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Abstract
In this paper, we consider the initial inverse problem for a diffusion equation with a
conformable derivative in a general bounded domain. We show that the backward
problem is ill-posed, and we propose a regularizing scheme using a fractional
Landweber regularization method. We also present error estimates between the
regularized solution and the exact solution using two parameter choice rules.
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1 Introduction
In this paper we consider the following diffusion equation:

D0
γu(t, x) – Bu(t, x) = F(t, x), (t, x) ∈ (0,To) × Ω , (1)

subject to the boundary conditions

u(t, x) = 0, (t, x) ∈ (0,To) × ∂Ω , (2)

and the initial condition

u(0, x) = u0(x), x ∈ Ω (3)

where the domain Ω is a subset of a d-dimensional space R
d (d = 1, 2, 3 is the dimension

of Ω), which is a bounded domain with sufficient smooth boundary ∂Ω , F is the source
term, To > 0 is a fixed value, and D0

γ is the conformable derivative [4, 14, 16].
Fractional differential equations are successful models of real life phenomenon and

many authors studied fractional partial differential equations (see e.g. [34–36]). This gives
one motivation to study and discuss some of the well known classical differential equa-
tions, when some classical derivatives are replaced by fractional derivatives. One of the
classical equations is the diffusion equation with the conformable derivative and because
of the relationship between the conformable derivative and the classical derivative our
equation could be considered as a modified classical diffusion equation.
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Khalid et al. [16] introduced the conformable derivative and it was developed in [2–4, 6–
9, 31, 33]. Applications of this derivative were given in [5, 14, 25, 32]. In [22] the existence of
solutions to conformable nonlinear differential equations with constant coefficients under
mild conditions on the nonlinear term was discussed and in [29] the authors presented the
iterative learning control for conformable differential equations. Recently, Machado et al.
[1] and Baleanu et al. [15, 30] mentioned the critical analysis of the conformable derivative.

If the initial data u0 and the source term F are given, Problem (1) satisfying (2) and
(3) is called the direct problem. The inverse problem for (1) is less well known. Inverse
problems occur when we do not know all the given data. However, by adding some given
data, we can discuss inverse problems such as the backward problem (recovering the initial
data) or the source identification problem (recovering the source function). Initial inverse
problems for fractional Riemann–Liouville or Caputo diffusion equations were discussed
in the literature [20, 26, 27]. However, little is known on the initial inverse problem for the
diffusion equation with a conformable derivative.

Motivated by the above, in this paper, we study the initial inverse problem of the diffusion
equation with a conformable derivative (1) satisfying (2) and we reconstruct the initial data
g(x) = u(0, x) from the additional data

u(To, x) = h(x), x ∈ Ω . (4)

Note we cannot observe the data (h, F), so we only get approximate data (hε, Fε) such that

∥
∥h – hε∥∥

L2(Ω) +
∥
∥F – Fε∥∥

L∞(0,To;L2(Ω)) ≤ ε, (5)

where ε > 0 is the noise level (in this paper we will also let ‖ · ‖ denote the L2(Ω) norm).
We show that this problem is ill-posed, i.e., the solution (if it exists) does not depend

continuously on the given data. Indeed, a small error of the given observation can result
in that the solution may have a large error. Some regularization method is required for
constructing stable approximations for a sought solution.

We use the Landweber method to find a regularized solution and the idea is based on
iterative sequences. Using this method, some authors established a fractional method for
solving some linear ill-posed models; see, for example, [13, 23]. We will consider regu-
larized solutions and regularity for the regularized solution. Also, we present an error
estimate of the Landweber regularized solution to the exact solution under an a priori as-
sumption using an a priori regularization parameter choice rule, which depends on the
noise level ε and the a priori bound condition E of the unknown solution. That means
the a priori choice of the regularization parameter depends on the a priori bound of the
unknown solution. However, an a priori bound cannot be known exactly in practice, and
working with an incorrect value may lead to a bad regularized solution. Therefore, we pro-
vide an a posteriori choice of the regularization parameter. We also present a regularized
problem and consider the well-posedness of the regularized solution and an error estimate
under two parameter choice rules are considered.

The structure of this paper is as follows. First, we give some preliminaries which are
needed for this paper in Sect. 2. Next, in Sect. 3, we construct an approximate regularized
solution by using the Landweber regularization method. Finally, we estimate the error
between the approximation and the sought solution under two parameter choice rules in
Sect. 4.
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2 Preliminaries
2.1 Some basic results
In this section, we introduce some spaces and some basic definitions associated with con-
formable derivatives.

Definition 2.1 (Conformable Derivative) Let f : [0,∞) →R. Then

D0
γ f(s) = lim

ε→0

f(s + εs1–γ ) – f(s)
ε

, s > 0, (6)

is called the conformable derivative of f of order γ ∈ (0, 1].

Some properties of the conformable derivative can be found in [2, 4, 14] and the refer-
ences therein.

Consider the operator –B on L2(Ω) with domain D(–B) ⊂ H1
0 (Ω) ∩ H2(Ω). Assume

that –B has eigenvalues {̃am} satisfying

0 < ã1 ≤ ã2 ≤ ã3 ≤ · · · ≤ ãm ≤ · · ·

and ãm → ∞ as m → ∞ with corresponding eigenfunctions em ∈ H1
0 (Ω) ∩ H2(Ω). Now

⎧

⎨

⎩

Bem(x) = –̃amem(x), x ∈ Ω ,

em(x) = 0, x ∈ ∂Ω ,

and we note that there exists a positive constant C such that ãm ≥ Cm
2
d for m ∈ N and

m ≥ 1, where d is the dimension of the domain Ω ; see [10].
For r ≥ 0, consider the Hilbert scale space (see [21])

Hr(Ω) =

{

v ∈ L2(Ω) :
∞
∑

k=1

ãr
m
∣
∣〈v, em〉∣∣2 < +∞

}

, (7)

with the norm

‖v‖Hr(Ω) =

( ∞
∑

k=1

ãr
m
∣
∣〈v, em〉∣∣2

) 1
2

.

If r = 0, we have H0(Ω) = L2(Ω).
For a given real number p ≥ 1, let Lp(0,To; L2(Ω)) be the space of all functions such that

‖v‖Lp(0,To ;L2(Ω)) :=
(∫ To

0

∥
∥v(t)

∥
∥

p
L2(Ω) dt

) 1
p

< +∞.

We give two lemmas, which will be needed later.

