 1], it is easy to see that Su ∈ C2[0, 1], (Su)(t) ≥ 0 and
(Su)′′(t) ≤ 0. By Lemma 2.5,

(Su)(0) =
∫ 1

0
kS(0, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

=
∫ 1

0
kS(1, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds = (Su)(1).
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Also by Lemma 2.5,

(Su)(t) =
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

≥ c0(t)
∫ 1

0
Φ0(s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

and

–(Su)′′(t) = –
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

≥ c1(t)
∫ 1

0
Φ1(s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds,

hence we have

(Su)(t) =
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

≤
∫ 1

0
Φ0(s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

and

–(Su)′′(t) = –
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

≤
∫ 1

0
Φ1(s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds,

therefore (Su)(t) ≥ c0(t)‖Su‖C and –(Su)′′(t) ≥ c1(t)‖(Su)′′‖C for t ∈ [0, 1]. Moreover, it
follows from (C2) that

βi[Su] =
∫ 1

0

(∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
)

dBi(t)

=
∫ 1

0

(∫ 1

0
kS(t, s) dBi(t)

)
h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds

=
∫ 1

0
Ki(s)h(s)f

(
s, u(s), u′(s), u′′(s)

)≥ 0 (i = 1, 2, 3),

that is, Su ∈ K . The complete continuity of S is obvious. �

Lemma 2.7 If (C1)–(C3) hold, then S and T have the same fixed points in K . As a result,
BVP (1.1) has a positive solution if and only if S has a fixed point in K .

3 Positive solutions of BVP
Take τ ∈ (0, 1/3) such that

∫ 1–τ

τ
h(t) dt > 0 and denote

h0 = max

{∫ 1

0
Φ0(t)h(t) dt,

∫ 1

0
Φ1(t)h(t) dt

}
,
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hτ = min

{∫ 1–τ

τ

Φ0(t)h(t) dt,
∫ 1–τ

τ

Φ1(t)h(t) dt
}

.

Define a functional α : K → [0, +∞) as

α(u) = max
{

max
τ≤t≤1–τ

∣∣u(t)
∣∣, max

τ≤t≤1–τ

∣∣u′′(t)
∣∣}.

Clearly, α is a continuous and sublinear functional with α(0) = 0. Moreover, since

α(u) ≥ max
τ≤t≤1–τ

∣∣u(t)
∣∣≥ ( max

τ≤t≤1–τ
c0(t)

)
‖u‖C ≥ 1

16
(9

√
3 + 1)‖u‖C , u ∈ K ,

it is easy to see that α(u) �= 0 for u �= 0.

Theorem 3.1 Suppose that (C1)–(C3) are satisfied. If there exist constants a and b with
0 < b < a satisfying 3b < τa,

f (t, x1, x2, x3) ≤ h–1
0 b (3.1)

for (t, x1, x2, x3) ∈ D1 = [0, 1] × [0, 3b] × [–3b, 3b] × [–3b, 0] and

f (t, x1, x2, x3) ≥ 3h–1
τ a (3.2)

for (t, x1, x2, x3) ∈ D2 ∪ D3, where

D2 = [0, 1] × [τa, a] × [–3a, 3a] × [–3a, 0],

D3 = [0, 1] × [0, 3a] × [–3a, 3a] × [–a, –τa],

then BVP (1.1) has at least one positive solution.

Proof Obviously, D1 ∩ (D2 ∪ D3) = ∅ since 3b < τa. Let

Ω1 =
{

u ∈ K : α(u) < b
}

, Ω2 =
{

u ∈ K : α(u) < a
}

,

then it is clear that Ω1 and Ω2 are open sets in K with 0 ∈ Ω1 and Ω1 ⊂ Ω2.
If u ∈ Ω2, by Lemma 2.5, we have

a > max
τ≤t≤1–τ

∣∣u(t)
∣∣≥ ( max

τ≤t≤1–τ
c0(t)

)
‖u‖C ≥ 1

16
(9

√
3 + 1)‖u‖C ≥ 1

3
‖u‖C

and

a > max
τ≤t≤1–τ

∣∣u′′(t)
∣∣≥ ( max

τ≤t≤1–τ
c1(t)

)∥∥u′′∥∥
C =

1
3
∥∥u′′∥∥

C .

