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Abstract
This paper deals with some existence, uniqueness and Ulam–Hyers–Rassias stability
results for a class of implicit fractional q-difference equations. Some applications are
made of some fixed point theorems in Banach spaces for the existence and
uniqueness of solutions, next we prove that our problem is generalized
Ulam–Hyers–Rassias stable. Two illustrative examples are given in the last section.
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1 Introduction
Fractional differential equations have recently been applied in various areas of engineer-
ing, mathematics, physics, and other applied sciences [33]. For some fundamental results
in the theory of fractional calculus and fractional differential equations we refer the reader
to the monographs [4–6, 23, 32, 39], the papers [24, 34, 36–38, 40] and the references
therein. Recently, considerable attention has been given to the existence of solutions of
initial and boundary value problems for fractional differential equations and inclusions
with Caputo fractional derivative; [5, 22]. Implicit fractional differential equations were
analyzed by many authors; see for instance [4, 5, 11–13] and the references therein.

Considerable attention has been given to the study of the Ulam stability of functional
differential and integral equations; see the monographs [6, 19], the papers [1–3, 20, 28, 30,
31] and the references therein.

Fractional q-difference equations were initiated in the beginning of the 19th century
[7, 15], and received significant attention in recent years. Some interesting results about
initial and boundary value problems of q-difference and fractional q-difference equations
can be found in [9, 10, 16, 17] and the references therein. An implicit fractional q-integral
equation is considered in [18].

In this paper we discuss the existence, uniqueness and Ulam–Hyers–Rassias stability of
solutions for the following implicit fractional q-difference equation:

(cDα
q u

)
(t) = f

(
t, u(t),

(cDα
q u

)
(t)

)
, t ∈ I := [0, T], (1)
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with the initial condition

u(0) = u0, (2)

where q ∈ (0, 1), α ∈ (0, 1], T > 0, f : I × R × R → R is a given continuous function, and
cDα

q is the Caputo fractional q-difference derivative of order α.
This paper initiates the study of implicit Caputo fractional q-difference equations.

2 Preliminaries
Consider the complete metric space C(I) := C(I,R) of continuous functions from I into R

equipped with the usual metric

d(u, v) := max
t∈I

∣∣u(t) – v(t)
∣∣.

Notice that C(I) is a Banach space with the supremum (uniform) norm

‖u‖∞ := sup
t∈I

∣
∣u(t)

∣
∣.

As usual, L1(I) denotes the space of measurable functions v : I → R which are Lebesgue
integrable with the norm

‖v‖1 =
∫

I

∣
∣v(t)

∣
∣dt.

Let us recall some definitions and properties of fractional q-calculus. For a ∈R, we set

[a]q =
1 – qa

1 – q
.

The q analogue of the power (a – b)n is

(a – b)(0) = 1, (a – b)(n) =
n–1∏

k=0

(
a – bqk); a, b ∈R, n ∈N.

In general,

(a – b)(α) = aα

∞∏

k=0

(
a – bqk

a – bqk+α

)
; a, b,α ∈R.

Definition 2.1 ([21]) The q-gamma function is defined by

Γq(ξ ) =
(1 – q)(ξ–1)

(1 – q)ξ–1 ; ξ ∈R – {0, –1, –2, . . .}.

Notice that the q-gamma function satisfies Γq(1 + ξ ) = [ξ ]qΓq(ξ ).
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Definition 2.2 ([21]) The q-derivative of order n ∈ N of a function u : I → R is defined
by (D0

qu)(t) = u(t),

(Dqu)(t) :=
(
D1

qu
)
(t) =

u(t) – u(qt)
(1 – q)t

; t �= 0, (Dqu)(0) = lim
t→0

(Dqu)(t),

and

(
Dn

qu
)
(t) =

(
DqDn–1

q u
)
(t); t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈N} ∪ {0}.

Definition 2.3 ([21]) The q-integral of a function u : It →R is defined by

(Iqu)(t) =
∫ t

0
u(s) dqs =

∞∑

n=0

t(1 – q)qnf
(
tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t) – u(0).

Definition 2.4 ([8]) The Riemann–Liouville fractional q-integral of order α ∈ R+ :=
[0,∞) of a function u : I →R is defined by (I0

q u)(t) = u(t), and

(
Iα

q u
)
(t) =

∫ t

0

(t – qs)(α–1)

Γq(α)
u(s) dqs; t ∈ I.