Lemma 2.1 ([19, 28]) For 0 < λ < 1, r > 0 and k ∈N, we have

(1 – λ)kλr ≤ rr(k + 1)–r < rrk–r.
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Lemma 2.2 For ãm > 0, γ > 0, α ∈ ( 1
2 , 1] and 0 < μ exp(–2̃am

T
γ

o
γ ) < 1, we get

sup
ãm>0

exp

(

ãm
T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

≤ μ
1
2 k

1
2 .

Proof First, we obtain

exp

(

ãm
T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

= μ
1
2

[

μ
1
2 exp

(

–̃am
T

γ
o

γ

)]–1[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

. (8)

Let

Ψ (ν) := ν–2[1 –
(

1 – ν2)k]2α,

where μ := μ
1
2 exp(–̃am

T
γ

o
γ ). We note that 0 < μ < 1

‖K‖2 (see [18]), and this implies that

0 < μ exp(–2̃am
T

γ
o

γ ) < 1. Hence, this function is continuous in [0, +∞) when μ ∈ (0, 1).
For α ∈ ( 1

2 , 1) and μ ∈ (0, 1), from Lemma 3.3 in [18], we obtain

Ψ (ν) ≤ k. (9)

Combining (8) and (9), we deduce that

sup
ãm>0

exp

(

ãm
T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

≤ μ
1
2 k

1
2 . �

2.2 Solution for the fractional diffusion equation with conformable derivative
Assume that Problem (1) satisfying (2) and (3) (i.e. the direct problem) has a solution u as
follows:

u(t, x) =
∞
∑

m=1

〈

u(t, x), em(x)
〉

em(x).

Note
⎧

⎨

⎩

D0
γ 〈u(t, x), em(x)〉 – ãm〈u(t, x), em(x)〉 = 〈F(t, x), em(x)〉, (t, x) ∈ (0,To) × Ω ,

〈u(0, x), em(x)〉 = 〈u0(x), em(x)〉, x ∈ Ω ,
(10)

where 〈Bu(t, x), em(x)〉 = –̃am〈u(t, x), em(x)〉. Using the result in [14] and [22], the solution
of the latter problem is

u(t, x) =
∞
∑

m=1

[

exp

(

–̃am
tγ

γ

)
〈

u0(x), em(x)
〉

+
∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)
〈

F(τ , x), em(x)
〉

dτ

]

em(x).
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Let t = To and we get (with hm = 〈h, em〉 and Fm(τ ) = 〈F(τ , .), em〉)

hm(x) = exp

(

–̃am
T

γ
o

γ

)
〈

u0(x), em(x)
〉

+
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

Fm(τ ) dτ .

This implies that

u(t, x) =
∞
∑

m=1

[

exp

(

–̃am
tγ – T

γ
o

γ

)

×
(

hm –
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

Fm(τ ) dτ

)

+
∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

Fm(τ ) dτ

]

em(x). (11)

Let

A1
γ (t,To)v :=

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)

〈v, em〉em,

A2
γ (t)v :=

∞
∑

m=1

∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

〈v, em〉dτem,

for v ∈ L2(Ω), and 0 ≤ τ ≤ t ≤ To. Then it follows from (11) that

u(t) = A1
γ (t,To)

[

h – A2
γ (To)F(t)

]

+ A2
γ (t)F(t).

Recall for any n > 0, there exists a positive constant P1,n (from elementary calculus note
we can take P1,n to be nn exp(–n)) such that

exp(–z) ≤P1,nz–n, z ≥ 0 (12)

and if 0 < s < 1, there exists a positive constant P2,s (we can take P2,s to be (1 – s)1–s ×
exp(s – 1)) such that

exp(–z) ≤P2,szs–1, z ≥ 0. (13)

Lemma 2.3 Given 0 ≤ τ ≤ To and Ω ⊂R
d for any 1 ≤ d ≤ 3.

(a) If w ∈ L2(Ω), then ‖A2
γ (t)w‖ ∈ L2(Ω) and

∥
∥A2

γ (t)w
∥
∥

L2(Ω) ≤R‖w‖L2(Ω) where R =

( ∞
∑

m=1

1

C2m
4
d

) 1
2

.

(b) If w ∈ L2(Ω) for 0 < n �= 1, then ‖A2
γ (t)w‖ ∈Hn(Ω) and

∥
∥A2

γ (t)w
∥
∥

2
Hn(Ω) ≤P1,n

T
γ(1–n)

o

γ(1 – n)

∫ t

0
τ γ–1∥∥w(τ )

∥
∥

2
L2(Ω) dτ .
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(c) If w ∈Hq+1(Ω) for 0 < q < 1 and 0 ≤ t1 < t2 ≤ To, then ‖A2
γ (t)w‖ ∈ L2(Ω) and

∥
∥
(

A2
γ (t1) – A2

γ (t2)
)

w
∥
∥

L2(Ω)

≤
(

P2,q
|tγ

1 – tγ
2|2

γq+1
T

qγ
o

qγ

∫ t1

0
τ γ–1‖w‖2

Hq+1(Ω) dτ

) 1
2

+
(

tγ
2 – tγ

1
γ

∫ t2

t1

τ γ–1‖w‖2
L2(Ω) dτ

) 1
2

.

Proof (a) Note

∥
∥A2

γ (t)w
∥
∥

L2(Ω) =

√
√
√
√

∞
∑

m=1

[∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)
〈

w(τ ), em
〉

dτ

]2

≤ ‖w‖L2(Ω)

√
√
√
√

∞
∑

m=1

[∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

dτ

]2

. (14)

By the change variable ξ = τ γ

γ , we obtain

∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

dτ =
∫ tγ

γ

0
exp

(

–̃am
tγ

γ
+ ãmξ

)

dξ

=
1 – exp(–̃am

tγ

γ )
ãm

≤ 1
ãm

. (15)

Since ãm ≥ Cm
2
d , where d is the dimension of the domain Ω , we know that

∞
∑

m=1

1
ã2

m
≤

∞
∑

m=1

1

C2m
4
d

= R2. (16)

Combining (14), (15) and (16), we deduce that

∥
∥A2

γ (t)w
∥
∥

L2(Ω) ≤R‖w‖L∞(0,To ;L2(Ω)).

(b) For n > 0, using (12) we have

exp

(

–̃am
tγ – τ γ

γ

)

≤P1,ña–n
m γn(tγ – τ γ)–n.

