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1 Introduction

Recently, there has been a rapid increase in researching fractional differential equations
since their practical applications in various fields of physics, engineering, control theory,
economics, etc. Fractional differential models can always make the description more accu-
rate, and make the physical significance of parameters more explicit than the integer order
ones. So, many monographs and literature works have appeared on fractional calculus and
fractional differential equations, see [1-6].

It is well known that p-Laplace operator has deep background in analyzing mechanics,
chemical physics, dynamic systems, etc. In the last ten years, fractional boundary value
problems with p-Laplace operator have been widely studied, and there have been some
excellent results on the existence, nonexistence, uniqueness, multiplicity of the solutions
and positive solutions, we refer the readers to [7—14] and the references therein.

Meanwhile, boundary value problems with integral boundary conditions arise in lots
of applied models [15-17] and some scholars have been interested in the BVP with the
Riemann-Stieltjes integral boundary conditions, see [18—20]. Specially, multi-strip inte-
gral boundary value problems have drawn the attention of many scholars and have been
extensively used in semiconductor, blood flow, hydrodynamics, etc., see [21-25].

In [23], Ahmad et al. investigated the following fractional differential equation:

“DIx(t) = f(t,x(t),°DPx(t)), 0<p<1l,1<q<2,te[0,1], (1.1)
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supplemented with the boundary conditions of the form

ax(0) + bx(1) = Y7 i) + Y0 1y [ x(s) ds,
ex'(0) + dx'(1) = 3757 ' (00) + X7 vy fy ' (5) s, (1.2)

O<op<--<opa<---<ér<m<--<E <<l

where °D?, °DP denote the Caputo fractional derivatives of order g and g, respectively, f
is a given continuous function, 4, b, ¢, d are real constants, and «;, §; (i = 1,2,...,m—2), 1;,
Y (j=1,2,...,p — 2) are positive real constants. Several existence and uniqueness results
are established by applying the tools of fixed-point theory.

Furthermore, n-dimensional differential systems are high generalizations of differential
equations, which have broad application prospects and profound practical significance.
However, n-dimensional differential systems have not been fully studied, and only a few
results have been obtained (see [26—29] for instance); and the studies of #-dimensional
fractional differential system boundary value problems are even fewer, see [29].

In [27], Feng et al. considered the following fourth-order #-dimensional 7-Laplace sys-
tem:

D) = WOF(LX(1), 0<t<l,
x(0) = x(1) = [, g(s)x(s)ds, (1.3)
Pm(X"(0)) = (X" (1)) = [y h(s)pm(x"(s)) dis,

where the vector-valued function x is defined by x = [x1,%3,...,%,] T The authors investi-
gated the existence, multiplicity, and nonexistence of symmetric positive solutions by the
fixed point theorem in a cone and the inequality technique.

Inspired by the above achievements, we consider the following o + «; fractional order
n-dimensional p-Laplace system:

Dgi(cbp(D‘g;u(t))) = «f(t, u(t),Dgiu(t)), te(0,1),
u0)=0,  u(l)=Y" b [, us)dA(s), (1.4)
Dgiu(0)=0,  @,(Dg u(1)) = A&, (Dg,u(n)),

where 1 < oy < 2, D% is the standard Riemann-Liouville fractional derivative of order oy
fork=1,2; @,(s) = sl 25, p> L,k >0;0< & < 1,5, > 0, foi u(s) dA(s) denotes a Riemann—
Stieltjes integral and A(s) is a matrix composed of functions of bounded variations for
i=1,2,...,m;1>0;0<n<1and
T
u(t) = (ul(t): l/lz(t), ceey un(t)) )
f(t,u, Du) = (fi (t,u, DS u), f5(t,u, D), ... f,(t, u, DS u)) ",
o o o o T
(Dp(Dolu(t)) = ((pp(Doiul(t))’(Dp(DoWZ(t))'""djp(Dol”n(t))) )
A(s) = diag[Al(s),Az(s), . ..,An(s)].

Here, we should understand that f;(¢,u, Dg;u) means fi(t, u1, s, ..., un, Dyt tt1, Dy, ...,
Dgluy,)forj=1,2,...,n.
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Therefore, system (1.4) means that

D2 (@p(Dgtur (£))

fitu.Dylu)