Since u(0) = u(1), there exists ξ ∈ (0, 1) such that u′(ξ ) = 0 and thus

∥∥u′∥∥
C = max

0≤t≤1

∣∣u′(t)
∣∣≤ max

0≤t≤1

∣∣∣∣
∫ t

ξ

∣∣u′′(s)
∣∣ds
∣∣∣∣≤
∥∥u′′∥∥

C < 3a.
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Therefore, Ω2 is bounded and ‖u‖C2 < 3a, ∀u ∈ Ω2. Similarly, Ω1 is bounded and ‖u‖C2 <
3b, ∀u ∈ Ω1.

If u ∈ ∂Ω1, then α(u) = b and ‖u‖C2 ≤ 3b. From Lemma 2.5 and (3.1) it follows that

max
τ≤t≤1–τ

∣∣(Su)(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≤ h–1
0 b
∫ 1

0
Φ0(s)h(s) ds ≤ b,

max
τ≤t≤1–τ

∣∣(Su)′′(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≤ h–1
0 b
∫ 1

0
Φ1(s)h(s) ds ≤ b,

and hence α(Su) ≤ α(u). So by Lemma 2.1 the fixed point index

i(S,Ω1, K) = 1, (3.3)

provided Su �= u for u ∈ ∂Ω1.
If u ∈ ∂Ω2, then α(u) = a and, by Lemma 2.5 for t ∈ [τ , 1 – τ ],

a ≥ u(t) ≥ c0(t)‖u‖C ≥
(

min
τ≤t≤1–τ

c0(t)
)
‖u‖C

≥
(

3
√

3
2

+
1
6

)
τ
(
1 – τ 2)‖u‖C ≥ τ‖u‖C ≥ τ max

τ≤t≤1–τ

∣∣u(t)
∣∣ (3.4)

and

a ≥ –u′′(t) ≥ c1(t)
∥∥u′′∥∥

C ≥
(

min
τ≤t≤1–τ

c1(t)
)
‖u‖C

= τ
∥∥u′′∥∥

C ≥ τ max
τ≤t≤1–τ

∣∣u′′(t)
∣∣. (3.5)

When α(u) = a = maxτ≤t≤1–τ |u(t)|, it follows from Lemma 2.5, together with (3.2) and
(3.4), that

max
τ≤t≤1–τ

∣∣(Su)(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≥
(

max
τ≤t≤1–τ

c0(t)
)∫ 1–τ

τ

Φ0(s)h(s)f
(
s, u(s), u′(s), u′′(s)

)
ds

≥ 1
3

3h–1
τ a
∫ 1–τ

τ

Φ0(s)h(s) ds ≥ a,

max
τ≤t≤1–τ

∣∣(Su)′′(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≥
(

max
τ≤t≤1–τ

c1(t)
)∫ 1–τ

τ

Φ1(s)h(s)f
(
s, u(s), u′(s), u′′(s)

)
ds

≥ 1
3

3h–1
τ a
∫ 1–τ

τ

Φ1(s)h(s) ds ≥ a,
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and hence α(Su) ≥ α(u); when α(u) = a = maxτ≤t≤1–τ |u′′(t)|, it similarly follows from
Lemma 2.5, together with (3.2) and (3.5), that α(Su) ≥ α(u). So by Lemma 2.2 and since
infx∈∂Ω2 α(u) = a > 0, the fixed point index

i(S,Ω2, K) = 0, (3.6)

provided Su �= u for u ∈ ∂Ω2.
From (3.3) and (3.6) it follows that the fixed point index

i(S,Ω2 \ Ω1, K) = i(S,Ω2, K) – i(S,Ω1, K) = –1,

hence S has at least one fixed solution and BVP (1.1) has at least one positive solution. �

Theorem 3.2 Suppose that (C1)–(C3) are satisfied. If there exist constants a and b with
0 < b < a satisfying a > 3h0h–1

τ b,

f (t, x1, x2, x3) ≥ 3h–1
τ b (3.7)

for (t, x1, x2, x3) ∈ D1 ∪ D2, where

D1 = [0, 1] × [τb, b] × [–3b, 3b] × [–3b, 0],

D2 = [0, 1] × [0, 3b] × [–3b, 3b] × [–b, –τb],

and

f (t, x1, x2, x3) ≤ h–1
0 a (3.8)

for (t, x1, x2, x3) ∈ D3 = [0, 1] × [0, 3a] × [–3a, 3a] × [–3a, 0], then BVP (1.1) has at least one
positive solution.

Proof Obviously, D1 ∪ D2 ⊂ D3; however, (3.7) and (3.8) are well-posed since a > 3h0h–1
τ b.