Therefore

∥
∥A2

γ (t)w
∥
∥

2
Hn(Ω) =

∞
∑

m=1

ãn
m

[∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)
〈

w(τ ), em
〉

dτ

]2

≤
∞
∑

m=1

ãn
m

[∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

dτ

]

×
[∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)
〈

w(τ ), em
〉2 dτ

]
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≤P1,n

[∫ t

0
τ γ–1(tγ – τ γ)–n dτ

] ∞
∑

m=1

[∫ t

0
τ γ–1〈w(τ ), em

〉2 dτ

]

≤P1,n
T

γ(1–n)
o

γ(1 – n)

∫ t

0
τ γ–1∥∥w(τ )

∥
∥

2
L2(Ω) dτ ,

where we have noted that

∫ t

0
τ γ–1(tγ – τ γ)–n dτ =

1
γ

∫ t

0

(

tγ – ξ
)–n dξ

=
tγ(1–n)

γ(1 – n)
≤ T

γ(1–n)
o

γ(1 – n)
.

(c) Since 0 ≤ t1 < t2 ≤ To we have

(

A2
γ (t1) – A2

γ (t2)
)

w

=
∞
∑

m=1

∫ t1

0

[

exp

(

–̃am
tγ

1
γ

)

– exp

(

–̃am
tγ

2
γ

)]

τ γ–1 exp

(

ãm
τ γ

γ

)

〈w, em〉dτem

–
∞
∑

m=1

∫ t2

t1

τ γ–1 exp

(

–̃am
tγ

2 – τ γ

γ

)

〈w, em〉dτem

= D1(m, t, γ) – D2(m, t, γ),

where D2(m, t, γ) =
∑∞

m=1
∫ t2

t1
τ γ–1 exp(–̃am

tγ
2–τ γ

γ )〈w, em〉dτem. Also note | exp(–a) –
exp(–b)| ≤ |a – b|max{exp(–a), exp(–b)} and for t1 < t2 then tγ

1 < tγ
2 and

∣
∣
∣
∣
exp

(

–̃am
tγ

1
γ

)

– exp

(

–̃am
tγ

2
γ

)∣
∣
∣
∣
≤ ãm

γ
∣
∣tγ

1 – tγ
2
∣
∣ exp

(

–̃am
tγ

1
γ

)

,

and this together with Hölder’s inequality yields

∥
∥D1(m, t, γ)

∥
∥

2
L2(Ω)

≤
∥
∥
∥
∥
∥

∞
∑

m=1

∫ t1

0

ãm

γ
∣
∣tγ

1 – tγ
2
∣
∣τ γ–1 exp

(

ãm
τ γ – tγ

1
γ

)

〈w, em〉dτem

∥
∥
∥
∥
∥

2

L2(Ω)

≤ |tγ
1 – tγ

2|2
γ2

∞
∑

m=1

ã2
m

[∫ t1

0
τ γ–1 exp

(

ãm
τ γ – tγ

1
γ

)

dτ

]

×
[∫ t1

0
τ γ–1 exp

(

ãm
τ γ – tγ

1
γ

)
∣
∣〈w, em〉∣∣2 dτ

]

.

For 0 < q < 1, using (13) we obtain

exp

(

ãm
τ γ – tγ

1
γ

)

≤P2,q̃aq–1
m γ1–q(tγ

1 – τ γ)q–1.
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This implies that

∥
∥D1(m, t, γ)

∥
∥

2
L2(Ω)

≤P2,q
|tγ

1 – tγ
2|2

γq+1

∫ t1

0
τ γ–1(tγ

1 – τ γ)q–1 dτ

∞
∑

m=1

ãq+1
m

∫ t1

0
τ γ–1∣∣〈w, em〉∣∣2 dτ .

We note that

∫ t1

0
τ γ–1(tγ

1 – τ γ)q–1 dτ =
1
γ

∫ tγ
1

0

(

tγ – ξ
)q–1 dξ =

tqγ
1

qγ
≤ T

qγ
o

qγ
.

Therefore

∥
∥D1(m, t, γ)

∥
∥

2
L2(Ω) ≤P2,q

|tγ
1 – tγ

2|2
γq+1

T
qγ

o

qγ

∫ t1

0
τ γ–1‖w‖2

Hq+1(Ω) dτ .

Using Hölder’s inequality, we have

∥
∥D2(m, t, γ)

∥
∥

2
L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

∫ t2

t1

τ γ–1 exp

(

–̃am
tγ

2 – τ γ

γ

)

〈w, em〉dτem

∥
∥
∥
∥
∥

2

L2(Ω)

=
∞
∑

m=1

[∫ t2

t1

τ γ–1 exp

(

–̃am
tγ

2 – τ γ

γ

)

〈w, em〉dτ

]2

≤
∞
∑

m=1

[∫ t2

t1

τ γ–1 exp

(

–̃am
tγ

2 – τ γ

γ

)

dτ

][∫ t2

t1

τ γ–1 exp

(

–̃am
tγ

2 – τ γ

γ

)
∣
∣〈w, em〉∣∣2 dτ

]

≤
∞
∑

m=1

[∫ t2

t1

τ γ–1 dτ

][∫ t2

t1

τ γ–1∣∣〈w, em〉∣∣2 dτ

]

≤ tγ
2 – tγ

1
γ

∫ t2

t1

τ γ–1‖w‖2
L2(Ω) dτ .

From the above results, we get

∥
∥
(

A2
γ (t1) – A2

γ (t2)
)

w
∥
∥

L2(Ω)

≤
(

P2,q
|tγ

1 – tγ
2|2

γq+1
T

qγ
o

qγ

∫ t1

0
τ γ–1‖w‖2

Hq+1(Ω) dτ

) 1
2

+
(

tγ
2 – tγ

1
γ

∫ t2

t1

τ γ–1‖w‖2
L2(Ω) dτ

) 1
2

. �

2.3 Ill-posedness of determining initial data and stability estimate
Recall that the solution u(t, x) of Problem (4) (i.e. the inverse problem) is given by (11). Let

g(x) := u(0, x) =
∞
∑

m=1

exp

(

ãm
T

γ
o

γ

)

Υ mem(x), (17)
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where

Υ m = 〈Υ , em〉, with Υ = h – A2
γ (To)F(τ ). (18)

In this paper, our main purpose is to determine the initial value g(x) from the final data h(x)
and the source term F(t, x). We can find g(x) by solving an operator equation as follows:

Kg = Υ ,

where K : L2(Ω) → L2(Ω) is the integral operator defined by

(Kg)(x) :=
∞
∑

m=1

exp

(

–̃am
T

γ
o

γ

)

〈g, em〉em =
∫

Ω

�(ξ, x)g(ξ) dξ ,

with kernel �(·, ·) given by

�(ξ, x) :=
∞
∑

m=1

exp

(

–̃am
T

γ
o

γ

)

em(ξ)em(x).

Since �(ξ, x) = �(x, ξ), we know that the operatorK is self-adjoint. Assume that Υ ∈ L2(Ω).