u1(0) 0
D2 (@p(Dglus (1) fltu.Dylu) u3(0) 0
=K , =
D2 (@ (DL (1)) fn(t,u,bg’i u) n(0) 0
up(1) u1(s) Ais) 0 .. O
up (1) . ) u(s) 0 Ax(s) .. O
=20 fy . |4 (1.5)
u,,;l) un.(s) O 0 Ay,.(s)
Dyl u(0) 0 @p(Dyl 1 (1) Dp(DyL 11 (0)
Dyl us(0) 0 @, (DL uz(1) N @, (DL uz (1))
DLy (0) 0 a>p<D§1 un(1) B (DL un(m)
And then it follows respectively from (1.5) that
D2(@p (Dot ur (1)) = kfi(t, ur, v, . .. th, Dttty Dyttt ..., Dyt hyy),
D2 (@p(Doiun (1)) = kfo(t, ur, tn, . .. thy, Dy a1, Dyt ..., Dyt k), 16)
Dgi(¢p(Dgiun(t))) = Kﬁ,(t, Uy, u..., Mn’DgiulyDgiub vee ’Dgiun);
w(0)=0,  w(1)= Y7 b [y wi(s)dA (),
0(0)=0,  us(1)= X7 bi [y usls) dAs(s),
(1.7)
un(o) =0, un(l) = ZZl b; fot Mn(s) dAn(S))
Dgyui(0) =0, @, (Do, u1(1)) = 2P, (DG ur (1)),
Dyuz(0) =0, @, (Dg; u(1)) = AP, (DG} ua(n)),
(1.8)
Diy 1 (0) =0, @, (Dg, (1)) = AD (D} ().

Our model has the following characteristics. Firstly, the equations are fractional deriva-

tive differential, if «; and o, both equal to 2, our equations degenerate into the model

in [27]. Secondly, the nonlinear terms of the equations are related not only to the vector-

valued function, but also to the derivative of vector-valued function. Thirdly, the boundary

conditions are multi-point and multi-strip mixed boundary conditions.

In addition, we give the following assumptions ahead:
(F1) £:[0,1] x R x R” — R, is continuous for j = 1,2,.

(F2) A

j(s) is a monotone nondecreasing function forj = 1,2,.

7n;

Let 1 -7 b; [ s17 dAj(s) = A satisfying 0 < Aj < 1 forj =1,2,...,m

(F3) A >0with0<An®2l<l.
n

The structure of this paper is as follows. In Sect. 2, we give some necessary preliminar-

ies, which will be used in the main proof. In Sect. 3, we establish the existence results of

positive solutions by using the Leggett—Williams fixed point theorem. In Sect. 4, we inves-
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tigate the nonexistence results of positive solutions. In Sect. 5, we illustrate two examples

to demonstrate the main results.

2 Preliminaries
In this section, we consider the n-dimensional fractional order system (1.4) and put for-

ward some indispensable definitions and theorems in advance.

Definition 2.1 The Riemann-Liouville fractional integral of order « > 0 of a function

f:(0,00) = R is given by

. f) = % /0 (6= 9 f(s)ds,

provided the right-hand side is pointwise defined on (0,00), where I'(«) is the Euler
gamma function defined by I'(¢) = fooo t* et dt for a > 0.

Definition 2.2 The Riemann—Liouville fractional derivative of order « > 0 for a function

f:(0,00) = R is given by

o _ 1 i ! ! _ a1
D40 oo () [ -0

where 7 = [«] + 1, [«] stands for the largest integer not greater than .

According to the definition of Riemann-Liouville’s derivative, the following lemmas can

be achieved.

Lemma 2.1 For o >0, if we assume that u € C[0,00) N LY(0,1), then we have
I3, (DG, u(®)) = u(®) + myt* ™" + mat® > + -+ mut* ™"
forsome m; € R,i=1,2,...,n, while n is the smallest integer greater than or equal to «.

Definition 2.3 Let E be a real Banach space. A nonempty, closed, and convex set K C E
is a cone if the following two conditions are satisfied:

(1) ifx € K and u > 0, then ux € K;

(2) ifx € K and —x € K, then x = 0.

Every cone K C E induces the ordering in E given by %; <, if and only if x, —x; € K.
Definition 2.4 The map y is said to be a continuous nonnegative convex (concave) func-

tion on a cone K of a real Banach space E provided that y : K — [0,00) is continuous

and

y(tx+ (1- t)y) <)ty +(1-0y@y), xyeK,tel0,1].
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For 4;(t) € C(0,1) NLY(0,1),j=1,2,...,n, we consider a component of the corresponding
linearization problem according to (1.6)—(1.8):

or (@p(DGLui(1))) = (1), t€(0,1),
uj(O) =0, (1) = Y7 b [T uils) dAL(s), (2.1)
Du(0)=0,  ®,(DXui(1)) = 2, (D ().

By means of the transformation
@, (Dgyui(t)) = —vi(8), (2.2)
we can convert equation (2.1) into

DU u(t) = -, (v(®), te(0,1),

" £ (2.3)
M](O) =0, u/(l) = Zi:l b,’ fol M](S) dA,(S)
and
D2vi(t) = —hy(t), te(0,1),
0: Vi (£) = —h;(2) 0,1) (2.4)
v;(0) =0, vi(1) = Av;(n),
where @, = @, 1 + =1.
For k=1,2, deﬁne the Green’s function as follows:
1 (1 gl (f—s)nl, 0<s<t<l,
G(t,s) = (=9 (¢=3) - T (2.5)
Flo) |-l —s)%-l, 0<t<s<l.
Lemma 2.2 Boundary value problem (2.3) has a unique solution
1
= / Hi(t, s)¢q(vj(s)) ds, (2.6)
0

where

-1 7

Zb/ Gi(t,5)dA;(7), (2.7)

Hj(t,s) = Gi(¢,s)

and Gi(t,s) is given by (2.5) for k = 1.

