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Abstract
In this paper, we study an n-dimensional fractional differential system with p-Laplace
operator, which involves multi-strip integral boundary conditions. By using the
Leggett–Williams fixed point theorem, the existence results of at least three positive
solutions are established. Besides, we also get the nonexistence results of positive
solutions. Finally, two examples are presented to validate the main results.
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1 Introduction
Recently, there has been a rapid increase in researching fractional differential equations
since their practical applications in various fields of physics, engineering, control theory,
economics, etc. Fractional differential models can always make the description more accu-
rate, and make the physical significance of parameters more explicit than the integer order
ones. So, many monographs and literature works have appeared on fractional calculus and
fractional differential equations, see [1–6].

It is well known that p-Laplace operator has deep background in analyzing mechanics,
chemical physics, dynamic systems, etc. In the last ten years, fractional boundary value
problems with p-Laplace operator have been widely studied, and there have been some
excellent results on the existence, nonexistence, uniqueness, multiplicity of the solutions
and positive solutions, we refer the readers to [7–14] and the references therein.

Meanwhile, boundary value problems with integral boundary conditions arise in lots
of applied models [15–17] and some scholars have been interested in the BVP with the
Riemann–Stieltjes integral boundary conditions, see [18–20]. Specially, multi-strip inte-
gral boundary value problems have drawn the attention of many scholars and have been
extensively used in semiconductor, blood flow, hydrodynamics, etc., see [21–25].

In [23], Ahmad et al. investigated the following fractional differential equation:

cDqx(t) = f (t, x(t), cDβx(t)), 0 < β < 1, 1 < q ≤ 2, t ∈ [0, 1], (1.1)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-019-2415-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2415-7&domain=pdf
mailto:phh2000@163.com


Wang et al. Advances in Difference Equations        (2019) 2019:477 Page 2 of 21

supplemented with the boundary conditions of the form

⎧
⎪⎪⎨

⎪⎪⎩

ax(0) + bx(1) =
∑m–2

i=1 αix(σi) +
∑p–2

j=1 rj
∫ ηj
ξj

x(s) ds,

cx′(0) + dx′(1) =
∑m–2

i=1 δix′(σi) +
∑p–2

j=1 γj
∫ ηj
ξj

x′(s) ds,

0 < σ1 < · · · < σm–2 < · · · < ξ1 < η1 < · · · < ξp–2 < ηp–2 < 1,

(1.2)

where cDq, cDβ denote the Caputo fractional derivatives of order q and β , respectively, f
is a given continuous function, a, b, c, d are real constants, and αi, δi (i = 1, 2, . . . , m – 2), rj,
γj (j = 1, 2, . . . , p – 2) are positive real constants. Several existence and uniqueness results
are established by applying the tools of fixed-point theory.

Furthermore, n-dimensional differential systems are high generalizations of differential
equations, which have broad application prospects and profound practical significance.
However, n-dimensional differential systems have not been fully studied, and only a few
results have been obtained (see [26–29] for instance); and the studies of n-dimensional
fractional differential system boundary value problems are even fewer, see [29].

In [27], Feng et al. considered the following fourth-order n-dimensional m-Laplace sys-
tem:

⎧
⎪⎪⎨

⎪⎪⎩

φm(x′′(t))′′ = Ψ (t)f(t, x(t)), 0 < t < 1,

x(0) = x(1) =
∫ 1

0 g(s)x(s) ds,

φm(x′′(0)) = φm(x′′(1)) =
∫ 1

0 h(s)φm(x′′(s)) ds,

(1.3)

where the vector-valued function x is defined by x = [x1, x2, . . . , xn]T . The authors investi-
gated the existence, multiplicity, and nonexistence of symmetric positive solutions by the
fixed point theorem in a cone and the inequality technique.

Inspired by the above achievements, we consider the following α1 + α2 fractional order
n-dimensional p-Laplace system:

⎧
⎪⎪⎨

⎪⎪⎩

Dα2
0+(Φp(Dα1

0+u(t))) = κf(t, u(t), Dα1
0+u(t)), t ∈ (0, 1),

u(0) = 0, u(1) =
∑m

i=1 bi
∫ ξi

0 u(s) dA(s),

Dα1
0+u(0) = 0, Φp(Dα1

0+u(1)) = λΦp(Dα1
0+u(η)),

(1.4)

where 1 < αk ≤ 2, Dαk is the standard Riemann–Liouville fractional derivative of order αk

for k = 1, 2; Φp(s) = |s|p–2s, p > 1; κ > 0; 0 < ξi < 1, bi ≥ 0,
∫ ξi

0 u(s) dA(s) denotes a Riemann–
Stieltjes integral and A(s) is a matrix composed of functions of bounded variations for
i = 1, 2, . . . , m; λ > 0; 0 < η < 1 and

u(t) =
(
u1(t), u2(t), . . . , un(t)

)T ,

f
(
t, u, Dα1

0+u
)

=
(
f1
(
t, u, Dα1

0+u
)
, f2
(
t, u, Dα1

0+u
)
, . . . , fn

(
t, u, Dα1

0+u
))T ,

Φp
(
Dα1

0+u(t)
)

=
(
Φp
(
Dα1

0+u1(t)
)
,Φp

(
Dα1

0+u2(t)
)
, . . . ,Φp

(
Dα1

0+un(t)
))T ,

A(s) = diag
[
A1(s), A2(s), . . . , An(s)

]
.

Here, we should understand that fj(t, u, Dα1
0+u) means fj(t, u1, u2, . . . , un, Dα1

0+u1, Dα1
0+u2, . . . ,

Dα1
0+un) for j = 1, 2, . . . , n.
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Therefore, system (1.4) means that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎝

Dα2
0+ (Φp(Dα1

0+ u1(t)))
Dα2

0+ (Φp(Dα1
0+ u2(t)))

...
Dα2

0+ (Φp(Dα1
0+ un(t)))

⎞

⎟
⎟
⎠ = κ

⎛

⎜
⎜
⎝

f1(t,u,Dα1
0+ u)

f2(t,u,Dα1
0+ u)

...
fn(t,u,Dα1

0+ u)

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎝

u1(0)
u2(0)

...
un(0)

⎞

⎟
⎠ =

⎛

⎝

0
0
...
0

⎞

⎠ ,

⎛

⎜
⎝

u1(1)
u2(1)

...
un(1)

⎞

⎟
⎠ =

∑m
i=1 bi

∫ ξi
0

⎛

⎜
⎝

u1(s)
u2(s)

...
un(s)

⎞

⎟
⎠d

⎛

⎜
⎝

A1(s) 0 ... 0
0 A2(s) ... 0
...