Lemma 2.4 Let h ∈ L2(Ω) and F ∈ L∞(0,To; L2(Ω)). Then Υ as in (18) belongs to L2(Ω)
and

‖Υ ‖L2(Ω) ≤ ‖h‖L2(Ω) + R‖F‖L∞(0,To ;L2(Ω)).

Proof From the definition of Υ , we get

‖Υ ‖L2(Ω) ≤ ∥
∥h – A2

γ (To)F(τ )
∥
∥

L2(Ω)

≤ ‖h‖L2(Ω) +
∥
∥A2

γ (To)F(τ )
∥
∥

L2(Ω).

Using Lemma 2.3, we deduce that

∥
∥A2

γ (To)F(t)
∥
∥

L2(Ω) ≤R
∥
∥F(t)

∥
∥

L2(Ω) ≤R‖F‖L∞(0,To ;L2(Ω)). (19)

Therefore

‖Υ ‖L2(Ω) ≤ ‖h‖L2(Ω) + R‖F‖L∞(0,To ;L2(Ω)).

This completes the proof. �

Therefore, K : L2(Ω) → L2(Ω) is compact operator of infinite rank. Hence K does not
have a continuous inverse [24].

To illustrate the ill-posedness of the backward problem, we give an example. Let (h, F) =
(0, 0) and (h, F) = ( 1√

ãl
el, 1√

ãl
el). It is easy to see that

‖h – h‖ =
1√̃
al

, and ‖F – F‖ =
1√̃
al

.
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Hence

lim
l→∞

‖h – h‖ = 0, and lim
l→∞

‖F – F‖ = 0, (20)

so (h, F) is an approximation of (h, F) when l is large enough. Using (h, F), we get the cor-
responding initial data g and the equation Υ as follows:

Υ (x) =
∞
∑

m=1

[

hm –
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

Fm(τ ) dτ

]

em(x),

g(x) =
∞
∑

m=1

exp

(

ãm
T

γ
o

γ

)[

hm –
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

Fm(τ ) dτ

]

em(x).

From Parseval’s equality and (15), we get

‖Υ – Υ ‖2 =
∞
∑

m=1

[

〈hm – h, em〉 –
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

〈Fm – F, em〉dτ

]2

=
[

1√̃
al

–
1√̃
al

∫ To

0
τ γ–1 exp

(

–̃al
T

γ
o – τ γ

γ

)

dτ

]2

=
1
ãl

[

1 –
1 – exp(–̃al

T
γ

o
γ )

ãl

]2

.

This gives

lim
l→∞

‖Υ – Υ ‖ = 0.

On the other hand, we have

‖g – g‖2

=
∞
∑

m=1

exp

(

ãm
T

γ
o

γ

)[

〈hm – h, em〉

–
∫ To

0
τ γ–1 exp

(

–̃am
T

γ
o – τ γ

γ

)

〈Fm – F, em〉dτ

]2

= exp

(

ãl
T

γ
o

γ

)[
1√̃
al

–
1√̃
al

∫ To

0
τ γ–1 exp

(

–̃al
T

γ
o – τ γ

γ

)

dτ

]2

= exp

(

ãl
T

γ
o

γ

)
1
ãl

[

1 –
1 – exp(–̃al

T
γ

o
γ )

ãl

]2

,

so

lim
l→+∞

‖g – g‖ = +∞. (21)

We conclude that the backward problem is ill-posed in the Hadamard sense. Hence a reg-
ularization method is necessary. We will use the Landweber method to deal with the ill-
posed problem. Before doing that, we impose an a priori bound on the initial data; that
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is,

∞
∑

m=1

exp

(

2r̃am
T

γ
o

γ

)
∣
∣〈g, em〉∣∣2 ≤ E2, for any r ≥ 0, (22)

where E is a positive constant. The a priori bound of the exact solution is necessary for
any ill-posed problem, otherwise, the rate of convergence is very slow or the regularization
solution is not convergent (see [12]).

3 Landweber regularization method and regularity of the regularized solution
In this section, we present a regularized problem by using the Landweber regularization
method, and also we consider the well- posedness of the regularized solution. From [17],
the operator equation Kg = Υ is equivalent to the following equation:

g =
(

I – μK∗K
)

g + μK∗Υ , (23)

for any μ > 0. Here, K∗ is the adjoint operator of K, and μ > 0 satisfies 0 < μ < 1
‖K‖2 . The

iterative implementation of the Landweber method was constructed in [18]. Denote the
Landweber regularization solution by

gk,α(x) =
∞
∑

m=1

exp

(

ãm
T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈Υ , em〉em, (24)

and the Landweber regularization solution with noisy data by

g
ε
k,α(x) =

∞
∑

m=1

exp

(

ãm
T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α
〈

Υ ε, em
〉

em, (25)

where α ∈ ( 1
2 , 1] is called the fractional parameter, and k = 1, 2, 3, . . . is a regularization

parameter. When α = 1, this is the classical Landweber method.
Hence, we get the Landweber regularization solution of Problem (4) (i.e. the inverse

problem):

uk,α(t, x) =
∞
∑

m=1

[

exp

(

–̃am
tγ – T

γ
o

γ

)

×
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈Υ , em〉

+
∫ t

0
τ γ–1 exp

(

–̃am
tγ – τ γ

γ

)

Fm(τ ) dτ

]

em(x). (26)

Let us consider the operator

A3
γ (t,To)v :=

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)

×
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈v, em〉em,

for v ∈ L2(Ω), and 0 ≤ t ≤ To.
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Lemma 3.1 Given μ > 0 and k ∈N with k ≥ 1.
(a) If v ∈ L2(Ω), then ‖A3

γ (t,To)v‖ ∈ L2(Ω) and

∥
∥A3

γ (t,To)v
∥
∥

L2(Ω) ≤ μ
1
2 k

1
2 ‖v‖L2(Ω).

(b) If v ∈ L2(Ω) for n > 0, then ‖A3
γ (t,To)v‖ ∈Hn(Ω) and

∥
∥A3

γ (t,To)v
∥
∥
Hn(Ω) ≤ μ

1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2

t– nγ
2 ‖v‖L2(Ω).

(c) If v ∈Hs(Ω) for 0 < s < 1 and 0 ≤ t1 < t2 ≤ To, then ‖A3
γ (t,To)v‖ ∈ L2(Ω) and

∥
∥
(

A3
γ (t1,To) – A3

γ (t2,To)
)

v
∥
∥

L2(Ω) ≤ μ
1
2 k

1
2
P2,s

sγ s

[

tγ
2 – tγ

1
]s‖v‖Hs(Ω).