Proof From Lemma 2.1, we can reduce D Lui(t) = —®4(v;(t)) to the following equivalent

equation:

t
u(t) = - / (t- s)‘“_l(Dq (vj(s)) ds + 1t 4 o172, (2.8)

I (a1)

where ¢; and c; are arbitrary real constants.
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According to u;(0) = 0, we have ¢, = 0, thus

ui(1) = / 1-s"lg (v](s)) ds + c1,

(o)

with u;(1) = D7 by [ ui(s) dAj(s), we get

=

5)*1~ 1<D v](s) ds+Zb/ u;(s) dA;(s)
0

F(Oll) =

and
1 t
u(t) = T /0 (t -9 Dy (vi(s)) ds

1 1
+ F(ozl)_/ t"‘l_l(l—s)"‘l_l(Dq(V,'(s))ds

+ 11 IZb/ uj(s) dA;(s)

1 m &
= / G1(t,8)P,(v(s)) ds + 117 Z bi/ uj(s) dA;(s), (2.9)
0

0 i=1

where G;(t,s) is given by (2.5). Because of

m &
;bi/o ui(t) dA;(7)
- l.Xml:bi /ogi |:/01 Gi(t,8) P (vj(s)) ds + T lel:bi /0& 4 dAj(S)} e

= lz::bi/:i '/01 Gl(fxs)q)q(V,‘(S)) dsdA;(t)
a i i &i
+;bi/0 Tal—ldAi(T);:bi‘/(; uj(s) dA;(s),

we get

Zb/ ui(7) dA;(7)
——be / Gi(t,5)P4(v)(s)) ds dA;(T). (2.10)

/ i=1
Thus, we have

Olllm

1 &
uj(t)=/0 Gl(t,s)cpq(vj(s)) ds + / / Gi(t,s)D v,(s)) dsdA;(t)

Page 6 of 21
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1
= /0 Hj(t,8)@4(vi(s)) ds, (2.11)

where Hj(t,s) is given by (2.7).
This completes the proof of the lemma. O

Lemma 2.3 Boundary value problem (2.4) has a unique solution

1
vi(t) = / H(t,s)hj(s) ds, (2.12)
0
where
ay—1
H(t, S) = Gz(t,S) + mGz(i],S), (2.13)

and Gy(t,s) is given by (2.5) for k = 2.
Proof From Lemma 2.1, we can reduce Dgiv/(t) =—hi(t) to

B 1
I (o)

t
vi(t) = / (t- s)"‘z_lhj(s) ds +dit®™" + dyt®272, (2.14)
0

where d; and d, are arbitrary real constants.
According to v;(0) = 0, we have d, = 0. Thus

1 1
vi(1) = —m /0 (1- s)"‘z’lh,(s) ds + dj,

with v;(1) = Av;(n), we get

1 1
— _ Q)1 .
1 T /0 (1 -9 hi(s) ds + Lv;(n)
and
i(f) = ! /t(t Y271 hi(s) d 1 /lt‘“l(l Y2271 (s) ds + A% Lvi(n)
Vi =T o -5 (s S+F(a2) \ -5 i(s) ds + vi(n
1
_ / Golt,5)(s) ds + 3% Vvy(n), (2.15)
0
where G,(t,s) is given by (2.5).
From v;(n) = I—Mﬁ fol Ga(n, s)hj(s) ds, we get
1 ay-1 1
v,»(t):'/0 Ga(2,8)hi(s) ds + mf() Ga(n, s)hj(s) ds
1
:/ H(t,s)hi(s) ds, (2.16)
0

where H(t,s) is given by (2.13).
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This completes the proof of the lemma. O

Above all, equation (2.1) has the unique solution

1 1
u;(t) :/0 I-[/(t,s)q§q</0 H(s,r)h;(t)dr) ds, j=12,...,n. (2.17)

Next, we present some properties of Gy(t,s), Ga(t,s), Hj(t,s), and H(t,s).

