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Abstract
In this work, we have developed a Coxian-distributed SEIR model when incorporating
an empirical incubation period. We show that the global dynamics are completely
determined by a basic reproduction number. An application of the Coxian-distributed
SEIR model using data of an empirical incubation period is explored. The model may
be useful for resolving the realistic intrinsic parts in classical epidemic models since
Coxian distribution approximately converges to any distribution.
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1 Introduction
Compartmental models in epidemiology are well used to simplify mathematical modeling
of infectious diseases [1]. Their origin is in the early 20th century, with an important early
work being that by Kermack and McKendrick in 1927 [2]. The population is subdivided
into three groups: susceptible, infectious and recovered, and the model is referred to as
an SIR epidemic model. The model is applicable to infectious diseases such as measles,
chickenpox, or mumps, where infection confers immunity.

For many important infections there is a significant incubation period during which
an individual has been infected but is not yet infectious himself [3]. During this period
the individual is in compartment E, known as the exposed term, and such models are
called SEIR models. To express the distribution of incubation period, we consider age-
structured SEIR framework. Let S(t), E(t), I(t), and R(t) be the fraction of susceptible,
exposed, infectious, and recovered population at time t, respectively. Motivated by [4–6],
consider a non-autonomous SEIR model of integro-differential type whose transmission
rate is time-dependent:

dS(t)
dt

= μ – β(t)S(t)I(t) – μS(t), (1a)

E(t) = E0P(t) exp(–μt) +
∫ t

0
β(t – u)S(t – u)I(t – u)P(u) exp(–μu) du, (1b)

dI(t)
dt

=
∫ t

0
β(t – u)S(t – u)I(t – u)

[
–Pu(u)

]
exp(–μu) du – (γ + μ)I(t), (1c)
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dR(t)
dt

= γ I(t) – μR(t), (1d)

where 1/γ is the mean period of infectiousness, P(u) is the probability of remaining in-
cubated (assumed asymptomatic and not infectious) to time u from entering, and μ is
the natural mortality. We consider a transmission rate as time-dependent function, β(t).
Choosing time-dependent transmission rate is reasonable because, for example, the trans-
mission rate could decay after some control measures for epidemic are introduced [7]. Also
Pu denotes the derivative with respect to u. The initial conditions are given as S(0) = S0,
E(0) = E0, I(0) = I0, R(0) = R0, and S0 + E0 + I0 + R0 = 1. In general, it is reasonable to as-
sume that a function P : [0,∞) → [0, 1] ∈ L1 is Lebesgue integrable, differentiable a.e.,
non-increasing, P(0) = 1, and limt→∞ P(t) = 0 [8]. Additionally, let T be a continuous ran-
dom variable of incubation period of some infectious diseases. If we know the distribution
of incubation period heuristically, we can define P by

P(u) = P(T > u) = 1 – F(u), (2)

where F is a cumulative density function of random variable of infectious period T ; P is
called the survival function. Many previous studies have developed various survival func-
tions P such as Dirac-delta [9, 10], exponential [11], gamma [12–15], Mittag-Leffler [16,
17], and joint [18, 19] types. In some cases, this framework of SEIR model can be simpli-
fied by a system of ordinary or fractional differential equations with various incubation
period distribution (see Table 1).

Following these ideas, in this work, we construct an SEIR epidemic model, which is
named Coxian-distributed SEIR model, to incorporate empirical incubation period dis-
tribution. Coxian distribution, as one of the phase-type distributions, can be considered
as a mixture of hypo- and hyper-exponential distributions. The novelty of the distribution
is the density in the class of all non-negative distribution functions [20] and so all types
of incubation period are approximated by a Coxian distribution. A basic reproduction
number, R0, was derived. Applying Lyapunov theory, we show that the basic reproduction
number determines the global stability of equilibrium of our model with constant trans-
mission rate. We also give an application illustrating how to use a Coxian-distributed SEIR
model with empirical incubation period data. The limitation of the model is also discussed
in the last section.