Lemma 2.5 ([26]) For α ∈R+ := [0,∞) and λ ∈ (–1,∞) we have

(
Iα

q (t – a)(λ))(t) =
Γq(1 + λ)

Γ (1 + λ + α)
(t – a)(λ+α); 0 < a < t < T .

In particular,

(
Iα

q 1
)
(t) =

1
Γq(1 + α)

t(α).

Definition 2.6 ([27]) The Riemann–Liouville fractional q-derivative of order α ∈R+ of a
function u : I →R is defined by (D0

qu)(t) = u(t), and

(
Dα

q u
)
(t) =

(
D[α]

q I[α]–α
q u

)
(t); t ∈ I,

where [α] is the integer part of α.

Definition 2.7 ([27]) The Caputo fractional q-derivative of order α ∈ R+ of a function
u : I →R is defined by (CD0

qu)(t) = u(t), and

(CDα
q u

)
(t) =

(
I[α]–α

q D[α]
q u

)
(t); t ∈ I.
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Lemma 2.8 ([27]) Let α ∈ R+. Then the following equality holds:

(
Iα

q
CDα

q u
)
(t) = u(t) –

[α]–1∑

k=0

tk

Γq(1 + k)
(
Dk

qu
)
(0).

In particular, if α ∈ (0, 1), then

(
Iα

q
CDα

q u
)
(t) = u(t) – u(0).

From the above lemma, and in order to define the solution for the problem (1)–(2), we
need the following lemma.

Lemma 2.9 Let f : I × R × R → R such that f (·, u, v) ∈ C(I), for each u, v ∈ R. Then the
problem (1)–(2) is equivalent to the problem of obtaining the solutions of the integral equa-
tion

g(t) = f
(
t, u0 +

(
Iα

q g
)
(t), g(t)

)
, (3)

and if g(·) ∈ C(I), is the solution of this equation, then

u(t) = u0 +
(
Iα

q g
)
(t).

Proof Let u be a solution of problem (1)–(2), and let g(t) = (CDα
q u)(t); for t ∈ I . We will

prove that u(t) = u0 + (Iα
q g)(t), and g satisfies Eq. (3). From Lemma 2.8, we have u(t) =

u0 + (Iα
q g)(t), and it is easy to see that Eq. (1) implies (3). Reciprocally, if u satisfies the

integral equation u(t) = u0 + (Iα
q g)(t), and if g satisfies Eq. (3), then u is a solution of the

problem (1)–(2). �

Now, we consider the Ulam stability for the problem (1)–(2). Let ε > 0 and Φ : I → R+

be a continuous function. We consider the following inequalities:

∣
∣(cDα

q u
)
(t) – f

(
t, u(t),

(cDα
q u

)
(t)

)∣∣ ≤ ε; t ∈ I, (4)
∣
∣(cDα

q u
)
(t) – f

(
t, u(t),

(cDα
q u

)
(t)

)∣∣ ≤ Φ(t); t ∈ I, (5)
∣
∣(cDα

q u
)
(t) – f

(
t, u(t),

(cDα
q u

)
(t)

)∣∣ ≤ εΦ(t); t ∈ I. (6)

Definition 2.10 ([5, 30]) The problem (1)–(2) is Ulam–Hyers stable if there exists a real
number cf > 0 such that for each ε > 0 and for each solution u ∈ C(I) of the inequality (4)
there exists a solution v ∈ C(I) of (1)–(2) with

∣∣u(t) – v(t)
∣∣ ≤ εcf ; t ∈ I.

Definition 2.11 ([5, 30]) The problem (1)–(2) is generalized Ulam–Hyers stable if there
exists cf : C(R+,R+) with cf (0) = 0 such that for each ε > 0 and for each solution u ∈ C(I)
of the inequality (4) there exists a solution v ∈ C(I) of (1)–(2) with

∣
∣u(t) – v(t)

∣
∣ ≤ cf (ε); t ∈ I.
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Definition 2.12 ([5, 30]) The problem (1)–(2) is Ulam–Hyers–Rassias stable with respect
to Φ if there exists a real number cf ,Φ > 0 such that for each ε > 0 and for each solution
u ∈ C(I) of the inequality (6) there exists a solution v ∈ C(I) of (1)–(2) with

∣∣u(t) – v(t)
∣∣ ≤ εcf ,ΦΦ(t); t ∈ I.