Lemma 2.4 Suppose that 6 is a positive constant satisfying 0 < 6 < % <1-6<1, then
Gi(t,8), Galt,s), Hj(t,s), and H(t,s) satisfy the following properties:

(@) Fort,se[0,1], k=1,2,0 < Gk(t,s) < #«k)(l —s)u1,

(b) Fort,se[0,1-60],k=1,2,

(1 - (L - s < Giltys) < —— (1 - 9%
(o —1) I (o)
(c) Fort,se€[0,1-0],j=1,2,...,n,
pjﬂ(l —5)7 < Hj(t,s) < M 1-s)27,
F(O[l) F(al)

M

— Q-2 1-t)s<H(ts) < (1-s)271,

Iy —-1) I (o)

where
A -1
M=1+ ————, pj:al—Oz(l—Q),
1- )\770‘2_1 M]

1 < &i
M,-:1+—Zbi/ dAi(s), j=1,2,...,n.
Ajim o
Proof (a) For0 <s <t <1, wehave

Gelt,9) = [ (1 = ) — (¢ 5y

I (o)
" e L6787 - =977
> 0;
Gi(t,s) = e [t”‘k’l(l N S)ak—l]

k

S A
k

= F(tlk)(l -

For0 <t <s<1, wehave

Gi(t,s) = (1 —5)*! > 0;

I (o)
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Gi(t,s) = %t"‘k 11—yt

(1 )uk—I'

- F(Olk)

(b) For <s<t<1-6,wehave

Geltrs) = —— [ (1 - 91 — (- 5)°1]

@)
1-s)

- T / e

> - ][t —5) - (t-5)]

> - s

Forf <t<s<1-6,wehave

Giltys) = (2 TONIERL

ar=101 _ \%-1(1 _
th (1= (1-1)s

ap=101 _ Nok=1¢1 _
> oD l)t (1 -95)*7(1 -1t)s.

(c) For t,s € [0,1], we have

,1 m

§i
Zb /0 Gi(t,s)dA;(t)

Hj(t,s) = Gi(¢,s) +

_ o)1 _}_ - b‘ A 1£L4
_—F( 1) Af,-zzl ]0 T -9 A

_ U _ -1
e a1, (2.18)

for t,s € [0,1 — 0], we have
1-1 7

I &
A Zbl/ Gl('C,S)dAj(‘L')

J =1 0

-1
1711 — )1 - 8)s

M:
(1-s)t

ar1-1
ZM19(1 9)()(1 s)

_ _ -1
_F(al)(l s)* (2.19)
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And for t,s € [0,1], we have

ay—1
H(t,S) = Gz(t,s) + TH‘XZ_IGZ(H,S)
A 1
< 1-— ar—1 e . ay—1
T ™ T T Y
= (1 _S)az_lx
(o)
for t,s € [6,1 - 6], we have
Ataz—l
H(t,5) = Ga(£,5) + WGZ(U;S)

1
> Gy(t,s) > ———— 22711 - 5)271(1 - t)s.
> Go(t,s) > T 1) (1-5)2"(1-1)s

Then the proof is completed. O

LetJ=1[0,1],1=1[0,1-6], E = {u;(t)|u;(¢) € C[0,1] and Dgiuj(t) e C[0,1],j=1,2,...,n},
U=EXEx---xEforallu=(uj,us,...,u,)T € U, define the norms as follows:
[N S —

n

llull = max{llully, [lull2}.

n n
lully = "suple®)],  llullz =Y sup|Dglus(e)],
j=1 te] j=1 te]

Then (U, || - ||) is a real Banach space.
Define set K in U by

n
K={uel:ut)>0,Dilu(t) < O,miInZuj(t) >plull,j=12,...,ny, (2.20)
te
j=1

where

_ O[1_1 2 _ .
pj= T,G (1-90), p = min p.

From M; > 1,wecangetO<p<1.
For u,v € K and m, my > 0, it is not difficult to see that

myu(t) + mov(t) > 0, Dy} (myu(e) + myv(t)) = miDtu(t) + maDytv(t) <0,

and

%P:Zmlu/(t) + Zmzvj(t)}
= =
> r?eip{Zmlu,(t)} + ntleiln{zmzvj(t)}
j=1 J=1

Page 10 of 21
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> pmy|lully + pma||vily = p(myllully + ma|Iv])1)

> pllmu + myv|y. (2.21)
Thus, for u,v € K and my,my > 0, mu + myv € K. And if u € K, u #0, it is easy to prove
that —u ¢ K. Therefore, K is a cone in U.

Let T: K — U be a map with components T1,...,T},..., T,. Here we understand Tu =
(Thu,..., Tu,..., T,u)’, where

1 1
(Tiu)(t) :/0 Hi(t,5)®, (/0 H(s,r)xﬁ(r,u(r),Dgiu(r)) d‘L’) ds. (2.22)

From Lemma 2.2 and Lemma 2.3, we have the following remark.

Remark 2.1 From (2.22), we know that u € U is a solution of system (1.4) if and only if u
is a fixed point of the map T.

Lemma 2.5 T: K — K is completely continuous.