Letting

Ω1 =
{

u ∈ K : α(u) < b
}

, Ω2 =
{

u ∈ K : α(u) < a
}

,

we know form the proof of Theorem 3.1 that Ω1 and Ω2 are bounded open sets in K with
0 ∈ Ω1 and Ω1 ⊂ Ω2; moreover, ‖u‖C2 < 3b for u ∈ Ω1 and ‖u‖C2 < 3a for u ∈ Ω2.

If u ∈ ∂Ω1, then α(u) = b and, by Lemma 2.5 for t ∈ [τ , 1 – τ ],

b ≥ u(t) ≥ c0(t)‖u‖C ≥
(

min
τ≤t≤1–τ

c0(t)
)
‖u‖C

≥
(

3
√

3
2

+
1
6

)
τ
(
1 – τ 2)‖u‖C ≥ τ‖u‖C ≥ τ max

τ≤t≤1–τ

∣∣u(t)
∣∣ (3.9)

and

b ≥ –u′′(t) ≥ c1(t)
∥∥u′′∥∥

C ≥
(

min
τ≤t≤1–τ

c1(t)
)
‖u‖C

= τ
∥∥u′′∥∥

C ≥ τ max
τ≤t≤1–τ

∣∣u′′(t)
∣∣. (3.10)
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When α(u) = b = maxτ≤t≤1–τ |u(t)|, it follows from Lemma 2.5, as well as (3.7) and (3.9),
that

max
τ≤t≤1–τ

∣∣(Su)(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≥
(

max
τ≤t≤1–τ

c0(t)
)∫ 1–τ

τ

Φ0(s)h(s)f
(
s, u(s), u′(s), u′′(s)

)
ds

≥ 1
3

3h–1
τ b
∫ 1–τ

τ

Φ0(s)h(s) ds ≥ b,

max
τ≤t≤1–τ

∣∣(Su)′′(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≥
(

max
τ≤t≤1–τ

c1(t)
)∫ 1–τ

τ

Φ1(s)h(s)f
(
s, u(s), u′(s), u′′(s)

)
ds

≥ 1
3

3h–1
τ b
∫ 1–τ

τ

Φ1(s)h(s) ds ≥ b,

and hence α(Su) ≥ α(u); when α(u) = b = maxτ≤t≤1–τ |u′′(t)|, it similarly follows from
Lemma 2.5, together with (3.7) and (3.10), that α(Su) ≥ α(u). So by Lemma 2.2 and since
infx∈∂Ω1 α(u) = b > 0, the fixed point index

i(S,Ω1, K) = 0, (3.11)

provided Su �= u for u ∈ ∂Ω1.
If u ∈ ∂Ω2, then α(u) = a and ‖u‖C2 ≤ 3a. From Lemma 2.5 and (3.8) it follows that

max
τ≤t≤1–τ

∣∣(Su)(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0
kS(t, s)h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≤ h–1
0 a
∫ 1

0
Φ0(s)h(s) ds ≤ a,

max
τ≤t≤1–τ

∣∣(Su)′′(t)
∣∣ = max

τ≤t≤1–τ

∣∣∣∣
∫ 1

0

∂2kS(t, s)
∂t2 h(s)f

(
s, u(s), u′(s), u′′(s)

)
ds
∣∣∣∣

≤ h–1
0 a
∫ 1

0
Φ1(s)h(s) ds ≤ a,

and hence α(Su) ≤ α(u). So by Lemma 2.1 the fixed point index

i(S,Ω2, K) = 1, (3.12)

provided Su �= u for u ∈ ∂Ω2.
From (3.11) and (3.12) it follows that the fixed point index

i(S,Ω2 \ Ω1, K) = i(S,Ω2, K) – i(S,Ω1, K) = 1,

hence S has at least one fixed solution and BVP (1.1) has at least one positive solution. �
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4 Examples
We consider fourth-order problems under mixed boundary conditions involving multi-
point with sign-changing coefficients and integral with sign-changing kernel

⎧⎪⎨
⎪⎩

u(4)(t) = 1√
t(1–t) f (t, u(t), u′(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = 1
4 u( 1

4 ) – 1
12 u( 3

4 ),
u′′(0) +

∫ 1
0 u(t)(2t – 1

2 ) dt = 0, u′′(1) + 1
2 u( 1

2 ) – 1
4 u( 3

4 ) = 0,
(4.1)

that is, β1[u] = 1
4 u( 1

4 ) – 1
12 u( 3

4 ), β2[u] =
∫ 1

0 u(t)(2t – 1
2 ) dt, β3[u] = 1

2 u( 1
2 ) – 1

4 u( 3
4 ). Hence for

s ∈ [0, 1],

0 ≤K1(s) =
1
4

k0

(
1
4

, s
)