2 Derivation of Coxian-distributed SEIR model
A Coxian distribution with n phases is defined as the time until absorption into state 0,
starting from state n, of the Markov process with discrete states in continuous time. A focal
state, X, can be partitioned into n substates Xn, . . . , X1, each with independent dwell times
that are exponentially distributed with rates λi, i = n, n – 1, . . . , 1. Inflow into the state Xn

can be described by a non-negative, integrable inflow rate IX(t). Particles that transition
out of a substate Xk at time t transition into either a different substate Xk–1 with probability
p̄k–1, or enter the recipient state X0 with probability pk–1 = 1 – p̄k–1, for k = n, n – 1, . . . , 1.
Then, Coxian-distributed random variable X [20] is the time until absorption in X0 start-
ing from state n, and the probability density function fX is given as fX(t) = p exp (tQ)q
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where

p =
[
1 0 . . . 0

]
∈ M1×n(R),

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

–λn p̄n–1λn 0 . . . . . . 0
0 –λn–1 p̄n–2λn–1 0 . . . 0
...

...
...

. . .
...

...
0 . . . . . . . . . –λ2 p̄1λ2

0 . . . . . . . . . 0 –λ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ Mn×n(R),

q = –Q1 =
[
pn–1λn pn–2λn–1 . . . p1λ2 λ1

]� ∈ Mn×1(R),

(3)

1 is an n×1 vector of ones and Q is the transition rate matrix, 0 < pi < 1 for i = 1, 2, . . . , n–1
and λi > 0 for i = 1, 2, . . . , n. The survival function P is given as

P(t) = p exp(tQ)1. (4)

For convenience, define

f̂ (t) :=
∫ ∞

t
exp(–μu)fX(u) du ∈ (0, 1).

Then, the Laplace transform L of fX is f̂ (0) from the definition of Laplace transform, and
given explicitly by

[LfX](s) = p(sI – Q)–1q =
n–1∑
i=0

[
ai

n–i∏
j=1

λn+1–j

s + λn+1–j

]
, (5)

where I is the n × n identity matrix and ai = pi
∏n–1–i

j=1 p̄j+i.
Derivation of Coxian-distributed SEIR model is as follows: assume that the infectious

period is Coxian-distributed with the survival function (4) in the model (12). First, note
that if we put the 1 × n vector P as:

P(t) := p exp(tQ) =
[
Pn Pn–1 . . . P2 P1

]
,

where Pi ’s are functions of t, then the survival function P is expressed as

P(t) =
n∑

i=1

Pn(t). (6)

Since d[exp (tQ)]
dt = exp (tQ)Q, P′(t) = P(t)Q holds,

dPn

dt
= –λnPn,

dPi

dt
= p̄iλi+1Pi+1 – λiPi, for i = n – 1, . . . , 1,

(7)
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and

dP(t)
dt

=
n∑

i=1

dPi(t)
dt

= –λ1P1(t) –
n–1∑
i=1

piλi+1Pi+1(t). (8)

Now, if we put (4) into (1b), then (1b) will have the form from (6):

E(t) =
n∑

i=1

∫ ∞

0
Pi(u)β(t – u)S(t – u)I(t – u) exp(–μu) du.

So if we put

Ei(t) =
∫ ∞

0
Pi(u)β(t – u)S(t – u)I(t – u) exp(–μu) du, (9)

for i = n, n – 1, . . . , 1 and differentiate (9) for each i = n, n – 1, . . . , 1, then (7) yields:

dEn(t)
dt

= β(t)S(t)I(t) – (λn + μ)En(t),

dEi(t)
dt

= p̄iλi+1Ei+1(t) – (λi + μ)Ei(t), i = n – 1, . . . , 2, 1,
(10)

and so substituting (8) into (1c) yields

dI(t)
dt

=
∫ t

0
β(t – u)S(t – u)I(t – u)

[
λ1P1(u) +

n–1∑
i=1

piλi+1Pi+1(u)

]
exp(–μu) du

– (γ + μ)I(t),

and (1c) becomes

dI(t)
dt

= λ1E1(t) +
n–1∑
i=1

piλi+1Ei+1(t) – (γ + μ)I(t). (11)