...
. . .

...
0 0 ... An(s)

⎞

⎟
⎠ ,

⎛

⎜
⎜
⎝

Dα1
0+ u1(0)

Dα1
0+ u2(0)

...
Dα1

0+ un(0)

⎞

⎟
⎟
⎠ =

⎛

⎝

0
0
...
0

⎞

⎠ ,

⎛

⎜
⎜
⎝

Φp(Dα1
0+ u1(1))

Φp(Dα1
0+ u2(1))

...
Φp(Dα1

0+ un(1))

⎞

⎟
⎟
⎠ = λ

⎛

⎜
⎜
⎝

Φp(Dα1
0+ u1(η))

Φp(Dα1
0+ u2(η))

...
Φp(Dα1

0+ un(η))

⎞

⎟
⎟
⎠ .

(1.5)

And then it follows respectively from (1.5) that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα2
0+(Φp(Dα1

0+u1(t))) = κf1(t, u1, u2, . . . , un, Dα1
0+u1, Dα1

0+u2, . . . , Dα1
0+un),

Dα2
0+(Φp(Dα1

0+u2(t))) = κf2(t, u1, u2, . . . , un, Dα1
0+u1, Dα1

0+u2, . . . , Dα1
0+un),

...

Dα2
0+(Φp(Dα1

0+un(t))) = κfn(t, u1, u2, . . . , un, Dα1
0+u1, Dα1

0+u2, . . . , Dα1
0+un),

(1.6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(0) = 0, u1(1) =
∑m

i=1 bi
∫ ξi

0 u1(s) dA1(s),

u2(0) = 0, u2(1) =
∑m

i=1 bi
∫ ξi

0 u2(s) dA2(s),
...

un(0) = 0, un(1) =
∑m

i=1 bi
∫ ξi

0 un(s) dAn(s),

(1.7)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα1
0+u1(0) = 0, Φp(Dα1

0+u1(1)) = λΦp(Dα1
0+u1(η)),

Dα1
0+u2(0) = 0, Φp(Dα1

0+u2(1)) = λΦp(Dα1
0+u2(η)),

...

Dα1
0+un(0) = 0, Φp(Dα1

0+un(1)) = λΦp(Dα1
0+un(η)).

(1.8)

Our model has the following characteristics. Firstly, the equations are fractional deriva-
tive differential, if α1 and α2 both equal to 2, our equations degenerate into the model
in [27]. Secondly, the nonlinear terms of the equations are related not only to the vector-
valued function, but also to the derivative of vector-valued function. Thirdly, the boundary
conditions are multi-point and multi-strip mixed boundary conditions.

In addition, we give the following assumptions ahead:
(F1) fj : [0, 1] ×R

n
+ ×R

n
– →R+ is continuous for j = 1, 2, . . . , n;

(F2) Aj(s) is a monotone nondecreasing function for j = 1, 2, . . . , n;
Let 1 –

∑m
i=1 bi

∫ ξi
0 sα1–1 dAj(s) = 
j satisfying 0 < 
j < 1 for j = 1, 2, . . . , n;

(F3) λ ≥ 0 with 0 < ληα2–1 < 1.
The structure of this paper is as follows. In Sect. 2, we give some necessary preliminar-

ies, which will be used in the main proof. In Sect. 3, we establish the existence results of
positive solutions by using the Leggett–Williams fixed point theorem. In Sect. 4, we inves-
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tigate the nonexistence results of positive solutions. In Sect. 5, we illustrate two examples
to demonstrate the main results.

2 Preliminaries
In this section, we consider the n-dimensional fractional order system (1.4) and put for-
ward some indispensable definitions and theorems in advance.

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 of a function
f : (0,∞) →R is given by

Iα
0+f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds,

provided the right-hand side is pointwise defined on (0,∞), where Γ (α) is the Euler
gamma function defined by Γ (α) =

∫∞
0 tα–1e–t dt for α > 0.

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 for a function
f : (0,∞) →R is given by

Dα
0+f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds,

where n = [α] + 1, [α] stands for the largest integer not greater than α.

According to the definition of Riemann–Liouville’s derivative, the following lemmas can
be achieved.

Lemma 2.1 For α > 0, if we assume that u ∈ C[0,∞) ∩ L1(0, 1), then we have

Iα
0+
(
Dα

0+u(t)
)

= u(t) + m1tα–1 + m2tα–2 + · · · + mntα–n

for some mi ∈R, i = 1, 2, . . . , n, while n is the smallest integer greater than or equal to α.

Definition 2.3 Let E be a real Banach space. A nonempty, closed, and convex set K ⊂ E
is a cone if the following two conditions are satisfied:

(1) if x ∈ K and μ ≥ 0, then μx ∈ K ;
(2) if x ∈ K and –x ∈ K , then x = 0.

Every cone K ⊂ E induces the ordering in E given by x1 ≤ x2 if and only if x2 – x1 ∈ K .

Definition 2.4 The map γ is said to be a continuous nonnegative convex (concave) func-
tion on a cone K of a real Banach space E provided that γ : K → [0,∞) is continuous
and

γ
(
tx + (1 – t)y

)≤ (≥)tγ (x) + (1 – t)γ (y), x, y ∈ K , t ∈ [0, 1].
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For hj(t) ∈ C(0, 1)∩L1(0, 1), j = 1, 2, . . . , n, we consider a component of the corresponding
linearization problem according to (1.6)–(1.8):

⎧
⎪⎪⎨

⎪⎪⎩

Dα2
0+(Φp(Dα1

0+uj(t))) = hj(t), t ∈ (0, 1),

uj(0) = 0, uj(1) =
∑m

i=1 bi
∫ ξi

0 uj(s) dAj(s),

Dα1
0+uj(0) = 0, Φp(Dα1

0+uj(1)) = λΦp(Dα1
0+uj(η)).

(2.1)

By means of the transformation

Φp
(
Dα1

0+uj(t)
)

= –vj(t), (2.2)

we can convert equation (2.1) into

⎧
⎨

⎩

Dα1
0+uj(t) = –Φq(vj(t)), t ∈ (0, 1),

uj(0) = 0, uj(1) =
∑m

i=1 bi
∫ ξi

0 uj(s) dAj(s)
(2.3)

and
⎧
⎨

⎩

Dα2
0+vj(t) = –hj(t), t ∈ (0, 1),

vj(0) = 0, vj(1) = λvj(η),
(2.4)

where Φq = Φ–1
p , 1

p + 1
q = 1.