Proof For all u € K, by the continuity and nonnegativity of f;(¢, u(¢), Dot u(¢)), Hi(¢,s) and
H(t,s), T is continuous and (Tu)(t) > 0, Dg}(Tu)() < 0. Furthermore, from (2.18) and
(2.19), we have

n

min ) (ZTju)(t)
j=1
n 1 1
:‘?2}‘21: /0 H,-(t,s)<Dq( /0 H(s, o)icf (v, u(r), Dt u(r)) dr) ds
p

n 1 1
inH:(¢,s)® H(s, (z, Do 4o ) d
> 121:/0 mn i(t,s) q(/o (s ‘E)Kﬁ(t u(t), D u(r)) 7:) o
n 1 1
= ijj a1-1 ( Y1 )
- T @ H(s, 7)cf (7, u(t), D! Jr) d
JZI/O Fay ™" /0 (5, O)fi (7, u(x), Ditu(D)) d ) ds
n 1 1
2,21/0 g i‘e‘?Hf(t’s)@q( / H(s’f)"ﬁ(ff“(f),Dgiu(r))dr) s

n
> p Y sup|Tu(t)| = p|| Tu()|,. (2.23)
=1 te]
We can get (Tju)(K) €K forj=1,2,...,n, thus (Tu)(K) C K.

Then, in order to show T is uniformly bounded, we show Tj is uniformly bounded. Let
D be a bounded closed convex set in K, i.e., there exists a positive constant / such that
llull <. Let M’0 = sup,;{fi(¢, u(e), Dgtu(e))|u € U, ||u|l <1} > 0. For all (uy,)men € D, we
have

|(Tyu,,)(2)|

1 1
/ Hj(t,s)®, </ H(s, T)kfi (T, Um(T), Dt (7)) dt) ds
0 0
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1 1
5/ ‘H,»(t,s)|®q(/ |H(s,r)|‘Kfj(t,um(t),Dg}um(r))‘dr) ds
0 0

1 M; 1 1M ot
5/0 F(al)(l—s) %(/0 m(l—r) KMOd‘l:)ds

M; KMM{) g-1 p1 ot 1 o
SF(OQ)(F(OIZ)) /0(1—5) ®‘1(/0 (1-7) dt)ds

M; KMM{) -1 j
= Z=N .
T+ D\ Ty +1) !

Furthermore,

| Dot (Tju,,)(2))|

1
= ‘—cbq (/o H(t,8)Kf; (8, Un(5), Dyt tyu(s)) ds)
1
=P, (/0 H(t, s)/cﬁ(s, U (5), Dy Uy (s)) ds)

! M az—1 J
q§q</o m(l—s) KMOdS)

j -1
) kMM \* N
T(ay +1) T

IA

Thus, || Tju,,| < max{Nj ,Né}, which implies that T;(D) is uniformly bounded.
Then we show (Tju,,)(£)men is equicontinuous. Because Hj(t,s) is continuous on J x J,

Hi(t,s) is uniformly continuous on J x J, so for any € > 0, there exists 6; > 0 such that, for
MM,

m]l’q . We can infer that

ti,ty € J with [t — t] < 81, [Hj(t1,8) — Hj(t2,8)| < &1

(L) (e2) — (T ) e
1 1
5/ Il‘lj(tz,S)—Hj(t1,S)|¢q</ H(s,t)Kﬁ(t,um(f)),Dgium(r))df)ds
0 0

KMM{) q-1 p1
Ty +1) Hj(ts,s) - Hj(t1,5)| d
I:I—'(oz2+1):| /0 | ,(t2 s) ,(t1 s)| S

<€1.

On the other hand, from H(t,s) is continuous on J x J, we know H(¢, s) is uniformly con-
tinuous on J x J, then for any ¢ > 0, there exists §, > 0 such that, for any #,%, € / and
|t1 — t2] < 82, we have |H(ty,s) — H(ty, s)| < 83(«M))~*. Hence,

1 1
/0 H (£, 8)Kf; (8, Un(8), Dyt tyu(s)) ds—/o H(t1, )i (s, (), Dyt (s)) dis

1
5fvmme%m¢@%@D&wmw
0

< 83.

Page 12 of 21
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Because @,(s) is continuous, when [sy — 51| < 83, we have |®,(sy) — @, (s1)| < &2, thus,
| D (Tjum) (£2) — Dyt (Titay)(11)|

1
= ‘—(Pq (/0 H(t, $)Kf; (8, Un(5), Dyt Uy () ds)

1
+ @, (/0 H (t1,8)f; (8, (), Dyt thu(s)) ds)

< &g.

Therefore, it follows from the Arzela—Ascoli theorem that (Tju,,),cn is compact on J.

Finally, we will prove the continuity of T}. Let (u,,)sen be any sequence converging on
K to u € K, and let S > 0 be such that |u,,|| < S for all m € N. Note that f(z, u,Djiu) is
continuous on J x K. It is easy to see that the dominated convergence theorem guarantees

that

Tim (Tju,)(6) = (Tju)(¢) (2.24)
and

Tim_ D (Tu)(6) = D (Tu)@), (2.25)

for each ¢ € /. Moreover, the compactness of T; implies that (Tju,,)(t) converges uniformly
to (Tju)(t) on J. If not, then there exist &y > 0 and a subsequence (U, )xen of (U)men such
that

su})|(7}umk)(t) —(Tu)(®)| > &, keN. (2.26)

Now, it follows from the compactness of T; that there exists a subsequence of u,,, (with-
out loss of generality, assume that the subsequence is u,,, ) such that Tju,, converges uni-
formly to yo € C[0, 1]. Thus,we easily see that

su})|yo(t) ~(Tjw)(t)| = &0, keN. (2.27)

On the other hand, from the pointwise convergence (2.24) we obtain
yo(t) = (Tu)(t), te].