From (10) and (11), targeted n-chained Coxian-distributed SEIR model is derived from
(1a)–(1d) when we put p0 = 1 as follows:

dS(t)
dt

= μ – β(t)S(t)I(t) – μS(t),

dEn(t)
dt

= β(t)S(t)I(t) – (λn + μ)En(t),

dEi(t)
dt

= p̄iλi+1Ei+1(t) – (λi + μ)Ei(t), i = n – 1, . . . , 2, 1,

dI(t)
dt

=
n–1∑
i=0

piλi+1Ei+1(t) – (γ + μ)I(t),

dR(t)
dt

= γ I(t) – μR(t),

(12)

with
∑n

i=1 Ei(t) = E(t). A schematic diagram for the model (12) is depicted in Fig. 1.
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Figure 1 Scheme of model (12)

Basic properties of the model are as follows: the region

Ω =

{
(S, En, En–1, . . . , E1, I, R) ∈R

n+3
+ : S +

n∑
j=1

Ej + I + R ≡ 1

}

is obviously positive-invariant. Also if the initial data S(0), Ei(0), I(0), and R(0) for i = n, n –
1, . . . , 1 are positive, then the solutions S(t), Ei(t), I(t), and R(t) of the model (12) are non-
negative for all t > 0. Indeed, if we assume that there exists t1 > 0 such that S(t) > 0, Ei(t) > 0,
I(t) > 0, R(t) > 0, i = n, n – 1, . . . , 1 in t ∈ [0, t1) and S(t1) · ∏n

i=1 Ei(t1) · I(t1) · R(t1) = 0 (i.e.,
one of the states is 0 at time t1), then

dS(t)
dt

= μ –
(
ζ (t) + μ

)
S(t) ≥ –

(
ζ (t) + μ

)
S(t).

When we take the force of infection ζ (t) = β(t)I(t), we get that

S(t1) ≥ S(0) exp

{
–μt1 –

∫ t1

0
ζ (u) du

}
> 0

holds by Gronwall inequality. Similarly, it can be shown that Ei(t1) > 0, I(t1) > 0, and R(t1) >
0 for i = n, n – 1, . . . , 1, and this yields a contradiction.

3 The basic reproduction number, R0

When the parameters are constant, we can compute the basic reproduction number. As-
sume the number of infectious humans is small in the early phase, i.e., S ≈ 1. Consider
β(t) ≡ β̄ . Define the average time that an individual remains in the exposed class becom-
ing infectious without dying, P̂, as

P̂ =
∫ ∞

0
exp(–μu)P(u) du.

We note that μP̂ represents the probability that an exposed individual will die during the
course of incubation, and so the probability of surviving the exposed class is 1 – μP̂. Note
that since 0 ≤ P(t) ≤ 1 for t ≥ 0, the inequality

0 ≤ P̂ ≤
∫ ∞

0
exp(–μu) du = 1/μ
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holds and so the probability μP̂ is well defined. From the definition of the basic reproduc-
tion number, we can represent this number, denoted by R0, as

R0 = β̄ · (1 – μP̂) · 1
γ + μ

.

Since μP̂ = 1 +
∫ ∞

0 exp (–μu)P′(u) du, integrating by parts and using the relation P′(t) =
–fX(t) in the usual sense, we get

1 – μP̂ =
∫ ∞

0
exp(–μu)fX(u) du = f̂ (0) = [LfX](μ).

From (5), R0 is explicitly represented as

R0 =
β̄

γ + μ

n–1∑
i=0

[
ai

n–i∏
k=1

λn+1–k

λn+1–k + μ

]
, (13)

where ai = pi
∏n–1–i

j=1 p̄j+i. Note that if we ignore the demographic part, i.e., μ = 0, then R0

is expressed as β̄/γ , as in the classical model.

4 Equilibria analysis for the case of constant transmission rate
Consider the case when β(t) = β̄ , a positive constant. Model (12) has an equilibrium

Ed =
(
Sd, Ed

n , Ed
n–1, . . . , Ed

1 , Id, Rd) = (1, 0, 0, . . . , 0), (14)

which is called the disease-free equilibrium. Now we prove the following result:

Theorem 1 The disease-free equilibrium, Ed , of model (12) is globally asymptotically sta-
ble in the domain Ω if R0 ≤ 1.