For k = 1, 2, define the Green’s function as follows:

Gk(t, s) =
1

Γ (αk)

⎧
⎨

⎩

tαk –1(1 – s)αk –1 – (t – s)αk –1, 0 ≤ s ≤ t ≤ 1,

tαk –1(1 – s)αk –1, 0 ≤ t ≤ s ≤ 1.
(2.5)

Lemma 2.2 Boundary value problem (2.3) has a unique solution

uj(t) =
∫ 1

0
Hj(t, s)Φq

(
vj(s)

)
ds, (2.6)

where

Hj(t, s) = G1(t, s) +
tα1–1


j

m∑

i=1

bi

∫ ξi

0
G1(τ , s) dAj(τ ), (2.7)

and G1(t, s) is given by (2.5) for k = 1.

Proof From Lemma 2.1, we can reduce Dα1
0+uj(t) = –Φq(vj(t)) to the following equivalent

equation:

uj(t) = –
1

Γ (α1)

∫ t

0
(t – s)α1–1Φq

(
vj(s)

)
ds + c1tα1–1 + c2tα1–2, (2.8)

where c1 and c2 are arbitrary real constants.
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According to uj(0) = 0, we have c2 = 0, thus

uj(1) = –
1

Γ (α1)

∫ 1

0
(1 – s)α1–1Φq

(
vj(s)

)
ds + c1,

with uj(1) =
∑m

i=1 bi
∫ ξi

0 uj(s) dAj(s), we get

c1 =
1

Γ (α1)

∫ 1

0
(1 – s)α1–1Φq

(
vj(s)

)
ds +

m∑

i=1

bi

∫ ξi

0
uj(s) dAj(s)

and

uj(t) = –
1

Γ (α1)

∫ t

0
(t – s)α1–1Φq

(
vj(s)

)
ds

+
1

Γ (α1)

∫ 1

0
tα1–1(1 – s)α1–1Φq

(
vj(s)

)
ds

+ tα1–1
m∑

i=1

bi

∫ ξi

0
uj(s) dAj(s)

=
∫ 1

0
G1(t, s)Φq

(
vj(s)

)
ds + tα1–1

m∑

i=1

bi

∫ ξi

0
uj(s) dAj(s), (2.9)

where G1(t, s) is given by (2.5). Because of

m∑

i=1

bi

∫ ξi

0
uj(τ ) dAj(τ )

=
m∑

i=1

bi

∫ ξi

0

[∫ 1

0
G1(τ , s)Φq

(
vj(s)

)
ds + τα1–1

m∑

i=1

bi

∫ ξi

0
uj(s) dAj(s)

]

dAj(τ )

=
m∑

i=1

bi

∫ ξi

0

∫ 1

0
G1(τ , s)Φq

(
vj(s)

)
ds dAj(τ )

+
m∑

i=1

bi

∫ ξi

0
τα1–1 dAj(τ )

m∑

i=1

bi

∫ ξi

0
uj(s) dAj(s),

we get

m∑

i=1

bi

∫ ξi

0
uj(τ ) dAj(τ )

=
1

j

m∑

i=1

bi

∫ ξi

0

∫ 1

0
G1(τ , s)Φq

(
vj(s)

)
ds dAj(τ ). (2.10)

Thus, we have

uj(t) =
∫ 1

0
G1(t, s)Φq

(
vj(s)

)
ds +

tα1–1


j

m∑

i=1

bi

∫ ξi

0

∫ 1

0
G1(τ , s)Φq

(
vj(s)

)
ds dAj(τ )
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=
∫ 1

0
Hj(t, s)Φq

(
vj(s)

)
ds, (2.11)

where Hj(t, s) is given by (2.7).
This completes the proof of the lemma. �

Lemma 2.3 Boundary value problem (2.4) has a unique solution

vj(t) =
∫ 1

0
H(t, s)hj(s) ds, (2.12)

where

H(t, s) = G2(t, s) +
λtα2–1

1 – ληα2–1 G2(η, s), (2.13)

and G2(t, s) is given by (2.5) for k = 2.

Proof From Lemma 2.1, we can reduce Dα2
0+vj(t) = –hj(t) to

vj(t) = –
1

Γ (α2)

∫ t

0
(t – s)α2–1hj(s) ds + d1tα2–1 + d2tα2–2, (2.14)

where d1 and d2 are arbitrary real constants.
According to vj(0) = 0, we have d2 = 0. Thus

vj(1) = –
1

Γ (α2)

∫ 1

0
(1 – s)α2–1hj(s) ds + d1,

with vj(1) = λvj(η), we get

d1 =
1

Γ (α2)

∫ 1

0
(1 – s)α2–1hj(s) ds + λvj(η)

and

vj(t) = –
1

Γ (α2)

∫ t

0
(t – s)α2–1hj(s) ds +

1
Γ (α2)

∫ 1

0
tα2–1(1 – s)α2–1hj(s) ds + λtα2–1vj(η)

=
∫ 1

0
G2(t, s)hj(s) ds + λtα2–1vj(η), (2.15)

where G2(t, s) is given by (2.5).
From vj(η) = 1

1–ληα2–1

∫ 1
0 G2(η, s)hj(s) ds, we get

vj(t) =
∫ 1

0
G2(t, s)hj(s) ds +

λtα2–1

1 – ληα2–1

∫ 1

0
G2(η, s)hj(s) ds

=
∫ 1

0
H(t, s)hj(s) ds, (2.16)

where H(t, s) is given by (2.13).
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This completes the proof of the lemma. �

Above all, equation (2.1) has the unique solution

uj(t) =
∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )hj(τ ) dτ

)

ds, j = 1, 2, . . . , n. (2.17)

Next, we present some properties of G1(t, s), G2(t, s), Hj(t, s), and H(t, s).

Lemma 2.4 Suppose that θ is a positive constant satisfying 0 < θ < 1
2 < 1 – θ < 1, then

G1(t, s), G2(t, s), Hj(t, s), and H(t, s) satisfy the following properties:
(a) For t, s ∈ [0, 1], k = 1, 2, 0 ≤ Gk(t, s) ≤ 1

Γ (αk ) (1 – s)αk–1;
(b) For t, s ∈ [θ , 1 – θ ], k = 1, 2,

1
Γ (αk – 1)

tαk –1(1 – s)αk –1(1 – t)s ≤ Gk(t, s) ≤ 1
Γ (αk)

(1 – s)αk –1;

(c) For t, s ∈ [θ , 1 – θ ], j = 1, 2, . . . , n,

ρj
Mj

Γ (α1)
(1 – s)α1–1 ≤ Hj(t, s) ≤ Mj

Γ (α1)
(1 – s)α1–1,

1
Γ (α2 – 1)

tα2–1(1 – s)α2–1(1 – t)s ≤ H(t, s) ≤ M
Γ (α2)

(1 – s)α2–1,

where

M = 1 +
λ

1 – ληα2–1 , ρj =
α1 – 1

Mj
θ2(1 – θ ),

Mj = 1 +
1

j

m∑

i=1

bi

∫ ξi

0
dAj(s), j = 1, 2, . . . , n.