–
1

12
k0

(
3
4

, s
)

=

⎧⎪⎨
⎪⎩

– 1
36 s3 + 1

96 s, 0 ≤ s ≤ 1
4 ,

1
72 s3 – 1

32 s2 + 7
384 s – 1

1536 , 1
4 < s ≤ 3

4 ,
– 1

192 s + 1
192 , 3

4 < s ≤ 1,

K2(s) =
∫ 1

0
k0(t, s)

(
2t –

1
2

)
dt =

1
60

s5 –
1

48
s4 –

1
72

s3 +
13

720
s ≥ 0,

0 ≤K3(s) =
1
2

k0

(
1
2

, s
)

–
1
4

k0

(
3
4

, s
)

=

⎧⎪⎨
⎪⎩

– 1
32 s3 + 11

512 s, 0 ≤ s ≤ 1
2 ,

5
96 s3 – 1

8 s2 + 43
512 s – 1

96 , 1
2 < s ≤ 3

4 ,
1

96 s3 – 1
32 s2 + 7

512 s + 11
1536 , 3

4 < s ≤ 1,

and the 3 × 3 matrix

[B] =

⎛
⎜⎝

β1[γ1] β1[γ2] β1[γ3]
β2[γ1] β2[γ2] β2[γ3]
β3[γ1] β3[γ2] β3[γ3]

⎞
⎟⎠ =

⎛
⎜⎝

1
6

5
192

1
192

0 43
720

17
720

1
4

31
512

9
512

⎞
⎟⎠ .

Its spectral radius is r([B]) ≈ 0.1832 < 1. This means that (C2) and (C3) are satisfied. More-
over,

κ1(s) = 1.2022K1(s) + 0.0338K2(s) + 0.0072K3(s),

κ2(s) = 0.0077K1(s) + 1.0654K2(s) + 0.0256K3(s),

κ3(s) = 0.3064K1(s) + 0.0742K2(s) + 1.0213K3(s).

Take τ = 1/4 and then

h0 = max

{∫ 1

0
Φ0(t)h(t) dt,

∫ 1

0
Φ1(t)h(t) dt

}
= max{0.0578, 0.4257} = 0.4257,

hτ = min

{∫ 3/4

1/4
Φ0(t)h(t) dt,

∫ 3/4

1/4
Φ1(t)h(t) dt

}
= min{0.0366, 0.2600} = 0.0366.

Example 4.1 If f (t, x1, x2, x3) = x2
1 + 1+t

2 x2
2 + x2

3, then BVP (4.1) has a positive solution.
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Proof For a = 1600, b = 0.01, it is clear that 3b < a/4. Moreover,

f (t, x1, x2, x3) ≤ 3 ×
(

3
100

)2

= 0.0027 < h–1
0 b = 0.0235

for (t, x1, x2, x3) ∈ D1 = [0, 1] × [0, 0.03] × [–0.03, 0.03] × [–0.03, 0], and

f (t, x1, x2, x3) ≥ 4002 > 3h–1
τ a

for (t, x1, x2, x3) ∈ ([0, 1] × [400, 1600] × [–4800, 4800] × [–4800, 0]) ∪ ([0, 1] × [0, 4800] ×
[–4800, 4800] × [–1600, –400]). Then BVP (4.1) has a positive solution by Theorem 3.1. �

Example 4.2 If f (t, x1, x2, x3) = 2000(1 – 1
1+x2

1+(1+t)x4
2+x2

3
), then BVP (4.1) has a positive solu-

tion.

Proof For a = 1000, b = 1, it is clear that a > 3h0h–1
τ b. Moreover,

f (t, x1, x2, x3) ≤ 2000 ≤ h–1
0 a = 2350

for (t, x1, x2, x3) ∈ [0, 1] × [0, 3000] × [–3000, 3000] × [–3000, 0], and

f (t, x1, x2, x3) ≥ 2000
(

1 –
1

1 + ( 1
4 )2

)
≥ 3h–1

τ b

for (t, x1, x2, x3) ∈ ([0, 1]× [1/4, 1]× [–3, 3]× [–3, 0])∪ ([0, 1]× [0, 3]× [–3, 3]× [–1, –1/4]).
Then BVP (4.1) has a positive solution by Theorem 3.2. �
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