Proof Consider the function

V =
n∑

j=1

wjEj + I,

for positive constants wj, j = 1, . . . , n, where

wj =
j∑

l=1

α
j
l

j∏
k=l

λk

λk + μ
,

with

α
j
l =

⎧⎨
⎩

pj–1 if l = j,

pl–1
∏j–1

ξ=l p̄ξ otherwise, i.e., if l = 1, 2, . . . , j – 1,
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for fixed j. Then, we can observe that wn = (γ + μ)R0/β̄ . The derivative of V with respect
to time t is given by

dV
dt

=
n∑

j=1

wj
dEj

dt
+

dI
dt

= wn
[
β̄S(t)I(t) – (λn + μ)En(t)

]
+

n–1∑
j=1

wj
[
p̄jλj+1Ej+1(t) – (λj + μ)Ej(t)

]

+
n–1∑
j=0

pjλj+1Ej+1(t) – (γ + μ)I(t)

= wnβ̄S(t)I(t) – (γ + μ)I(t) +
n∑

j=2

[
–wj(λj + μ) + wj–1p̄j–1λj + pj–1λj

]
Ej(t)

+
[
p0λ1 – w1(λ1 + μ)

]
E1(t), (15)

by rearrangement. Moreover, since

p0λ1 – w1(λ1 + μ) = p0λ1 – p0λ1 = 0, (16)

we obtain

wj =
j∑

l=1

aj
l

j∏
k=l

λk

λk + μ

= aj
1

j∏
k=1

λk

λk + μ
+ aj

2

j∏
k=2

λk

λk + μ
+ · · · + aj

j
λj

λj + μ

= p̄j–1
λj

λj + μ

[
aj–1

1

j–1∏
k=1

λk

λk + μ
+ aj–1

2

j–1∏
k=2

λk

λk + μ
+ · · · + aj–1

j–1
λj–1

λj–1 + μ

]

︸ ︷︷ ︸
=
∑j–1

l=1 aj–1
l

∏j–1
k=l

λk
λk +μ

=wj–1

+ aj
j

λj

λj + μ

(
since aj

k = p̄j–1 · aj–1
k

)

=
λj

λj + μ
[p̄j–1wj–1 + pj–1],

and so we can get the recurrence relation

wj(λj + μ) = wj–1p̄j–1λj + pj–1λj, (17)

for each j = 2, 3, . . . , n. Thus, if we substitute (16) and (17) into (15), we obtain

dV
dt

= wnβ̄SI – (γ + μ)I +
n∑

j=2

[
–wj(λj + μ) + wj–1p̄j–1λj + pj–1λj

]
︸ ︷︷ ︸

= 0 by (17)

Ej

+
[
p0λ1 – w1(λ1 + μ)

]
︸ ︷︷ ︸

= 0 by (16)

E1
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= wnβ̄SI – (γ + μ)I

≤ wnβ̄I – (γ + μ)I (since S ≤ 1; equality holds iff S = 1)

= (γ + μ)
(

wn
β̄

γ + μ︸ ︷︷ ︸
=R0

–1
)

I

= (γ + μ)(R0 – 1)I ≤ 0 if R0 ≤ 1.

Therefore, V ′ ≤ 0 if R0 ≤ 1 and V ′ = 0 if and only if En = En–1 = · · · = E1 = I = 0. Also, sub-
stituting I = 0 into the equations for S and R shows that S → 1 and R → 0 as t → ∞. This
means V is a Lyapunov function in the domain Ω . So from the LaSalle’s invariance princi-
ple, every solution to the equations in model (12), with initial conditions in Ω , approaches
Ed as t → ∞. Since Ω is positively invariant, the disease-free equilibrium Ed is globally
asymptotically stable in Ω if R0 ≤ 1. �

Next we consider the endemic equilibrium, E∗ = (S∗, E∗
n, . . . , E∗

1 , I∗, R∗), whose compo-
nents are all positive.