Proof (a) For 0 ≤ s ≤ t ≤ 1, we have

Gk(t, s) =
1

Γ (αk)
[
tαk –1(1 – s)αk–1 – (t – s)αk –1]

=
1

Γ (αk)
[
(t – ts)αk–1 – (t – s)αk –1]

≥ 0;

Gk(t, s) =
1

Γ (αk)
[
tαk –1(1 – s)αk–1 – (t – s)αk –1]

≤ 1
Γ (αk)

tαk –1(1 – s)αk –1

≤ 1
Γ (αk)

(1 – s)αk –1.

For 0 ≤ t ≤ s ≤ 1, we have

Gk(t, s) =
1

Γ (αk)
tαk –1(1 – s)αk –1 ≥ 0;
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Gk(t, s) =
1

Γ (αk)
tαk –1(1 – s)αk –1

≤ 1
Γ (αk)

(1 – s)αk –1.

(b) For θ ≤ s ≤ t ≤ 1 – θ , we have

Gk(t, s) =
1

Γ (αk)
[
tαk –1(1 – s)αk–1 – (t – s)αk –1]

=
αk – 1
Γ (αk)

∫ t(1–s)

t–s
xαk –2 dx

≥ 1
Γ (αk – 1)

[
t(1 – s)

]αk –2[t(1 – s) – (t – s)
]

≥ 1
Γ (αk – 1)

tαk –1(1 – s)αk –1(1 – t)s.

For θ ≤ t ≤ s ≤ 1 – θ , we have

Gk(t, s) =
1

Γ (αk)
tαk –1(1 – s)αk –1

≥ 1
Γ (αk)

tαk –1(1 – s)αk –1(1 – t)s

≥ 1
Γ (αk – 1)

tαk –1(1 – s)αk –1(1 – t)s.

(c) For t, s ∈ [0, 1], we have

Hj(t, s) = G1(t, s) +
tα1–1


j

m∑

i=1

bi

∫ ξi

0
G1(τ , s) dAj(τ )

≤ 1
Γ (α1)

(1 – s)α1–1 +
1

j

m∑

i=1

bi

∫ ξi

0

1
Γ (α1)

(1 – s)α1–1 dAj(τ )

=
Mj

Γ (α1)
(1 – s)α1–1, (2.18)

for t, s ∈ [θ , 1 – θ ], we have

Hj(t, s) = G1(t, s) +
tα1–1


j

m∑

i=1

bi

∫ ξi

0
G1(τ , s) dAj(τ )

≥ G1(t, s) ≥ α1 – 1
Γ (α1)

tα1–1(1 – s)α1–1(1 – t)s

≥ α1 – 1
Mj

t(1 – t)s
Mj

Γ (α1)
(1 – s)α1–1

≥ α1 – 1
Mj

θ2(1 – θ )
Mj

Γ (α1)
(1 – s)α1–1

=
ρjMj

Γ (α1)
(1 – s)α1–1. (2.19)
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And for t, s ∈ [0, 1], we have

H(t, s) = G2(t, s) +
λtα2–1

1 – ληα2–1 G2(η, s)

≤ 1
Γ (α2)

(1 – s)α2–1 +
λ

1 – ληα2–1
1

Γ (α2)
(1 – s)α2–1

≤ M
Γ (α2)

(1 – s)α2–1,

for t, s ∈ [θ , 1 – θ ], we have

H(t, s) = G2(t, s) +
λtα2–1

1 – ληα2–1 G2(η, s)

≥ G2(t, s) ≥ 1
Γ (α2 – 1)

tα2–1(1 – s)α2–1(1 – t)s.

Then the proof is completed. �

Let J = [0, 1], I = [θ , 1 – θ ], E = {uj(t)|uj(t) ∈ C[0, 1] and Dα1
0+ uj(t) ∈ C[0, 1], j = 1, 2, . . . , n},

U = E × E × · · · × E
︸ ︷︷ ︸

n

for all u = (u1, u2, . . . , un)T ∈ U , define the norms as follows:

‖u‖1 =
n∑

j=1

sup
t∈J

∣
∣uj(t)

∣
∣, ‖u‖2 =

n∑

j=1

sup
t∈J

∣
∣Dα1

0+ uj(t)
∣
∣, ‖u‖ = max

{‖u‖1,‖u‖2
}

.

Then (U ,‖ · ‖) is a real Banach space.
Define set K in U by

K =

{

u ∈ U : uj(t) ≥ 0, Dα1
0+ uj(t) ≤ 0, min

t∈I

n∑

j=1

uj(t) ≥ ρ‖u‖1, j = 1, 2, . . . , n

}

, (2.20)

where

ρj =
α1 – 1

Mj
θ2(1 – θ ), ρ = min

1≤j≤n
ρj.

From Mj ≥ 1, we can get 0 < ρ < 1.
For u, v ∈ K and m1, m2 ≥ 0, it is not difficult to see that

m1u(t) + m2v(t) ≥ 0, Dα1
0+
(
m1u(t) + m2v(t)

)
= m1Dα1

0+ u(t) + m2Dα1
0+ v(t) ≤ 0,

and

min
t∈I

{ n∑

j=1

m1uj(t) +
n∑

j=1

m2vj(t)

}

≥ min
t∈I

{ n∑

j=1

m1uj(t)

}

+ min
t∈I

{ n∑

j=1

m2vj(t)

}
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≥ ρm1‖u‖1 + ρm2‖v‖1 = ρ
(
m1‖u‖1 + m2‖v‖1

)

≥ ρ‖m1u + m2v‖1. (2.21)

Thus, for u, v ∈ K and m1,m2 ≥ 0, m1u + m2v ∈ K . And if u ∈ K , u �= 0, it is easy to prove
that –u /∈ K . Therefore, K is a cone in U .

Let T : K → U be a map with components T1, . . . , Tj, . . . , Tn. Here we understand Tu =
(T1u, . . . , Tju, . . . , Tnu)T , where

(Tju)(t) =
∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds. (2.22)

From Lemma 2.2 and Lemma 2.3, we have the following remark.

Remark 2.1 From (2.22), we know that u ∈ U is a solution of system (1.4) if and only if u
is a fixed point of the map T .

Lemma 2.5 T : K → K is completely continuous.