Proof (a) First, using Lemma 2.2, we obtain

∥
∥A3

γ (t,To)v
∥
∥

L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈v, em〉em

∥
∥
∥
∥
∥

L2(Ω)

≤
∥
∥
∥
∥
∥

μ
1
2 k

1
2

∞
∑

m=1

exp

(

–̃am
tγ

γ

)

〈v, em〉em

∥
∥
∥
∥
∥

L2(Ω)

≤ μ
1
2 k

1
2 ‖v‖L2(Ω).

(b) For n > 0, using (12) we have

∥
∥A3

γ (t,To)v
∥
∥
Hn(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈v, em〉em

∥
∥
∥
∥
∥
Hn

≤
∥
∥
∥
∥
∥

μ
1
2 k

1
2

∞
∑

m=1

exp

(

–̃am
tγ

γ

)

〈v, em〉em

∥
∥
∥
∥
∥
Hn(Ω)

≤ μ
1
2 k

1
2

√
√
√
√

∞
∑

m=1

ãn
m exp

(

–2̃am
tγ

γ

)
∣
∣〈v, em〉∣∣2

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2

t– nγ
2 ‖v‖L2(Ω).
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(c) From the definition of A3
γ (t,To), we get

∥
∥
(

A3
γ (t1,To) – A3

γ (t2,To)
)

v
∥
∥

L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

[

exp

(

–
ãmtγ

1
γ

)

– exp

(

–
ãmtγ

2
γ

)]

exp

(

ãm
T

γ
o

γ

)

×
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α

〈v, em〉em

∥
∥
∥
∥
∥

L2(Ω)

.

Using Lemma 2.2, we get

∥
∥
(

A3
γ (t1,To) – A3

γ (t2,To)
)

v
∥
∥

L2(Ω)

≤
(

μk
∞
∑

m=1

[

exp

(
–̃amtγ

1
γ

)

– exp

(
–̃amtγ

2
γ

)]2
∣
∣〈v, em〉∣∣2

) 1
2

.

For 0 < s < 1, using (13) we obtain

exp

(
–̃amtγ

1
γ

)

– exp

(
–̃amtγ

2
γ

)

=
∫ t2

t1

exp

(

–
ãmtγ

γ

)

d
(

ãmtγ

γ

)

≤P2,s

∫ t2

t1

(
ãmtγ

γ

)s–1

d
(

ãmtγ

γ

)

≤ P2,s

s

(
ãm

γ

)s
[

tγ
2 – tγ

1
]s.

From the above results, we deduce that

∥
∥
(

A3
γ (t1,To) – A3

γ (t2,To)
)

v
∥
∥

L2(Ω)

≤ μ
1
2 k

1
2
P2,s

sγs

[

tγ
2 – tγ

1
]s
( ∞
∑

m=1

ãs
m
∣
∣〈v, em〉∣∣2

) 1
2

≤ μ
1
2 k

1
2
P2,s

sγs

[

tγ
2 – tγ

1
]s‖v‖Hs(Ω). �

The Landweber regularization solution of Problem (4) can be transformed into the form

uk,α(t) = A3
γ (t,To)

[

h – A2
γ (To)F(t)

]

+ A2
γ (t)F(t). (27)

and the Landweber regularization solution of Problem (4) with noisy data:

u
ε
k,α(t) = A3

γ (t,To)
[

hε – A2
γ (To)Fε(t)

]

+ A2
γ (t)Fε(t)

= Ξ1(t) + Ξ2(t) + Ξ3(t). (28)

Next, we consider the regularity of the solution uε
k,α. We give a result which establishes

regularity of the regularized solution.
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Theorem 3.1
(a) Let hε ∈ L2(Ω) and F ∈ L∞(0,To; L2(Ω)). If Ω ⊂R

d for any 1 ≤ d ≤ 3 then

∥
∥u

ε
k,α
∥
∥

L∞(0,To ;L2(Ω)) ≤ μ
1
2 k

1
2
∥
∥hε∥∥

L2(Ω) +
(

μ
1
2 k

1
2 + 1

)

R
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)).

(b) Given 0 < n �= 1 and 1 < p < min( 2
nγ , 1

1–γ ). Let hε ∈ L2(Ω) and

F ∈ L
2p

p–1 (0,To; L2(Ω)) ∩ L∞(0,To; L2(Ω)). Then there exists M depends only To, p, n,
μ, k and (the regularized solution) uε

k,α ∈ Lp(0,To,Hn(Ω)) ∩ L∞(0,To; L2(Ω)) such
that

∥
∥u

ε
k,α
∥
∥

Lp(0,To ,Hn(Ω)) ≤ M
(∥
∥hε∥∥

L2(Ω) +
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)) +
∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))

)

,

(c) Let hε ∈Hs(Ω) for 0 < s < 1 and F ∈ L
2p

p–1 (0,To;Hq+1(Ω)) for 1 < p < min( 2
γ , 1

1–γ ) and
0 < q < 1. Then uε

k,α ∈ C([0,To]; L2(Ω)).

Proof (a) Since hε ∈ L2(Ω) so part (a) of Lemma 3.1 yields

∥
∥Ξ1(t)

∥
∥

L2(Ω) =
∥
∥A3

γ (t,To)hε∥∥
L2(Ω) ≤ μ

1
2 k

1
2
∥
∥hε∥∥

L2(Ω).

By a similar method, we obtain

∥
∥Ξ2(t)

∥
∥

L2(Ω) =
∥
∥A3

γ (t,To)
[

A2
γ (To)Fε(t)

]∥
∥

L2(Ω) ≤ μ
1
2 k

1
2
∥
∥A2

γ (To)Fε(t)
∥
∥

L2(Ω).

Assume F ∈ L∞(0,To; L2(Ω)). Now

∣
∣
〈

Fε(t), em
〉∣
∣
2 ≤ ess sup

0≤t≤To

∞
∑

m=1

∣
∣
〈

Fε(t), em
〉∣
∣
2 =

∥
∥Fε∥∥2

L∞(0,To ;L2(Ω)).

Using Lemma 2.3, we deduce that

∥
∥A2

γ (To)Fε(t)
∥
∥

L2(Ω) ≤R
∥
∥Fε(t)

∥
∥

L2(Ω) ≤R
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)). (29)

Hence

∥
∥Ξ2(t)

∥
∥

L2(Ω) ≤ μ
1
2 k

1
2 R

∥
∥Fε∥∥

L∞(0,To ;L2(Ω)).

On the other hand

∥
∥Ξ3(t)

∥
∥

L2(Ω) =
∥
∥A2

γ (t)Fε(t)
∥
∥

L2(Ω) ≤R
∥
∥Fε∥∥

L∞(0,To;L2(Ω)).