Proposition 2 The endemic equilibrium E∗ of model (12) exists uniquely when R0 > 1, and
there is no endemic equilibrium otherwise.

Proof Solving the algebraic system in (12) for fixed points gives

β̄S∗I∗ = μ
(
1 – S∗), (18a)

β̄S∗I∗ = (λn + μ)E∗
n, (18b)

E∗
i =

1
λi + μ

p̄iλi+1E∗
i+1 for i = n – 1, . . . , 2, 1, (18c)

I∗ =
1

γ + μ

n–1∑
i=0

piλi+1E∗
i+1 =

1
γ + μ

β̄S∗I∗(1 – μP̂), (18d)

R∗ =
γ

μ
I∗. (18e)

From (18a) and (18b),

E∗
n = μ

(
1 – S∗) 1

λn + μ
, (19a)

and from (18c), we get E∗
j for j = n – 1, n – 2, . . . , 1 recursively as

E∗
j = μ

(
1 – S∗) 1

λj + μ

n∏
k=j+1

p̄k–1λk

λk + μ
. (19b)

Substituting (19a)–(19b) into (18d) yields

I∗ = μ
(
1 – S∗) 1

γ + μ

n–1∑
i=0

piλi+1E∗
i+1,
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= μ
(
1 – S∗) 1

γ + μ

×
[

p0
λ1

λ1 + μ

n∏
k=2

p̄k–1λk

λk + μ
+ p1

λ2

λ2 + μ

n∏
k=3

p̄k–1λk

λk + μ
+ · · · + pn–1

λn

λn + μ

]

= μ
(
1 – S∗) 1

γ + μ

n–1∑
i=0

[
ai

n∏
k=i+1

λk

λk + μ

]

= μ
(
1 – S∗) 1

γ + μ

n–1∑
i=0

[
ai

n–i∏
k=1

λn+1–k

λn+1–k + μ

]

=
μ

β̄

(
1 – S∗)R0. (20)

Moreover, if we substitute (20) into (18a), then

I∗ =
μ

β̄
(R0 – 1),

since S∗ = 1. Hence I∗ > 0 if R0 > 1. Also, if I∗ > 0, then 0 < S∗ = 1/R0 < 1 and R∗ > 0 from
(18e). Moreover, Ei’s are positive since 1 – S∗ > 0. Conversely, if R0 ≤ 1, then the model has
no positive equilibrium. �

Finally, we claim the following:

Theorem 3 The endemic equilibrium, E∗, of model (12) is globally asymptotically stable
in the interior of Ω if R0 > 1.

Proof Motivated by [21], consider a Lyapunov function Ve ≡ Ve(S, I) given as

Ve = V1e + V2e,

where

V1e = f̂ (0) · G
(

S
S∗

)
+ I∗ · G

(
I
I∗

)
,

V2e = β̄S∗I∗
∫ ∞

0
f̂ (u) · G

(
S(t – u)I(t – u)

S∗I∗

)
du,

and G(x) = x – 1 – ln x. Notice that Ve = 0 when S = S∗, En = E∗
n, . . . , R = R∗ and Ve > 0

otherwise. Differentiating V1e and V2e with respect to time t yields

dV1e

dt
= f̂ (0)

(
1 –

S∗

S(t)

)[
μ – β̄S(t)I(t) – μS(t)

]

+
(

1 –
I∗

I(t)

)[∫ ∞

0
β̄S(t – u)I(t – u) exp(–μu)fX(u) du – (γ + μ)I(t)

]

= –f̂ (0) · μ (S(t) – S∗)2

S(t)
+ f̂ (0) · β̄S∗I∗ – f̂ (0) · β̄S(t)I(t)

– f̂ (0) · β̄ S∗2

S(t)
I∗ + f̂ (0) · β̄S∗I(t)
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+
∫ ∞

0
β̄S(t – u)I(t – u) exp(–μu)fX(u) du –

I(t)
I∗

∫
β̄S∗I∗ exp(–μu)fX(u) du

–
I∗

I(t)