Proof For all u ∈ K , by the continuity and nonnegativity of fj(t, u(t), Dα1
0+ u(t)), Hj(t, s) and

H(t, s), T is continuous and (Tu)(t) ≥ 0, Dα1
0+ (Tu)(t) ≤ 0. Furthermore, from (2.18) and

(2.19), we have

min
t∈I

n∑

j=1

(Tju)(t)

= min
t∈I

n∑

j=1

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≥
n∑

j=1

∫ 1

0
min
t∈I

Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

=
n∑

j=1

∫ 1

0

ρjMj

Γ (α1)
(1 – s)α1–1Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≥
n∑

j=1

∫ 1

0
ρ sup

t∈J
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≥ ρ

n∑

j=1

sup
t∈J

∣
∣Tju(t)

∣
∣ = ρ

∥
∥Tju(t)

∥
∥

1. (2.23)

We can get (Tju)(K) ⊆ K for j = 1, 2, . . . , n, thus (Tu)(K) ⊆ K .
Then, in order to show T is uniformly bounded, we show Tj is uniformly bounded. Let

D be a bounded closed convex set in K , i.e., there exists a positive constant l such that
‖u‖ ≤ l. Let Mj

0 = supt∈J{fj(t, u(t), Dα1
0+ u(t))|u ∈ U ,‖u‖ ≤ l} > 0. For all (um)m∈N ∈ D, we

have

∣
∣(Tjum)(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , um(τ ), Dα1

0+ um(τ )
)

dτ

)

ds
∣
∣
∣
∣
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≤
∫ 1

0

∣
∣Hj(t, s)

∣
∣Φq

(∫ 1

0

∣
∣H(s, τ )

∣
∣
∣
∣κfj

(
τ , um(τ ), Dα1

0+ um(τ )
)∣
∣dτ

)

ds

≤
∫ 1

0

Mj

Γ (α1)
(1 – s)α1–1Φq

(∫ 1

0

M
Γ (α2)

(1 – τ )α2–1κMj
0 dτ

)

ds

≤ Mj

Γ (α1)

(
κMMj

0
Γ (α2)

)q–1 ∫ 1

0
(1 – s)α1–1Φq

(∫ 1

0
(1 – τ )α2–1 dτ

)

ds

=
Mj

Γ (α1 + 1)

(
κMMj

0
Γ (α2 + 1)

)q–1

:= Nj
1.

Furthermore,

∣
∣Dα1

0+ (Tjum)(t)
∣
∣

=
∣
∣
∣
∣–Φq

(∫ 1

0
H(t, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds
)∣
∣
∣
∣

= Φq

(∫ 1

0
H(t, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds
)

≤ Φq

(∫ 1

0

M
Γ (α2)

(1 – s)α2–1κMj
0 ds

)

=
(

κMMj
0

Γ (α2 + 1)

)q–1

:= Nj
2.

Thus, ‖Tjum‖ ≤ max{Nj
1, Nj

2}, which implies that Tj(D) is uniformly bounded.
Then we show (Tjum)(t)m∈N is equicontinuous. Because Hj(t, s) is continuous on J × J ,

Hj(t, s) is uniformly continuous on J × J , so for any ε > 0, there exists δ1 > 0 such that, for

t1, t2 ∈ J with |t1 – t2| < δ1, |Hj(t1, s) – Hj(t2, s)| < ε1[ κMMj
0

Γ (α2+1) ]1–q. We can infer that

∣
∣(Tjum)(t2) – (Tjum)(t1)

∣
∣

≤
∫ 1

0

∣
∣Hj(t2, s) – Hj(t1, s)

∣
∣Φq

(∫ 1

0
H(s, τ )κfj

(
τ , um(τ )

)
, Dα1

0+ um(τ )
)

dτ ) ds

≤
[

κMMj
0

Γ (α2 + 1)

]q–1 ∫ 1

0

∣
∣Hj(t2, s) – Hj(t1, s)

∣
∣ds

< ε1.

On the other hand, from H(t, s) is continuous on J × J , we know H(t, s) is uniformly con-
tinuous on J × J , then for any ε > 0, there exists δ2 > 0 such that, for any t1, t2 ∈ J and
|t1 – t2| < δ2, we have |H(t1, s) – H(t2, s)| < δ3(κMj

0)–1. Hence,

∣
∣
∣
∣

∫ 1

0
H(t2, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds –
∫ 1

0
H(t1, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣H(t2, s) – H(t1, s)

∣
∣κfj

(
s, um(s), Dα1

0+ um(s)
)

ds

≤ δ3.
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Because Φq(s) is continuous, when |s2 – s1| < δ3, we have |Φp(s2) – Φp(s1)| < ε2, thus,

∣
∣Dα1

0+ (Tjum)(t2) – Dα1
0+ (Tjum)(t1)

∣
∣

=
∣
∣
∣
∣–Φq

(∫ 1

0
H(t2, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds
)

+ Φq

(∫ 1

0
H(t1, s)κfj

(
s, um(s), Dα1

0+ um(s)
)

ds
)∣
∣
∣
∣

< ε2.

Therefore, it follows from the Arzelà–Ascoli theorem that (Tjum)m∈N is compact on J .
Finally, we will prove the continuity of Tj. Let (um)m∈N be any sequence converging on

K to u ∈ K , and let S > 0 be such that ‖um‖ ≤ S for all m ∈ N. Note that fj(t, u, Dα1
0+ u) is

continuous on J ×KS . It is easy to see that the dominated convergence theorem guarantees
that

lim
m→∞(Tjum)(t) = (Tju)(t) (2.24)

and

lim
m→∞ Dα1

0+ (Tjum)(t) = Dα1
0+ (Tju)(t), (2.25)

for each t ∈ J . Moreover, the compactness of Tj implies that (Tjum)(t) converges uniformly
to (Tju)(t) on J . If not, then there exist ε0 > 0 and a subsequence (umk )k∈N of (um)m∈N such
that

sup
t∈J

∣
∣(Tjumk )(t) – (Tju)(t)

∣
∣≥ ε0, k ∈N. (2.26)

Now, it follows from the compactness of Tj that there exists a subsequence of umk (with-
out loss of generality, assume that the subsequence is umk ) such that Tjumk converges uni-
formly to y0 ∈ C[0, 1]. Thus,we easily see that

sup
t∈J

∣
∣y0(t) – (Tju)(t)

∣
∣≥ ε0, k ∈ N. (2.27)

On the other hand, from the pointwise convergence (2.24) we obtain

y0(t) = (Tju)(t), t ∈ J .