This is a contradiction to (2.27). Similarly, we can get that Dg}(Tjum)(t) converges uni-
formly to Dy} (T;u)(¢). Therefore, T; is continuous.

Thus, we assert that T; : K — K is completely continuous for j = 1,2,...,s. This com-
pletes the proof of Lemma 2.5. d

3 Existence results
In this section, by using Lemmas 2.1-2.5, we show the existence of at least three positive
solutions for system (1.4).
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Before the main results, we give the Leggett—Williams fixed point theorem.

Let y and p be nonnegative continuous convex functions on K, w be a nonnegative
concave function on K, and  be a nonnegative continuous function on K. For a, b, ¢,d > 0,
we define the following convex sets:

K(y;d) = {u eK:y(u) <d},
K(y,w;b,d) = {u eK:b<ow(),yu) =< d},

K(y,w,w;b,c,d) = {ue K:b <o), nu) <cy)<d},
and a closed set
K(y,y;a,d)={ueK:a<y(u),yu) <d}.

Lemma 3.1 (Leggett—Williams fixed point theorem [30]) Let K be a cone in a real Banach
space E. Let y and |1 be nonnegative continuous convex functions on K, v be a nonnega-
tive concave function on K, and  be a nonnegative continuous function on K satisfying
Y (¢x) < ¢y (x) for 0 < ¢ <1 such that, for some positive numbers L and d,

w(®) =¥ (*), lull < Ly (x) (3.1)

forall x € K(y;d). Suppose that

T:K(y;d) — K(y;d)

is completely continuous and there exist positive numbers a, b, and c with a < b such that
(H1) {x e K(y,u,w;b,¢,d) : w(x) > b} # &, and w(Tx) > b for x € K(y, i, w; b, ¢, d);
(H2) w(Tx) > b for x € K(y,w;b,d) with u(Tx) > ¢;
(H3) x ¢ K(y,¥;a,d) and ¥ (Tx) < a for x € K(y, ¥; a,d) with ¢ (x) = a.

Then T has at least three fixed points x1,%3,%3 € K(y;d) such that

yx)<d, i=1,2,3; w(x1) > b, a < w(xy), ¥ (xy) < b, ¥ (x3) < a.

Denote the positive constants

n

~ M; M ] R M
]1_Zf(a1+1)|:F(a2+1):| ’ ]2_Z|:F(O{2+l)j| ’

Jj=1 J=1

n

_ M;B(q,q +1)
h=2 I(e) I (e - 1)47167

j=1

where B(g, q + 1) is the beta function defined by B(P, Q) = fol P11 - x) 2 dx.
Define the functions as follows:

y@s=lul,  p@=y@) =l o) =mind ),
j=1

Page 14 of 21
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then y and p are continuous nonnegative convex functions, w is a continuous nonnegative

concave function, V¥ is a continuous nonnegative function, and

piu(u) < w(u) < pu(u) =y (u), lull <Ly (u),
where L = 1. Therefore, condition (3.1) in Lemma 3.1 is satisfied.

Theorem 3.2 Suppose that (F1)—(F3) hold, and there exist positive constants a, b, d with
a<b<pdmln{ }andc-bfor/ 1,2,...,n, such that

(L1) fi(t, u,w) 5 = mln{(D ( 1) D,( 2)}for (t,u,w) €] x [0,d]" x [-d,0]";

(L2) fi(t,u,w) > %Qp(pjijg)for (t,u,w) el x [b, %]” x [-d,0]";

(L3) fi(t,u,w) < %(Dp(lil)for (t,u,w) €] x [0,a]” x [-d,0]".
Then system (1.4) has at least three positive solutions u', u?, u® satisfying

v <d (i=1,2,3), (3.2)

> u®) IACH
j=1 j=1

min
tel

> b, a < min
tel
(3.3)
Zsup|uj2(t)| <b, Zsup|uj3(t)| <a.
=1 te] j=1 te]
Proof For u € K(y,d), we have
yW)=ull <d,

this implies

n n
>oswlw@=d, Y sup|Diluy(o)] <d,
j=1 te] -1 te]

then, for t € J, we have

0§Zuj(t)§d, —d<ZD0+u,(t ) <0.
j=1

By (L1), we have

n
ITully =) sup|(Tju)()]
=1 te]

sup/ H;(t,5)®, (/ H(s, 7)xfi(,u(z), Dyru()) dr)

=1 te]

n 1
<> / sup H;(t,s)®, ( / H(s, 7)xf;(z,u(t), D3} u(r))dr)
=10

te]

. ! M/ o1—1 ! M ap—1 d
5}21:/0 -9 cpq(/o o1 Q>(h>dr>ds
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d M M T
_4 Z J =d, (3.4)
N i1 Flar+1) [ Iz +1)
and

ITully =) sup| DG} (Tju)(t)|
1 teJ

- Zsup(D ( f H(t,s)fi(s, u(s), Dyt u(s)) d. )

j=1 te]

- LM . d
= 2] ran =) )

d < M ]!