∫ ∞

0
β̄S(t – u)I(t – u) exp(–μu)fX(u) du

+
∫ ∞

0
β̄S∗I∗ exp(–μu)fX(u) du, (21)

due to relations (18a) and (18d), and

dV2e

dt
=

d
dt

β̄S∗I∗
∫ ∞

0
f̂ (u) · G

(
S(t – u)I(t – u)

S∗I∗

)
du

= f̂ (0) · β̄S∗I∗ · G
(

S(t)I(t)
S∗I∗

)
– β̄S∗I∗

∫ ∞

0
G
(

S(t – u)I(t – u)
S∗I∗

)
df̂ (u)

= f̂ (0) · β̄S∗I∗ · G
(

S(t)I(t)
S∗I∗

)

– β̄S∗I∗
∫ ∞

0
G
(

S(t – u)I(t – u)
S∗I∗

)
exp(–μu)fX(u) du

= f̂ (0) · β̄
(

S(t)I(t) – S∗I∗ – S∗I∗ · ln
S(t)I(t)

S∗I∗

)

–
∫ ∞

0

[
β̄S(t – u)I(t – u) – β̄S∗I∗ – β̄S∗I∗ · ln

S(t – u)I(t – u)
S∗I∗

]

× exp(–μu)fX(u) du

= f̂ (0) ·
(

β̄S(t)I(t) – β̄S∗I∗ · ln
S(t)I(t)

S∗I∗

)

–
∫ ∞

0

[
β̄S(t – u)I(t – u) – β̄S∗I∗ · ln

S(t – u)I(t – u)
S∗I∗

]

× exp(–μu)fX(u) du. (22)

Combining (21) and (22), we get

dVe

dt
=

dV1e

dt
+

dV2e

dt

= –f̂ (0) · μ (S(t) – S∗)2

S(t)
– f̂ (0) · β̄S∗I∗

[
S∗

S(t)
– 2

]

–
∫ ∞

0
β̄S∗I∗

[
S(t – u)I(t – u)

S∗I(t)
– ln

S(t – u)I(t – u)
S(t)I(t)

]
exp(–μu)fX(u) du

= –f̂ (0) · μ (S(t) – S∗)2

S(t)
– f̂ (0) · β̄S∗I∗ · G

(
S∗

S(t)

)
+ f̂ (0) · β̄S∗I∗

[
1 – ln

S∗

S(t)

]

–
∫ ∞

0
β̄S∗I∗ · G

(
S(t – u)I(t – u)

S∗I(t)

)
exp(–μu)fX(u) du

–
∫ ∞

0
β̄S∗I∗

[
1 + ln

S(t – u)I(t – u)
S∗I(t)

– ln
S(t – u)I(t – u)

S(t)I(t)

]
exp(–μu)fX(u) du

︸ ︷︷ ︸
=–

∫ ∞
0 β̄S∗I∗ exp(–μu)fX (u)[1–ln S∗

S(t) ] du=–f̂ (0)·β̄S∗I∗[1–ln S∗
S(t) ]
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= –f̂ (0) · μ (S(t) – S∗)2

S(t)
– f̂ (0) · β̄S∗I∗ · G

(
S∗

S(t)

)

–
∫ ∞

0
β̄S∗I∗ · G

(
S(t – u)I(t – u)

S∗I(t)

)
exp(–μu)fX(u) du

≤ 0,

since G(x) ≥ 0 for all x > 0, and so the integrand of the last term is positive. Therefore, by
the LaSalle’s principle, every solution to the equations of model (12) approaches the en-
demic equilibrium for R0 > 1. Thus the endemic equilibrium E∗ is globally asymptotically
stable if R0 > 1. �

Theorems 1 and 3 indicate that the disease could be eliminated by maintaining the basic
reproduction number less than unity, and conversely, when R0 is greater than unity, the
disease persists in the epidemiological point of view.

5 An application
The 2009 epidemic of influenza H1N1 in Canada is investigated to explain the procedure
of fitting an incubation period to our model. The procedure is summarized as follows: first,
approximate the empirical distribution by a Coxian distribution, and second, investigate
a Coxian-distributed SEIR model.