This is a contradiction to (2.27). Similarly, we can get that Dα1
0+ (Tjum)(t) converges uni-

formly to Dα1
0+ (Tju)(t). Therefore, Tj is continuous.

Thus, we assert that Tj : K → K is completely continuous for j = 1, 2, . . . , n. This com-
pletes the proof of Lemma 2.5. �

3 Existence results
In this section, by using Lemmas 2.1–2.5, we show the existence of at least three positive
solutions for system (1.4).



Wang et al. Advances in Difference Equations        (2019) 2019:477 Page 14 of 21

Before the main results, we give the Leggett–Williams fixed point theorem.
Let γ and μ be nonnegative continuous convex functions on K , ω be a nonnegative

concave function on K , and ψ be a nonnegative continuous function on K . For a, b, c, d > 0,
we define the following convex sets:

K(γ ; d) =
{

u ∈ K : γ (u) < d
}

,

K(γ ,ω; b, d) =
{

u ∈ K : b ≤ ω(u),γ (u) ≤ d
}

,

K(γ ,μ,ω; b, c, d) =
{

u ∈ K : b ≤ ω(u),μ(u) ≤ c;γ (u) ≤ d
}

,

and a closed set

K(γ ,ψ ; a, d) =
{

u ∈ K : a ≤ ψ(u),γ (u) ≤ d
}

.

Lemma 3.1 (Leggett–Williams fixed point theorem [30]) Let K be a cone in a real Banach
space E. Let γ and μ be nonnegative continuous convex functions on K , ω be a nonnega-
tive concave function on K , and ψ be a nonnegative continuous function on K satisfying
ψ(ζx) ≤ ζψ(x) for 0 ≤ ζ ≤ 1 such that, for some positive numbers L and d,

ω(x) ≤ ψ(x), ‖u‖ ≤ Lγ (x) (3.1)

for all x ∈ K(γ ; d). Suppose that

T : K(γ ; d) → K(γ ; d)

is completely continuous and there exist positive numbers a, b, and c with a < b such that
(H1) {x ∈ K(γ ,μ,ω; b, c, d) : ω(x) > b} �= ∅, and ω(Tx) > b for x ∈ K(γ ,μ,ω; b, c, d);
(H2) ω(Tx) > b for x ∈ K(γ ,ω; b, d) with μ(Tx) > c;
(H3) x /∈ K(γ ,ψ ; a, d) and ψ(Tx) < a for x ∈ K(γ ,ψ ; a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ K(γ ; d) such that

γ (xi) ≤ d, i = 1, 2, 3; ω(x1) > b, a < ω(x2), ψ(x2) < b, ψ(x3) < a.

Denote the positive constants

J1 =
n∑

j=1

Mj

Γ (α1 + 1)

[
M

Γ (α2 + 1)

]q–1

, J2 =
n∑

j=1

[
M

Γ (α2 + 1)

]q–1

,

J3 =
n∑

j=1

MjB(q, q + 1)
Γ (α1)Γ (α2 – 1)q–16q ,

where B(q, q + 1) is the beta function defined by B(P, Q) =
∫ 1

0 xP–1(1 – x)Q–1 dx.
Define the functions as follows:

γ (u) = ‖u‖, μ(u) = ψ(u) = ‖u‖1, ω(u) = min
t∈I

n∑

j=1

uj(t),
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then γ and μ are continuous nonnegative convex functions, ω is a continuous nonnegative
concave function, ψ is a continuous nonnegative function, and

ρμ(u) ≤ ω(u) ≤ μ(u) = ψ(u), ‖u‖ ≤ Lγ (u),

where L = 1. Therefore, condition (3.1) in Lemma 3.1 is satisfied.

Theorem 3.2 Suppose that (F1)–(F3) hold, and there exist positive constants a, b, d with
a < b < ρd min{ J3

J1
, J3

J2
} and c = b

ρ
, for j = 1, 2, . . . , n, such that

(L1) fj(t, u, w) ≤ 1
κ

min{Φp( d
J1

),Φp( d
J2

)} for (t, u, w) ∈ J × [0, d]n × [–d, 0]n;
(L2) fj(t, u, w) > 1

κ
Φp( b

ρjJ3
) for (t, u, w) ∈ I × [b, b

ρ
]n × [–d, 0]n;

(L3) fj(t, u, w) < 1
κ
Φp( a

J1
) for (t, u, w) ∈ J × [0, a]n × [–d, 0]n.

Then system (1.4) has at least three positive solutions u1, u2, u3 satisfying

∥
∥ui∥∥≤ d (i = 1, 2, 3), (3.2)

min
t∈I

∣
∣
∣
∣
∣

n∑

j=1

u1
j (t)

∣
∣
∣
∣
∣

> b, a < min
t∈I

∣
∣
∣
∣
∣

n∑

j=1

u2
j (t)

∣
∣
∣
∣
∣
,

n∑

j=1

sup
t∈J

∣
∣u2

j (t)
∣
∣ < b,

n∑

j=1

sup
t∈J

∣
∣u3

j (t)
∣
∣ < a.

(3.3)

Proof For u ∈ K(γ , d), we have

γ (u) = ‖u‖ ≤ d,

this implies

n∑

j=1

sup
t∈J

∣
∣uj(t)

∣
∣≤ d,

n∑

j=1

sup
t∈J

∣
∣Dα1

0+ uj(t)
∣
∣≤ d,

then, for t ∈ J , we have

0 ≤
n∑

j=1

uj(t) ≤ d, –d ≤
n∑

j=1

Dα1
0+ uj(t) ≤ 0.

By (L1), we have

‖Tu‖1 =
n∑

j=1

sup
t∈J

∣
∣(Tju)(t)

∣
∣

=
n∑

j=1

sup
t∈J

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≤
n∑

j=1

∫ 1

0
sup
t∈J

Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≤
n∑

j=1

∫ 1

0

Mj

Γ (α1)
(1 – s)α1–1Φq

(∫ 1

0

M
Γ (α2)

(1 – τ )α2–1Φp

(
d
J1

)

dτ

)

ds
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=
d
J1

n∑

j=1

Mj

Γ (α1 + 1)

[
M

Γ (α2 + 1)

]q–1

= d, (3.4)

and

‖Tu‖2 =
n∑

j=1

sup
t∈J

∣
∣Dα1

0+ (Tju)(t)
∣
∣

=
n∑

j=1

sup
t∈J

Φq

(∫ 1

0
H(t, s)κfj

(
s, u(s), Dα1

0+ u(s)
)

ds
)

≤
n∑

j=1

Φq

(∫ 1

0

M
Γ (α2)

(1 – s)α2–1Φp

(
d
J2

)

ds
)

=
d
J2

n∑

j=1

[
M

Γ (α2 + 1)

]q–1

= d. (3.5)

So,

γ (Tu) = ‖Tu‖ = max
{‖Tu‖1,‖Tu‖2

}≤ d.