-2 Farn) ¢ 39

So,

y (Tu) = ||Tul| = max{||Tul|,, || Tull,} < d.

Therefore T: K(y d)— K(y,d).
Let u;(t) = = for] =1,2,...,n. Then u(t) € K(y, u, w;b,c,d) and Z;’Zl u;(t) = % > b,

which 1mp11es that
{ueK(y, w,w;b,c,d): w(u) > b} #
For u € K(y, u,w; b,c,d), we know that b < Z;’Zluj(t) <c-= % for t € I and -d <

Z;q:l Dg} Ml(t) <0.
In view of (L2),

o(Tu) = min y _(Tu)(2)
j=1

- f{g}lZ/ Hi(t,s)®, (/ H(s, 7)ifi(t,u(r), Djtu(z)) dt)
1

> Z/ mmH (t,8)P, (/ H(s,7)xf(t,u(z), Dgiu(t)) dr) ds
0

_Z/ /O] Sotll

1
1 op-1(1 _ ye2—-1(q _ i) )
X (Dq</(; Ty l)S 1-7)* (1 s)r¢p<pj]3 dr |ds

1 1 b

_Z/ 1"(041 S)¢q</o mS(l—t)(l—s)tdﬁp(ﬁ)dT)ds
_y [#]L L et ( Lo )
;F(al) I'(ay-1) IOJJB/O (1 -9)%s"" ds®, /0 (1-17)tdr
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n Mb
> 21: (o) (g — 1)1 Blg,q+1)6771= e

So w(Tu) > b forallu € K(y, u,w; b, c,d). Hence, condition (H1) in Lemma 3.1 is satisfied.
For all u € K(y,w; b,d) with u(Tu) > c = %, from (2.23) we have

o(Tu) > pu(Tu) > pc = /oé =b.
o)

Thus, condition (H2) of Lemma 3.1 holds.
Because of ¥/(0) = 0 < a, then 0 ¢ K(y,V;a,d). For u € K(y, ¥;a,d) with ¥ (u) = a, we
know y (u) < d, which means that Z}il sup,; #;(t) = a and —d < 2;11 sup,e; Dyt ui(t) < 0.

From (L3), we can obtain
Y(Tu)=>" stu}»|(T,-u>(r)|
,:1 €

sup/ H;(t,s)®, </ Hi(s, T)Kf(l',u(‘[ U(T)) dr) ds

j=1 te]
n 1
H ) H(s, , D d

< ]21:/0 Stlg) (t,s) (/ (s, 7)xfi(v, u(z), Dyru(r)) f)

n 1 M]. 3 < 1 M 3 <6{) )

_q) o 2 ar )

<121/° P ([ g0 () e ) s
_ax_ M M7
_]_I;:F(Oé1+1)[1"(a2+1)] - (3.7)

Therefore, condition (H3) of Lemma 3.1 is satisfied.

To sum up, the conditions of Lemma 3.1 are all verified. Hence, system (1.4) has at least
three positive solutions u!, u?, u? satisfying (3.2) and (3.3).

The proof is completed. O

4 Nonexistence results
In this section, we focus on the nonexistence results of positive solutions for system (1.4).

We introduce some notations in advance forj=1,2,...,n:

t,u,w
fo lim inf minf(—)
T i+ iwii—0 tel @y(|lully + [wll1)’
P timint min S
J lully+lwli—>oo tel @,(||ully + [wll1)’

Then we have the following nonexistence results of positive solutions.

Theorem 4.1 Ifﬁ0 >0 and f° >0 for j=1,2,...,n, then there exists ko > 0 such that, for

all k > kg, system (1.4) has no positive solutions.

Page 17 of 21
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Proof Since f° > 0 and £ > 0, there exist positive constants /1, s, 11, 2, 13, 4 such that
j j
r1 <13, 'y < rg and

St u,w) = @y (|lully + lwl1), for (t,u,w) € I x [0,r1]" x [-ry,0]",

St u,w) > by &, (llully + [wl1), for (£,u,w) €I x [r3,00)" x (—00,~r4]".