First, we approximate the empirical distribution of incubation period by a Coxian dis-
tribution, 1 – P, as in (2). The empirical data of incubation period are captured from [22],
and the data are fit to exponential and Coxian distributions, respectively. Unfortunately,
there is no criterion for choosing the number of substates n. However, Akaike’s informa-
tion criterion, AIC, gives the relative quality of statistical models for a given set of data
[23], and so we choose n that makes the AIC smallest. Next, the human case data are fit
to Coxian-distributed SEIR model. The report [24] is used for obtaining daily human case
data. We normalized the model (12) as multiplying the human population. Since the du-
ration of an epidemic is short relative to a human lifetime, we ignore the demographic
effect, and so μ = 0 is assumed. Since the rate of infection-related death is too small to be
considered, we don’t consider the death from the epidemic. Motivated by [22], the mean
duration of infectiousness 1/γ is assumed as 7.1. We consider the initial time (t = 0) as
April 14 when the epidemic started. Since there are two turning points in April 29 and
June 4 in the duration of epidemic, we assume that the transmission rate β(t) is the step
function:

β(t) =

⎧⎪⎪⎨
⎪⎪⎩

β0 for t ∈ [0, 15),

β1 for t ∈ [15, 53),

β2 for t ∈ [53,∞),

and estimate β(t) by fitting between the case data and the cumulative prevalence,∫ t
0 {∑n–1

i=0 piλi+1Ei+1(u)}du, from the model by minimizing the sum of squared residuals
of the corresponding data.

The left panel of Fig. 2 shows the result of fitting the empirical distribution of incubation
period to a Coxian distribution with 12-chains, which is determined by AIC (correspond-
ing AIC = –36.3). We see that the fit curve explains the distribution of empirical incuba-
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Figure 2 Results of fitting the empirical distribution of incubation period to a Coxian distribution with
12-chains (left), and to Coxian-distributed SEIR model with 12-chains (right)

tion period well. The right panel of Fig. 2 illustrates the result of investigating Coxian-
distributed SEIR model. Best fitted values of set of parameters are β0 = 0.642, β1 = 0.252,
and β2 = 0.131 and so the basic reproduction number (13), R0 (= β0/γ ) is 4.561. To com-
pare the result with the classical model, we fit the empirical distribution of incubation pe-
riod to an exponential distribution and investigate the classical exponential SEIR model.
In this case, AIC value of distribution fit is –33.3. The exponential model gives β0 = 0.584,
β1 = 0.234 and β2 = 0.133 and so R0 is 4.146 in the first phase. From the example, we can
see that a Coxian-distributed SEIR model can give nice fit results, and moreover, R0 can
vary greatly when considering a realistic distribution. This result supports the fact that
a common assumption for exponentially-distributed incubation period always underes-
timates the basic reproductive number of infection from onset data, and considering a
realistic incubation period distribution is important to modeling epidemics [25].

6 Discussion
Many previous works have strongly emphasized that modelers should be cautious for con-
sidering the intrinsic facts to classical frameworks when epidemic models for public health
are proposed. In the study, we have derived an SEIR model based on Coxian distribution
which approximates the distribution of the incubation period and performed mathemat-
ical analysis of the model.

In our analysis, we constructed the basic reproduction number which can be interpreted
as the number of cases one case generates on average over its infectious period in a wholly
susceptible environment. The model, which uses a constant transmission rate, was ana-
lyzed to obtain insights into its dynamical features. From the analysis, we found that the
model has a globally asymptotically stable disease-free equilibrium whenever the basic re-
production number is less than unity and the model has a unique endemic equilibrium,
which is globally asymptotically stable whenever the basic reproduction number exceeds
unity. Thus, our basic reproduction number can also be interpreted as the asymptotic per
generation of infection.

The model also has some limitations. First, several parameters are needed to fit empirical
data, and this requires computational work. Secondly, loss of biological meaning could
be caused by going out to the absorbing state without going through the whole chain of
incubation. However, our model could be applicable when sufficient empirical information
of the incubation period is given as shown in an application section. For example, it might
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enable us to describe the SEIR model of a particular type of distribution, like bimodal, that
is not expressed in a conventional way, such as Plasmodium vivax malaria in temperate
regions.
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