Definition 2.13 ([5, 30]) The problem (1) is generalized Ulam–Hyers–Rassias stable with
respect to Φ if there exists a real number cf ,Φ > 0 such that for each solution u ∈ Cγ ,ln of
the inequality (5) there exists a solution v ∈ Cγ ,ln of (1)–(2) with

∣
∣u(t) – v(t)

∣
∣ ≤ cf ,ΦΦ(t); t ∈ I.

Remark 2.14 It is clear that
(i) Definition 2.10 ⇒ Definition 2.11,

(ii) Definition 2.12 ⇒ Definition 2.13,
(iii) Definition 2.12 for Φ(·) = 1 ⇒ Definition 2.10.

One can have similar remarks for the inequalities (4) and (6).

Definition 2.15 ([29]) A nondecreasing function φ : R+ → R+ is called a comparison
function if it satisfies one of the following conditions:

(1) For any t > 0 we have

lim
n→∞φ(n)(t) = 0,

where φ(n) denotes the nth iteration of φ.
(2) The function φ is right-continuous and satisfies

φ(t) < t ∀t > 0.

Remark 2.16 The choice φ(t) = kt with 0 < k < 1 gives the classical Banach contraction
mapping principle.

For our purpose we will need the following fixed point theorems.

Theorem 2.17 ([14, 25]) Let (X, d) be a complete metric space and T : X → X be a map-
ping such that

d
(
T(x), T(y)

) ≤ φ
(
d(x, y)

)
,

where φ is a comparison function. Then T has a unique fixed point in X.

Theorem 2.18 (Schauder fixed point theorem [35]) Let X be a Banach space, D be a
bounded closed convex subset of X and T : D → D be a compact and continuous map.
Then T has at least one fixed point in D.
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3 Existence results
In this section, we are concerned with the existence and uniqueness of solutions of the
problem (1)–(2).

Definition 3.1 By a solution of the problem (1)–(2) we mean a continuous function u ∈
C(I) that satisfies Eq. (1) on I and the initial condition (2).

The following hypotheses will be used in the sequel.
(H1) The function f satisfies the generalized Lipschitz condition:

∣∣f (t, u1, v1) – f (t, u2, v2)
∣∣ ≤ φ1

(|u1 – u2|
)

+ φ2
(|v1 – v2|

)
,

for t ∈ I and u1, u2, v1, v2 ∈R, where φ1 and φ2 are comparison functions.
(H2) There exist functions p, d, r ∈ C(I, [0,∞)) with r(t) < 1 such that

∣∣f (t, u, v)
∣∣ ≤ p(t) + d(t)|u| + r(t)|v|, for each t ∈ I and u, v ∈R.

Set

p∗ = sup
t∈I

p(t), d∗ = sup
t∈I

d(t), r∗ = sup
t∈I

r(t).

First, we prove an existence and uniqueness result for the problem (1)–(2).

Theorem 3.2 Assume that the hypothesis (H1) holds. Then there exists a unique solution
of problem (1)–(2) on I .

Proof By using Lemma 2.9, we transform the problem (1)–(2) into a fixed point problem.
Consider the operator N : C(I) → C(I) defined by

(Nu)(t) = u0 +
(
Iα

q g
)
(t); t ∈ I, (7)

where g ∈ C(I) such that

g(t) = f
(
t, u(t), g(t)

)
, or g(t) = f

(
t, u0 +

(
Iα

q g
)
(t), g(t)

)
.

Let u, v ∈ C(I). Then, for t ∈ I , we have

∣
∣(Nu)(t) – (Nv)(t)

∣
∣ ≤

∫ t

0

(t – qs)(α–1)

Γq(α)
∣
∣g(s) – h(s)

∣
∣dqs, (8)

where g, h ∈ C(I) such that

g(t) = f
(
t, u(t), g(t)

)

and

h(t) = f
(
t, v(t), h(t)

)
.
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From (H1), we obtain

∣∣g(t) – h(t)
∣∣ ≤ φ1

(∣∣u(t) – v(t)
∣∣) + φ2

(∣∣g(t) – h(t)
∣∣).

Thus

∣∣g(t) – h(t)
∣∣ ≤ (Id – φ2)–1φ1

(∣∣u(t) – v(t)
∣∣),

where Id is the identity function.
Set

L := sup
t∈I

∫ T

0

(t – qs)(α–1)

Γq(α)
dqs,

and φ := L(Id – φ2)–1φ1. From (8), we get

∣∣(Nu)(t) – (Nv)(t)
∣∣ ≤ φ

(∣∣u(t) – v(t)
∣∣)

≤ φ
(
d(u, v)

)
.