Therefore T : K(γ , d) → K(γ , d).
Let uj(t) = b

nρ
, for j = 1, 2, . . . , n. Then u(t) ∈ K(γ ,μ,ω; b, c, d) and

∑n
j=1 uj(t) = b

ρ
> b,

which implies that

{
u ∈ K(γ ,μ,ω; b, c, d) : ω(u) > b

} �= ∅.

For u ∈ K(γ ,μ,ω; b, c, d), we know that b <
∑n

j=1 uj(t) ≤ c = b
ρ

for t ∈ I and –d ≤
∑n

j=1 Dα1
0+ uj(t) ≤ 0.

In view of (L2),

ω(Tu) = min
t∈I

n∑

j=1

(Tju)(t)

= min
t∈I

n∑

j=1

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≥
n∑

j=1

∫ 1

0
min
t∈I

Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≥
n∑

j=1

∫ 1

0

ρjMj

Γ (α1)
(1 – s)α1–1

× Φq

(∫ 1

0

1
Γ (α2 – 1)

sα2–1(1 – τ )α2–1(1 – s)τΦp

(
b

ρjJ3

)

dτ

)

ds

≥
n∑

j=1

∫ 1

0

ρjMj

Γ (α1)
(1 – s)Φq

(∫ 1

0

1
Γ (α2 – 1)

s(1 – τ )(1 – s)τΦp

(
b

ρjJ3

)

dτ

)

ds

=
n∑

j=1

ρjMj

Γ (α1)

[
1

Γ (α2 – 1)

]q–1 b
ρjJ3

∫ 1

0
(1 – s)qsq–1 dsΦq

(∫ 1

0
(1 – τ )τ dτ

)
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>
n∑

j=1

Mjb
Γ (α1)Γ (α2 – 1)q–1J3

B(q, q + 1)6–q = b. (3.6)

So ω(Tu) > b for all u ∈ K(γ ,μ,ω; b, c, d). Hence, condition (H1) in Lemma 3.1 is satisfied.
For all u ∈ K(γ ,ω; b, d) with μ(Tu) > c = b

ρ
, from (2.23) we have

ω(Tu) ≥ ρμ(Tu) > ρc = ρ
b
ρ

= b.

Thus, condition (H2) of Lemma 3.1 holds.
Because of ψ(0) = 0 < a, then 0 /∈ K(γ ,ψ ; a, d). For u ∈ K(γ ,ψ ; a, d) with ψ(u) = a, we

know γ (u) ≤ d, which means that
∑n

j=1 supt∈J uj(t) = a and –d ≤∑n
j=1 supt∈J Dα1

0+ uj(t) ≤ 0.
From (L3), we can obtain

ψ(Tu) =
n∑

j=1

sup
t∈J

∣
∣(Tju)(t)

∣
∣

=
n∑

j=1

sup
t∈J

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

≤
n∑

j=1

∫ 1

0
sup
t∈J

Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , u(τ ), Dα1

0+ u(τ )
)

dτ

)

ds

<
n∑

j=1

∫ 1

0

Mj

Γ (α1)
(1 – s)α1–1Φq

(∫ 1

0

M
Γ (α2)

(1 – τ )α2–1Φp

(
a
J1

)

dτ

)

ds

=
a
J1

n∑

j=1

Mj

Γ (α1 + 1)

[
M

Γ (α2 + 1)

]q–1

= a. (3.7)

Therefore, condition (H3) of Lemma 3.1 is satisfied.
To sum up, the conditions of Lemma 3.1 are all verified. Hence, system (1.4) has at least

three positive solutions u1, u2, u3 satisfying (3.2) and (3.3).
The proof is completed. �

4 Nonexistence results
In this section, we focus on the nonexistence results of positive solutions for system (1.4).

We introduce some notations in advance for j = 1, 2, . . . , n:

f 0
j = lim inf‖u‖1+‖w‖1→0

min
t∈I

fj(t, u, w)
Φp(‖u‖1 + ‖w‖1)

,

f ∞
j = lim inf‖u‖1+‖w‖1→∞ min

t∈I

fj(t, u, w)
Φp(‖u‖1 + ‖w‖1)

.

Then we have the following nonexistence results of positive solutions.

Theorem 4.1 If f 0
j > 0 and f ∞

j > 0 for j = 1, 2, . . . , n, then there exists κ0 > 0 such that, for
all κ > κ0, system (1.4) has no positive solutions.



Wang et al. Advances in Difference Equations        (2019) 2019:477 Page 18 of 21

Proof Since f 0
j > 0 and f ∞

j > 0, there exist positive constants h1, h2, r1, r2, r3, r4 such that
r1 < r3, r2 < r4 and

fj(t, u, w) ≥ h1Φp
(‖u‖1 + ‖w‖1

)
, for (t, u, w) ∈ I × [0, r1]n × [–r2, 0]n,

fj(t, u, w) ≥ h2Φp
(‖u‖1 + ‖w‖1

)
, for (t, u, w) ∈ I × [

r3,∞)n × (–∞, –r4
]n.

Let

h3 = min

{

h1, h2, inf
(u,w)∈(r1,r3)n×(–r4,–r2)n

mint∈I fj(t, u, w)
Φp(‖u‖1 + ‖w‖1)

}

> 0, (4.1)

then we have

fj(t, u, w) ≥ h3Φp
(‖u‖1 + ‖w‖1

)
, for (t, u, w) ∈ I × [0,∞)n × (–∞, 0]n. (4.2)

Suppose that ũ is a positive solution of system (1.4); let

κ0 =
Γ (α1)Γ (α2 – 1)q–16q

ρjMjB(q, q + 1)
, (4.3)

then, for all t ∈ I , we get

‖̃u‖1 = ‖Tũ‖1 ≥
n∑

j=1

sup
t∈I

∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , ũ(τ ), Dα1

0+ ũ(τ )
)

dτ

)

ds

≥
∫ 1

0
Hj(t, s)Φq

(∫ 1

0
H(s, τ )κfj

(
τ , ũ(τ ), Dα1

0+ ũ(τ )
)

dτ

)

ds

≥
∫ 1

0

ρjMj

Γ (α1)
(1 – s)α1–1

× Φq

(∫ 1

0

sα2–1(1 – τ )α2–1(1 – s)τ
Γ (α2 – 1)