Combining the above results, we get

∥
∥u

ε
k,α(t)

∥
∥

L2(Ω) =
∥
∥Ξ1(t)(t)

∥
∥

L2(Ω) +
∥
∥Ξ2(t)

∥
∥

L2(Ω) +
∥
∥Ξ3(t)

∥
∥

L2(Ω)

≤ μ
1
2 k

1
2
∥
∥hε∥∥

L2(Ω) +
(

μ
1
2 k

1
2 + 1

)

R
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)). (30)

This implies that uε
k,α ∈ L∞(0,To; L2(Ω)).
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(b) Since hε ∈ L2(Ω) so Lemma 3.1 with 0 < n yields

∥
∥Ξ1(t)

∥
∥
Hn(Ω) =

∥
∥A3

γ (t,To)hε∥∥
Hn(Ω) ≤ μ

1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2

t– nγ
2
∥
∥hε∥∥

L2(Ω).

Since p < 2
nγ , we get

1 –
pnγ

2
=

2 – pnγ
2

> 0.

Therefore,

‖Ξ1‖Lp(0,To ,Hn(Ω)) =
(∫ To

0

∥
∥Ξ1(t)

∥
∥

p
Hn(Ω) dt

) 1
p

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2
(∫ To

0
t– pnγ

2 dt
) 1

p ∥
∥hε∥∥

L2(Ω)

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2
(

2
2 – pnγ

) 1
p
T

2–pnγ
2p

o
∥
∥hε∥∥

L2(Ω)

= M1(μ, k, p, n)
∥
∥hε∥∥

L2(Ω), (31)

where

M1(μ, k, p, n) = μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2
(

2
2 – pnγ

) 1
p
T

2–pnγ
2p

o .

By a similar method, we obtain

∥
∥Ξ2(t)

∥
∥
Hn(Ω) =

∥
∥A3

γ (t,To)
[

A2
γ (To)Fε(t)

]∥
∥
Hn(Ω)

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2

t– nγ
2
∥
∥A2

γ (To)Fε(t)
∥
∥

L2(Ω).

From (29) we obtain

∥
∥Ξ2(t)

∥
∥
Hn(Ω) ≤ μ

1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2

t– nγ
2 R

∥
∥Fε∥∥

L∞(0,To ;L2(Ω)).

Therefore

‖Ξ2‖Lp(0,To ,Hn(Ω)) =
(∫ To

0

∥
∥Ξ2(t)

∥
∥

p
Hn(Ω) dt

) 1
p

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2
R
(∫ To

0
t– pnγ

2 dt
) 1

p ∥
∥Fε∥∥

L∞(0,To ;L2(Ω))

≤ μ
1
2 k

1
2 P

1
2

1,n

(
2
γ

)– n
2
R
(

2
2 – pnγ

) 1
p
T

2–pnγ
2p

o
∥
∥Fε∥∥

L∞(0,To ;L2(Ω))

= M2(μ, k, p, n)
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)), (32)
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where

M2(μ, k, p, n) = μ
1
2 k

1
2 P

1
2

1,nR
(

2
γ

)– n
2
(

2
2 – pnγ

) 1
p
T

2–pnγ
2p

o .

For n �= 1 using Lemma 2.3 we have

∥
∥Ξ3(t)

∥
∥
Hn(Ω) =

∥
∥A2

γ (t)Fε(t)
∥
∥
Hn(Ω)

≤
( P1,n

γ(1 – n)

) 1
2
T

γ(1–n)
2

o

(∫ t

0
τ γ–1∥∥Fε(τ )

∥
∥

2
L2(Ω) dτ

) 1
2

.

Hölder’s inequality gives

∫ t

0
τ γ–1∥∥Fε(τ )

∥
∥

2
L2(Ω) dτ =

(∫ t

0
τ p(γ–1) dτ

) 1
p
(∫ t

0

∥
∥Fε(τ )

∥
∥

2p
p–1
L2(Ω) dτ

) p–1
p

≤ T
γ–1+ 1

p
o

(γp – p + 1)
1
p

∥
∥Fε∥∥2

L
2p

p–1 (0,To ;L2(Ω))
.

From the above results we have

∥
∥Ξ3(t)

∥
∥
Hn(Ω) ≤

( P1,n

γ(1 – n)

) 1
2
T

γ(1–n)
2

o
T

(γ–1)p+1
2p

o

(γp – p + 1)
1

2p

∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))
.

Hence

‖Ξ3‖Lp(0,To ,Hn(Ω))

≤
( P1,n

γ(1 – n)(γp – p + 1)
1
p

) 1
2
T

γ– γn+1
2 + 3

2p
o

∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))

≤ M3(μ, k, p, n)
∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))
, (33)

where

M3(μ, k, p, n) =
( P1,n

γ(1 – n)(γp – p + 1)
1
p

) 1
2
T

γ– γn+1
2 + 3

2p
o .

Combining (31), (32) and (33) we get

∥
∥u

ε
k,α
∥
∥

Lp(0,To ,Hn(Ω)) ≤ M
(∥
∥hε∥∥

L2(Ω) +
∥
∥Fε∥∥

L∞(0,To ;L2(Ω)) +
∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))

)

,

where

M = max
{

Mi(μ, k, p, n) : i = 1, 3
}

.
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(c) We obtain

∥
∥u

ε
k,α(t + η) – u

ε
k,α(t)

∥
∥

L2(Ω) ≤ ∥
∥Ξ1(t + η) – Ξ1(t)

∥
∥

L2(Ω)

+
∥
∥Ξ2(t + η) – Ξ2(t)

∥
∥

L2(Ω) +
∥
∥Ξ3(t + η) – Ξ3(t)

∥
∥

L2(Ω).

Now part (c) of Lemma 3.1 yields

∥
∥Ξ1(t + η) – Ξ1(t)

∥
∥

L2(Ω) =
∥
∥
(

A3
γ (t + η,To) – A3

γ (t,To)
)

hε∥∥
L2(Ω)

≤ μ
1
2 k

1
2
P2,s

sγs

[

(t + η)γ – tγ]s∥
∥hε∥∥

Hs(Ω).

We use the inequality (a1 + a2)ϑ ≤ aϑ
1 + aϑ

2 for 0 < ϑ ≤ 1 to get

(t + η)γ – tγ ≤ ηγ , 0 < γ ≤ 1. (34)

Therefore

∥
∥Ξ1(t + η) – Ξ1(t)

∥
∥

L2(Ω) ≤ μ
1
2 k

1
2
P2,s

sγs ηγs∥∥hε∥∥
Hs(Ω).