Hence, we get

d
(
N(u), N(v)

) ≤ φ
(
d(u, v)

)
.

Consequently, from Theorem 2.17, the operator N has a unique fixed point, which is the
unique solution of the problem (1)–(2). �

Theorem 3.3 Assume that the hypothesis (H2) holds. If

r∗ + Ld∗ < 1,

then the problem (1)–(2) has at least one solution defined on I .

Proof Let N be the operator defined in (7). Set

R ≥ Lp∗

1 – r∗ – Ld∗ ,

and consider the closed and convex ball BR = {u ∈ C(I) : ‖u‖∞ ≤ R}.
Let u ∈ BR. Then, for each t ∈ I , we have

∣
∣(Nu)(t)

∣
∣ ≤

∫ t

0

(t – qs)(α–1)

Γq(α)
∣
∣g(s)

∣
∣dqs,

where g ∈ C(I) such that

g(t) = f
(
t, u(t), g(t)

)
.
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By using (H2), for each t ∈ I we have

∣∣g(t)
∣∣ ≤ p(t) + d(t)

∣∣u(t)
∣∣ + r(t)

∣∣g(t)
∣∣

≤ p∗ + d∗‖u‖∞ + r∗∣∣g(t)
∣∣

≤ p∗ + d∗R + r∗∣∣g(t)
∣∣.

Thus

∣
∣g(t)

∣
∣ ≤ p∗ + d∗R

1 – r∗ .

Hence

∥∥N(u)
∥∥∞ ≤ L(p∗ + d∗R)

1 – r∗ ,

which implies that

∥
∥N(u)

∥
∥∞ ≤ R.

This proves that N maps the ball BR into BR. We shall show that the operator N : BR → BR

is continuous and compact. The proof will be given in three steps.
Step 1: N is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I , we have

∣∣(Nun)(t) – (Nu)(t)
∣∣ ≤

∫ t

0

(t – qs)(α–1)

Γq(α)
∣∣(gn(s) – g(s)

)∣∣dqs,

where gn, g ∈ C(I) such that

gn(t) = f
(
t, un(t), gn(t)

)

and

g(t) = f
(
t, u(t), g(t)

)
.

Since un → u as n → ∞ and f is continuous function, we get

gn(t) → g(t) as n → ∞, for each t ∈ I.

Hence

∥
∥N(un) – N(u)

∥
∥∞ ≤ p∗ + d∗R

1 – r∗ ‖gn – g‖∞ → 0 as n → ∞.

Step 2: N(BR) is bounded. This is clear since N(BR) ⊂ BR and BR is bounded.
Step 3: N maps bounded sets into equicontinuous sets in BR.
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Let t1, t2 ∈ I , such that t1 < t2 and let u ∈ BR. Then, we have

∣∣(Nu)(t1) – (Nu)(t2)
∣∣ ≤

∫ t1

0

|(t2 – qs)(α–1) – (t1 – qs)(α–1)|
Γq(α)

∣∣g(s)
∣∣dqs

+
∫ t2

t1

|(t2 – qs)(α–1)|
Γq(α)

∣
∣g(s)

∣
∣dqs,

where g ∈ C(I) such that g(t) = f (t, u(t), g(t)). Hence

∣
∣(Nu)(t1) – (Nu)(t2)

∣
∣ ≤ p∗ + d∗R

1 – r∗

∫ t1

0

|(t2 – qs)(α–1) – (t1 – qs)(α–1)|
Γq(α)

dqs

+
p∗ + d∗R

1 – r∗

∫ t2

t1

|(t2 – qs)(α–1)|
Γq(α)

dqs.

As t1 → t2 and since G is continuous, the right-hand side of the above inequality tends to
zero.

As a consequence of the above three steps with the Arzelá–Ascoli theorem, we can con-
clude that N : BR → BR is continuous and compact.

From an application of Theorem 2.18, we deduce that N has at least a fixed point which
is a solution of problem (1)–(2). �

4 Ulam stability results
In this section, we are concerned with the generalized Ulam–Hyers–Rassias stability re-
sults of the problem (1)–(2).