Let

o
By = min{hl,hz, inf M} >0, (4.1)

(uw)e(rr3) < (ra—r2" Pp(llufly + IW]l1)
then we have
f(t u, W) = h3 (”ulll + ”Wlll) for (t) u, W) elx [0) Oo)n X (—O0,0]”. (4'2)

Suppose that U is a positive solution of system (1.4); let

(o) (g —1)77167
Ko =
piM;B(q,q + 1)

(4.3)

then, for all t € I, we get

1 1
all: = ITu||; > Zsup/ H,-(t,s)@,,(/o H(s,r)/cfj(r,ﬁ(r),Dglﬁ(r)) dt) ds

j=1 tel

1 1
> / H;(t,5)®, </ H(s, T)xf;(7,u(r), Dyt u()) dr) ds
0 0

1 .M.
> / ")J_N[’(l_s)al—l
o I'(on)

el - )1 - )t
x ¢q(/0 : p(;_l) kh3®, (|14l + ||D0+uH )dr) ds

Ko p;M;
F(Ol1)F(<¥2—1)q !

Blg,q + V)6 (llall + | Dyl
> ||dll, (4.4)
which is a contraction. Therefore, system (1.4) has no positive solution. 0

5 Example

In this section, we give examples to illustrate the results.
Example 5.1 Consider the following system with n =2, p =2,k =1, m = 2:
1 1 b
Dy, (@3 (D, u(t))) = £(¢, u(t), Dy, u(t)), t €(0,1),

u(0) =0, u(l) =13 fo u(s)dA(s) + 5 o u(s)dA(s) (5.1)
Dy, u(0) =0, <1§9(D u(l))_ 1<1§9(D u()),

Page 18 of 21
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whereay =2, 00=2,b1 =%, br=1%,6=2,6=2,1= %, 1=, and
A 0
Als) = 1(s) )
0 Axs)
0, selo,)), 0, sel0,3),
As) =11, seldd),  Al)=13 seli?),
L oseld), 3 s€l3D)
Forte ], we RZ, set
(1 +up)t 2
(ot ren)- uelo01r

fituw)) (0.4~ Y30 -830)(1-10u1)40.2¢ u e (0.1,0.15)
s(6uw)) | NG -ssmmarrorsya-tom g2 )7 7T
( YT 405 )

39m(w2t+u1)+434

u € [0.15,3000]%.
Thus system (5.1) is equivalent to the following problem:

pi(@ (Doiul(t») ~ filt,u(e
DI (@5 (D ua(0))) = folt,ue
u1(0) =0,
u>(0) =0,
Dﬁ u1(0) = 0,

17

Dy, u3(0) =0,

D09+ u(t)),
D09+ u(t)),
ui(1) = g(u1(3)) + 15w (3) - 3:1(3)),
uy(1) = §Gua(3)) + 15 Gua(3) — ua(3)),
@9(Dy (1) = 550 (Dol
@y (D) (1)) = 255 (g, (5

vio

vio

(5.2)

Sl= o|"‘

Choose a =0.1, b =0.15, d = 3000, 6 = i, by calculations, we can obtain

A1=09172, A, =0.9426,

p1=0.0350,  p,=0.0333,

M;=1.1908,  M,=12520, M =1.0503,
J1=06756,  J,=1.0009,  J3=0.0023.

So we can check that fi(¢, u, w) satisfy (for j = 1,2):
(L1) fi(t,u,w) < 434.3649,5(t, u, W) < 437,£;(t,u,w) < min{®y (), P (#)) = 437.0214
for (t,u,w) € [0,1] x [0,3000]% x [-3000,0]%;
(L2) fi(t,u,w)>415.7506 > @9( b ) 413.5925,/5(t, u,w) > 431 > <1§9(
430.5003 for (t,u,w) € [ ] x [0.15,4.5070]% x [-3000,0]?;
(L3) filt,u,w) <0.2< CD% (h) =0.2169,/;(¢t, u,w) < 0.2 < <1§§ (]il) =0.2169 for
(&, u,w) € [0,1] x [0,0.1]> x [-3000,0]>.
Thus all conditions in Theorem 3.2 are satisfied. System (5.1) has at least three positive
solutions u!, u?, u® satisfying

|u'|| <3000 (i=1,2,3),
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tel

n n
min Z u} ()] > 0.15, 0.1 < min Z w (1)),
j=1 J=1

n n
Z sup|u]-2(t)| <0.15, Zsup|uf(t)| <0.1.
j=1 te] =1 te]
Example 5.2 Consider the following system with n =2, p = %, K = 26,000, m = 2:

1 17 17
DJ? (q)% (Dg, u(t))) = 26,000f(t,u(t), Dy u(z)), te(0,1),
4
5

u0)=0, u(l)=1 ff u(s) dA(s) + 55 fo u(s) dA(s), (5.3)
Dy u(0) =0, cpg(Dgu(l)) = %ég(Diu(%)),

17 19 1 1 3 4 1 1 1
wherea; = 3, 00= 35, bi=g. ba=35.61= 5,6 =3, A= 35,1= 550 = 1

2
St u,w) = (lug| + [ua| + lwi| + wal)”,

We can easily get that all conditions in Theorem 4.1 are satisfied. Because «, = 25,507 <

K, system (5.3) has no positive solutions.
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