Applying a similar method gives

∥
∥Ξ2(t + η) – Ξ2(t)

∥
∥

L2(Ω) =
∥
∥
(

A3
γ (t + η,To) – A3

γ (t,To)
)[

A2
γ (To)Fε(t)

]∥
∥

L2(Ω)

≤ μ
1
2 k

1
2
P2,s

sγs ηγs∥∥A2
γ (To)Fε(t)

∥
∥
Hs(Ω).

Since 0 < s < 1 using Lemma 2.3 we get

∥
∥A2

γ (To)Fε(t)
∥
∥
Hs(Ω) ≤

( P2,s

γ(1 – s)

) 1
2
T

γ(1–s)
2

o

(∫ To

0
τ γ–1∥∥Fε(τ )

∥
∥

2
L2(Ω) dτ

) 1
2

≤
( P2,s

γ(1 – s)(γp – p + 1)
1
p

) 1
2
T

γ– γs+1
2 + 1

2p
o

∥
∥Fε∥∥2

L
2p

p–1 (0,To ;L2(Ω))
.

This implies that

∥
∥Ξ2(t + η) – Ξ2(t)

∥
∥

L2(Ω)

≤ μ
1
2 k

1
2
P2,s

sγs ηγs
( P2,s

γ(1 – s)(γp – p + 1)
1
p

) 1
2
T

γ– γs+1
2 + 1

2p
o

∥
∥Fε∥∥2

L
2p

p–1 (0,To ;L2(Ω))
.

Using Lemma 2.3 and 0 < q < 1 so we have

∥
∥Ξ3(t + η) – Ξ3(t)

∥
∥

L2(Ω)

=
∥
∥
(

A2
γ (t + η) – A2

γ (t)
)

Fε(t)
∥
∥

L2(Ω)
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≤
(

P2,q
|(t + η)γ – tγ |2

γq+1
T

qγ
o

qγ

∫ t

0
τ γ–1∥∥Fε(τ )

∥
∥

2
Hq–2κ+1(Ω) dτ

) 1
2

+
(

(t + η)γ – tγ

γ

∫ t+η

t
τ γ–1∥∥Fε(τ )

∥
∥

2
L2(Ω) dτ

) 1
2

. (35)

Apply Hölder’s inequality and we have

∫ t

0
τ γ–1∥∥Fε(τ )

∥
∥

2
Hq+1(Ω) dτ ≤

(∫ t

0
τ p(γ–1) dτ

) 1
p
(∫ t

0

∥
∥Fε(τ )

∥
∥

2p
p–1
Hq+1(Ω) dτ

) p–1
p

≤ T
γ–1+ 1

p
o

(γp – p + 1)
1
p

∥
∥Fε∥∥2

L
2p

p–1 (0,To ;Hq+1(Ω))
(36)

and

∫ t+η

t
τ γ–1∥∥Fε(τ )

∥
∥

2
L2(Ω) dτ ≤

(∫ t+η

t
τ p(γ–1) dτ

) 1
p
(∫ t+η

t

∥
∥Fε(τ )

∥
∥

2p
p–1
L2(Ω) dτ

) p–1
p

≤
(∫ To

0
τ p(γ–1) dτ

) 1
p
(∫ To

0

∥
∥Fε(τ )

∥
∥

2p
p–1
L2(Ω) dτ

) p–1
p

≤ T
γ–1+ 1

p
o

(γp – p + 1)
1
p

∥
∥Fε∥∥2

L
2p

p–1 (0,To ;L2(Ω))
. (37)

Combining (34), (35), (36) and (37) and we get

∥
∥Ξ3(t + η) – Ξ3(t)

∥
∥

L2(Ω) ≤
(

P2,q
η2γ

γq+2
T

qγ+γ–1+ 1
p

o

q(γp – p + 1)
1
p

) 1
2 ∥
∥Fε∥∥

L
2p

p–1 (0,To ;Hq+1(Ω))

+
(

ηγ

γ
T

γ–1+ 1
p

o

(γp – p + 1)
1
p

) 1
2 ∥
∥Fε∥∥

L
2p

p–1 (0,To ;L2(Ω))
.

Therefore, we conclude that uε
k,α ∈ C([0,To]; L2(Ω)). �

4 Convergence analysis and error estimate under two parameter choice rules
In this section, we choose a regularization parameter k := k(ε) such that ‖u–uε

k,α‖L2(Ω) → 0
as ε → 0, and we also consider the convergence analysis between the regularized solution
uε

k,α and the exact solution u.

4.1 The a priori parameter choice
Theorem 4.1 Let h ∈ L2(Ω) and F ∈ L∞(0,To; L2(Ω)). Assume the a priori bound condi-
tion (22) holds. If we choose the regularization parameter

k =
⌊(

E
ε

) 2
r+1
⌋

,
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then we get the following error estimate between the exact solution and its regularization
solution with noisy data:

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ μ– r
2

(
r
2

) r
2

E
1

r+1 ε
r

r+1 + μ
1
2 (1 + R)E

1
r+1 ε

r
r+1 + εR,

where �k� denotes the largest integer less than or equal to k.

Proof From the triangle inequality, we obtain

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ ‖u – uk,α‖L2(Ω) +
∥
∥uk,α – u

ε
k,α
∥
∥

L2(Ω). (38)

Apply part (a) of Theorem 3.1 and we get

∥
∥uk,α – u

ε
k,α
∥
∥

L2(Ω) ≤ ∥
∥uk,α – u

ε
k,α
∥
∥

L∞(0,To ;L2(Ω))

≤ μ
1
2 k

1
2
∥
∥h – hε∥∥

L2(Ω) +
(

μ
1
2 k

1
2 + 1

)

R
∥
∥F – Fε∥∥

L∞(0,To ;L2(Ω))

≤ μ
1
2 k

1
2 ε(1 + R) + εR. (39)

On the other hand, we have

‖u – uk,α‖L2(Ω) =
∥
∥
(

A1
γ (t,To) – A3

γ (t,To)
)

Υ
∥
∥

L2(Ω).

Note α ∈ ( 1
2 , 1] and 0 < μ < 1

‖K‖2 , so it follows that

‖u – uk,α‖L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

× 〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

≤
∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k

〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

.

From the definition of Υ in (17), we get

‖u – uk,α‖L2(Ω) ≤
∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ

γ

)(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k

〈g, em〉em

∥
∥
∥
∥
∥

L2(Ω)

≤ μ– r
2 sup

ãm>0

(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k(

μ exp

(

–2̃am
T

γ
o

γ

)) r
2

×
√
√
√
√

∞
∑

m=1

exp

(

2r̃am
T

γ
o

γ

)
∣
∣〈g, em〉∣∣2.
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Apply Lemma 2.1 and we obtain

‖u – uk,α‖L2(Ω) ≤ μ– r
2

(
r
2

) r
2

k– r
2 E. (40)

Combining (38), (39) and (40) we obtain

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ μ– r
2

(
r
2

) r
2

k– r
2 E + μ

1
2 k

1
2 ε(1 + R) + εR.