The following hypotheses will be used in the sequel.
(H3) There exist functions p1, p2, p3 ∈ C(I, [0,∞)) with p3(t) < 1 such that

(
1 + |u| + |v|)∣∣f (t, u, v)

∣
∣

≤ p1(t)Φ(t) + p2(t)Φ(t)|u| + p3(t)|v|, for each t ∈ I and u, v ∈R.

(H4) There exists λΦ > 0 such that for each t ∈ I , we have

(
Iα

q Φ
)
(t) ≤ λΦΦ(t).

Set Φ∗ = supt∈I Φ(t) and

p∗
i = sup

t∈I
pi(t), i ∈ {1, 2, 3}.

Theorem 4.1 Assume that the hypotheses (H3) and (H4) hold. If

p∗
3 + Lp∗

2Φ
∗ < 1,

then the problem (1)–(2) has at least one solution and it is generalized Ulam–Hyers–
Rassias stable.

Proof Consider the operator N defined in (7). We can see that hypothesis (H3) implies
(H2) with p ≡ p1Φ , d ≡ p2Φ and r ≡ p3.
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Let u be a solution of the inequality (5), and let us assume that v is a solution of the
problem (1)–(2). Thus, we have

v(t) = u0 +
(
Iα

q h
)
(t),

where h ∈ C(I) such that h(t) = f (t, v(t), h(t)).
From the inequality (5) for each t ∈ I , we have

∣
∣u(t) – u0 –

(
Iα

q g
)
(t)

∣
∣ ≤ (

Iα
q Φ

)
(t),

where g ∈ C(I) such that g(t) = f (t, u(t), g(t)).
From the hypotheses (H3) and (H4), for each t ∈ I , we get

∣
∣u(t) – v(t)

∣
∣ ≤ ∣

∣u(t) – u0 –
(
Iα

q g
)
(t) +

(
Iα

q (g – h)
)
(t)

∣
∣

≤ (
Iα

q Φ
)
(t) +

∫ t

0

(t – qs)(α–1)

Γq(α)
(∣∣g(s)

∣
∣ +

∣
∣h(s)

∣
∣)dqs

≤ (
Iα

q Φ
)
(t) +

p∗
1 + p∗

2
1 – p∗

3

(
Iα

q Φ
)
(t)

≤ λφΦ(t) + 2λφ

p∗
1 + p∗

2
1 – p∗

3
Φ(t)

≤
[

1 + 2
p∗

1 + p∗
2

1 – p∗
3

]
λφΦ(t)

:= cf ,ΦΦ(t).

Hence, the problem (1)–(2) is generalized Ulam–Hyers–Rassias stable. �

5 Examples
Example 1 Consider the following problem of implicit fractional 1

4 -difference equations:

⎧
⎨

⎩
(cD

1
2
1
4

u)(t) = f (t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = 1,
(9)

where

f
(
t, u(t),

(cD
1
2
1
4

u
)
(t)

)
=

t2

1 + |u(t)| + |cD
1
2
1
4

u(t)|

(
e–7 +

1
et+5

)
u(t); t ∈ [0, 1].

The hypothesis (H1) is satisfied with

φ1(t) = φ2(t) = t2
(

e–7 +
1

et+5

)
t.

Hence, Theorem 3.2 implies that our problem (9) has a unique solution defined on [0, 1].
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Example 2 Consider now the following problem of implicit fractional 1
4 -difference equa-

tions:

⎧
⎨

⎩
(cD

1
2
1
4

u)(t) = f (t, u(t), (cD
1
2
1
4

u)(t)); t ∈ [0, 1],

u(0) = 2,
(10)

where
⎧
⎨

⎩
f (t, x, y) = t2

1+|x|+|y| (e
–7 + 1

et+5 )(t2 + xt2 + y); t ∈ (0, 1],

f (0, x, y) = 0.

The hypothesis (H3) is satisfied with Φ(t) = t2 and pi(t) = (e–7 + 1
et+5 )t; i ∈ {1, 2, 3}. Hence,

Theorem 3.3 implies that our problem (10) has at least a solution defined on [0, 1].
Also, the hypothesis (H4) is satisfied. Indeed, for each t ∈ (0, 1], there exists a real number

0 < ε < 1 such that ε < t ≤ 1, and

(
Iα

q Φ
)
(t) ≤ t2

ε2(1 + q + q2)

≤ 1
ε2 Φ(t)

= λΦΦ(t).

Consequently, Theorem 4.1 implies that the problem (10) is generalized Ulam–Hyers–
Rassias stable.
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