κh3Φp
(‖̃u‖1 +

∥
∥Dα1

0+ ũ
∥
∥

1

)
dτ

)

ds

>
κ0ρjMj

Γ (α1)Γ (α2 – 1)q–1 B(q, q + 1)6–q(‖̃u‖1 +
∥
∥Dα1

0+ ũ
∥
∥

1

)

≥ ‖̃u‖1, (4.4)

which is a contraction. Therefore, system (1.4) has no positive solution. �

5 Example
In this section, we give examples to illustrate the results.

Example 5.1 Consider the following system with n = 2, p = 9
5 , κ = 1, m = 2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
19
10
0+ (Φ 9

5
(D

17
9

0+ u(t))) = f(t, u(t), D
17
9

0+ u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = 1
8
∫ 3

5
0 u(s) dA(s) + 1

10
∫ 4

5
0 u(s) dA(s),

D
17
9

0+ u(0) = 0, Φ 9
5

(D
17
9

0+ u(1)) = 1
20Φ 9

5
(D

17
9

0+ u( 1
10 )),

(5.1)
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where α1 = 17
9 , α2 = 19

10 , b1 = 1
8 , b2 = 1

10 , ξ1 = 3
5 , ξ2 = 4

5 , λ = 1
20 , η = 1

10 , and

A(s) =

(
A1(s) 0

0 A2(s)

)

,

A1(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0, s ∈ [0, 1
2 ),

1, s ∈ [ 1
2 , 3

4 ),
1
2 , s ∈ [ 3

4 , 1),

A2(s) =

⎧
⎪⎪⎨

⎪⎪⎩

0, s ∈ [0, 1
3 ),

3
2 , s ∈ [ 1

3 , 2
3 ),

1
2 , s ∈ [ 2

3 , 1).

For t ∈ J , w ∈ R
2, set

(
f1(t, u, w)
f2(t, u, w)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( (u1+u2)t
w1t

w1+w2
(u1+u2)

)
, u ∈ [0, 0.1]2,

(
(0.4t–

√
30

20 –830)(1–10u1)+0.2t

( 0.4w1t
w1+w2

–6 sin(w2t+0.15))(1–10u2)+ 0.2w1t
w1+w2

)

, u ∈ (0.1, 0.15)2,
( √u1+u2

4 +415
3 sin(w2t+u1)+434

)
, u ∈ [0.15, 3000]2.

Thus system (5.1) is equivalent to the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
19
10
0+ (Φ 9

5
(D

17
9

0+ u1(t))) = f1(t, u(t), D
17
9

0+ u(t)), t ∈ (0, 1),

D
19
10
0+ (Φ 9

5
(D

17
9

0+ u2(t))) = f2(t, u(t), D
17
9

0+ u(t)), t ∈ (0, 1),

u1(0) = 0, u1(1) = 1
8 (u1( 1

2 )) + 1
10 (u1( 1

2 ) – 1
2 u1( 3

4 )),

u2(0) = 0, u2(1) = 1
8 ( 3

2 u2( 1
3 )) + 1

10 ( 3
2 u2( 1

3 ) – u2( 2
3 )),

D
17
9

0+ u1(0) = 0, Φ 9
5

(D
17
9

0+ u1(1)) = 1
20Φ 9

5
(D

17
9

0+ u1( 1
10 )),

D
17
9

0+ u2(0) = 0, Φ 9
5

(D
17
9

0+ u2(1)) = 1
20Φ 9

5
(D

17
9

0+ u2( 1
10 )).

(5.2)

Choose a = 0.1, b = 0.15, d = 3000, θ = 1
4 , by calculations, we can obtain


1 = 0.9172, 
2 = 0.9426,

ρ1 = 0.0350, ρ2 = 0.0333,

M1 = 1.1908, M2 = 1.2520, M = 1.0503,

J1 = 0.6756, J2 = 1.0009, J3 = 0.0023.

So we can check that fj(t, u, w) satisfy (for j = 1, 2):
(L1) f1(t, u, w) ≤ 434.3649, f2(t, u, w) ≤ 437, fj(t, u, w) ≤ min{Φ 9

5
( d

J1
),Φ 9

5
( d

J2
)} = 437.0214

for (t, u, w) ∈ [0, 1] × [0, 3000]2 × [–3000, 0]2;
(L2) f1(t, u, w) ≥ 415.7506 > Φ 9

5
( b
ρ1J3

) = 413.5925, f2(t, u, w) ≥ 431 > Φ 9
5

( b
ρ2J3

) =
430.5003 for (t, u, w) ∈ [ 1

4 , 3
4 ] × [0.15, 4.5070]2 × [–3000, 0]2;

(L3) f1(t, u, w) ≤ 0.2 < Φ 9
5

( a
J1

) = 0.2169, f2(t, u, w) ≤ 0.2 < Φ 9
5

( a
J1

) = 0.2169 for
(t, u, w) ∈ [0, 1] × [0, 0.1]2 × [–3000, 0]2.

Thus all conditions in Theorem 3.2 are satisfied. System (5.1) has at least three positive
solutions u1, u2, u3 satisfying

∥
∥ui∥∥≤ 3000 (i = 1, 2, 3),
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min
t∈I

∣
∣
∣
∣
∣

n∑

j=1

u1
j (t)

∣
∣
∣
∣
∣

> 0.15, 0.1 < min
t∈I

∣
∣
∣
∣
∣

n∑

j=1

u2
j (t)

∣
∣
∣
∣
∣
,

n∑

j=1

sup
t∈J

∣
∣u2

j (t)
∣
∣ < 0.15,

n∑

j=1

sup
t∈J

∣
∣u3

j (t)
∣
∣ < 0.1.

Example 5.2 Consider the following system with n = 2, p = 9
5 , κ = 26,000, m = 2:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
19
10
0+ (Φ 9

5
(D

17
9

0+ u(t))) = 26,000f(t, u(t), D
17
9

0+ u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = 1
8
∫ 3

5
0 u(s) dA(s) + 1

10
∫ 4

5
0 u(s) dA(s),

D
17
9

0+ u(0) = 0, Φ 9
5

(D
17
9

0+ u(1)) = 1
20Φ 9

5
(D

17
9

0+ u( 1
10 )),

(5.3)

where α1 = 17
9 , α2 = 19

10 , b1 = 1
8 , b2 = 1

10 , ξ1 = 3
5 , ξ2 = 4

5 , λ = 1
20 , η = 1

10 , θ = 1
4 ,

fj(t, u, w) =
(|u1| + |u2| + |w1| + |w2|

)2, j = 1, 2.

We can easily get that all conditions in Theorem 4.1 are satisfied. Because κ0 = 25,507 <
κ , system (5.3) has no positive solutions.
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