Choosing the regularization parameter k,

k =
⌊(

E
ε

) 2
r+1
⌋

,

we obtain the error estimate

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ μ– r
2

(
r
2

) r
2

E
1

r+1 ε
r

r+1 + μ
1
2 (1 + R)E

1
r+1 ε

r
r+1 + εR. �

4.2 A posteriori parameter choice rule and convergence estimate
In the above result, we obtained an error estimate between the exact solution and its regu-
larization solution with noisy data by choosing the a priori parameter k, and this k depends
on the noise level ε and the a priori bound condition E. Now, from results in Morozov’s
discrepancy principal [11], we choose the regularization parameter k by using an a poste-
riori choice rule.

The general a posteriori rule can be formulated as follows:

∥
∥Kg

ε
k,α – Υ ε∥∥

L2(Ω) ≤ χε ≤ ∥
∥Kg

ε
k–1,α – Υ ε∥∥

L2(Ω), (41)

where ‖Υ ε‖L2(Ω) ≥ χε, χ is a constant independent of ε and k > 0 is the regularization
parameter which makes (41) hold at the first iteration time.

Choosing χ > 1 the following lemma gives a bound for k in terms of ε and E.

Lemma 4.1 Let χ > 1 and k satisfies (41). Also assume the a priori bound condition of g
satisfies (22). Then

k ≤ r – 1
2μ

(
1

χ – R – 1

) 2
r–1
(

E
ε

) 2
r–1

.

Proof From the definition of k we get

∥
∥Kg

ε
k–1,α – Υ ε∥∥

L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1]α)
〈

Υ ε, em
〉

em

∥
∥
∥
∥
∥

L2(Ω)
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≤
∥
∥
∥
∥
∥

∞
∑

m=1

(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1]α)
〈

Υ ε – Υ , em
〉

em

∥
∥
∥
∥
∥

L2(Ω)

+

∥
∥
∥
∥
∥

∞
∑

m=1

(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1]α)

〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

.

Since α ∈ ( 1
2 , 1] and 0 < μ < 1

‖K‖2 it follows that

∥
∥Kg

ε
k–1,α – Υ ε∥∥

L2(Ω)

≤ ∥
∥Υ ε – Υ

∥
∥

L2(Ω) +

∥
∥
∥
∥
∥

∞
∑

m=1

(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1

〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

.

Apply Lemma 2.1 and we obtain
∥
∥
∥
∥
∥

∞
∑

m=1

(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1

〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

= μ– 1+r
2 sup

ãm>0

(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k–1(

μ exp

(

–2̃am
T

γ
o

γ

)) r+1
2

×
√
√
√
√

∞
∑

m=1

exp

(

2r̃am
T

γ
o

γ

)
∣
∣〈g, em〉∣∣2

≤ μ– 1+r
2

(
r + 1

2

) r+1
2

k
r+1

2 E.

Apply Lemma 2.4 and we obtain

∥
∥Kg

ε
k–1,α – Υ ε∥∥

L2(Ω) ≤ ∥
∥hε – h

∥
∥

L2(Ω) + R
∥
∥Fε – F

∥
∥

L∞(0,To ;L2(Ω))

+ μ– 1+r
2

(
r + 1

2

) r+1
2

k– r+1
2 E.

This implies that

χε ≤ (1 + R)ε + μ– r+1
2

(
r + 1

2

) r+1
2

k– r+1
2 E,

so

k ≤ r + 1
2μ

(
1

χ – R – 1

) 2
r+1
(

E
ε

) 2
r+1

. �

Theorem 4.2 Let k be as Lemma 4.1. Assume the a priori bound condition (22) holds. Then
we get

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ μ
1
2 (1 + R)

(
r + 1
2μ

) 1
2
(

1
χ – R – 1

) 1
r+1

E
1

r+1 ε
r

r+1

+ εR + (1 + R + χ )
r

r+1 E
1

r+1 ε
r

r+1 .
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Proof Using the triangle inequality, we obtain

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ ‖u – uk,α‖L2(Ω) +
∥
∥uk,α – u

ε
k,α
∥
∥

L2(Ω).

Apply the result of Theorem 4.1 and we obtain

∥
∥uk,α – u

ε
k,α
∥
∥

L2(Ω) ≤ μ
1
2 k

1
2 ε(1 + R) + εR

≤ μ
1
2 (1 + R)

(
r + 1
2μ

) 1
2
(

1
χ – R – 1

) 1
r+1

E
1

r+1 ε
r

r+1 + εR. (42)

Apply Hölder’s inequality and we have

‖u – uk,α‖L2(Ω)

=

∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

–̃am
tγ – T

γ
o

γ

)(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

× 〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

≤
∥
∥
∥
∥
∥

∞
∑

m=1

(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

〈Υ , em〉em

∥
∥
∥
∥
∥

r
r+1

L2(Ω)

×
∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

r̃am
T

γ
o

γ

)(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

〈g, em〉em

∥
∥
∥
∥
∥

1
r+1

L2(Ω)

.

On the other hand, from α ∈ ( 1
2 , 1] and 0 < μ < 1

‖K‖2 we get

∥
∥
∥
∥
∥

∞
∑

m=1

exp

(

r̃am
T

γ
o

γ

)(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

〈g, em〉em

∥
∥
∥
∥
∥

1
r+1

L2(Ω)

≤
( ∞
∑

m=1

exp

(

2r̃am
T

γ
o

γ

)
∣
∣〈g, em〉∣∣2

) 1
2(r+1)

≤ E
1

r+1 .

This implies that

‖u – uk,α‖L2(Ω)

≤ E
1

r+1

(

∣
∣Υ – Υ ε∣∣

L2(Ω)

+

∥
∥
∥
∥
∥

∞
∑

m=1

(

1 –
[

1 –
(

1 – μ exp

(

–2̃am
T

γ
o

γ

))k]α)

〈Υ , em〉em

∥
∥
∥
∥
∥

L2(Ω)

) r
r+1

≤ (1 + R + χ )
r

r+1 E
1

r+1 ε
r

r+1 .
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From the above we deduce that

∥
∥u – u

ε
k,α
∥
∥

L2(Ω) ≤ μ
1
2 (1 + R)

(
r + 1
2μ

) 1
2
(

1
χ – R – 1

) 1
r+1

E
1

r+1 ε
r

r+1

+ εR + (1 + R + χ )
r

r+1 E
1

r+1 ε
r

r+1 . �
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