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Abstract
In this paper, we study the existence and uniqueness for a new class of impulsive
fractional boundary value problems with separated boundary conditions containing
the Caputo fractional derivative of a function with respect to another function. The
existence of solutions is established by using the Leray–Schauder nonlinear
alternative, and the uniqueness result is proved via Banach’s contraction mapping
principle. Some examples are also constructed to demonstrate the application of
main results.
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1 Introduction and preliminaries
Impulsive boundary value problems corresponding to integer-order differential equations
with impulsive conditions have been considered extensively in the literature; see [1–3] and
references therein. Also, in the case of noninteger-order differential equations, there are
many results on impulsive boundary value problems; see, for example, [4–8], to name a
few, but some problems still need further investigation under impulsive conditions. To the
best of our knowledge, there are no papers on impulsive fractional differential equations
containing the fractional derivative of a function with respect to another function. This
gap is covered by the present paper.

More precisely, the purpose of this investigation is to establish the existence and unique-
ness of solutions for a new class of impulsive fractional differential equations with bound-
ary conditions of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk Dαk
gk x(t) = f (t, x(t)), t �= tk , k = 0, 1, 2, . . . , m,

x(t+
k ) – x(t–

k ) = φk(x(tk)), k = 1, 2, . . . , m,

Dgk x(t+
k ) – Dgk–1 x(t–

k ) = φ∗
k (x(tk)), k = 1, 2, . . . , m,

x(0) + β1Dg0 x(0) = λ1, x(T) + β2Dgm x(T) = λ2,

(1.1)
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where tk Dαk
gk is the Caputo-type fractional differential operator with respect to an-

other increasing differentiable function gk(t), t ∈ Jk , of order 1 < αk ≤ 2, Jk = (tk , tk+1],
k = 0, 1, 2, . . . , m, t0 = 0 < t1 < t2 < · · · < tm < tm+1 = T are impulsive points, the integer order
of the differential operator Dgk is defined by

Dgk =
1

g ′
k(t)

d
dt

, (1.2)

the function f : J × R → R, J = [0, T] = {0} ∪ (
⋃m

0 Jk), tm+1 = T , the functions φk ,φ∗
k :

R → R, k = 1, . . . , m, are continuous, βi, λi, i = 1, 2, are given constants, and x(t+
k ) =

limε→0+ x(tk + ε), x(t–
k ) = x(tk). For example, if α0 = α1 = 2, m = 1, and gk(t) = e(k+1)t , k = 0, 1,

then (1.1) is reduced to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e–2t( d2x(t)
dt2 – dx(t)

dt ) = f (t, x(t)), t ∈ (t0, t1],
1
4 e–4t( d2x(t)

dt2 – 2 dx(t)
dt ) = f (t, x(t)), t ∈ (t1, T],

x(t+
1 ) – x(t–

1 ) = φ1(x(t1)), ( 1
2 e–2t dx

dt )t=t+
1

– (e–t dx
dt )t=t–

1
= φ∗

k (x(t1)),

x(0) + β1(e–t dx
dt )t=0 = λ1, x(T) + β2( 1

2 e–2t dx
dt )t=T = λ2,

(1.3)

with Dgk = e–(k+1)t

(k+1)
d
dt for k = 0, 1.

For γ > 0, the Riemann–Liouville fractional integral of an integrable function h : [a, b] →
R with respect to an increasing function g ∈ Cn([a, b]) such that g ′(t) �= 0 for all t ∈ [a, b]
is defined by [9–11]

aIγ
g h(t) =

1
Γ (γ )

∫ t

a

g ′(s)h(s)
[g(t) – g(s)]1–γ

ds, (1.4)

where Γ is the gamma function. The Riemann–Liouville fractional derivative of a function
h with respect to another function g on [a, b] is defined as

	
aDγ

g h(t) = Dn
g aIn–γ

g h(t) =
1

Γ (n – γ )
Dn

g

∫ t

a

g ′(s)h(s)
[g(t) – g(s)]1+γ –n ds, (1.5)

whereas the Caputo derivative is defined by

aDγ
g h(t) = aIn–γ

g Dn
g h(t) =

1
Γ (n – γ )

∫ t

a

g ′(s)Dn
g h(s)

[g(t) – g(s)]1+γ –n ds, (1.6)

where Dn
g = Dg · · ·Dg

︸ ︷︷ ︸
n times

, Dg is defined in (1.2), and n is a positive integer such that n – 1 <

γ < n. There are relations of fractional integral and derivatives of the Riemann–Liouville
and Caputo types, which will be used in our investigation [9]:

aIγ
g
(
	

aDγ
g h

)
(t) = h(t) –

n∑

j=1

(g(t) – g(a))γ –j

Γ (γ – j + 1)
Dn–j

g
(

aIn–γ
g h

)
(a) (1.7)

and

aIγ
g
(

aDγ
g h

)
(t) = h(t) –

n–1∑

j=0

(g(t) – g(a))j

j!
Dj

gh(a). (1.8)
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In addition, for γ , δ > 0, the relation

aIγ
g
(
g(t) – g(a)

)δ =
Γ (δ + 1)

Γ (γ + δ + 1)
(
g(t) – g(a)

)γ +δ , (1.9)

is applied in the main results [9]. For some recent results, we refer the interested the reader
to [12–17].

Note that (1.4) is reduced to the Riemann–Liouville and Hadamard fractional inte-
grals when g(t) = t and g(t) = log t, respectively, where log(·) = loge(·). The fractional
derivatives of Hadamard and Hadamard–Caputo types can be obtained by substituting
g(t) = log t into (1.5) and (1.6), respectively. Also, the Riemann–Liouville and Caputo frac-
tional derivatives are presented by replacing g(t) = t in (1.5) and (1.6), respectively. In the
particular case for g(t) = et of fractional differential equations and boundary value prob-
lems, the reader can find some results in [18, 19]. Therefore problem (1.1) generates many
types and also mixed types of impulsive fractional differential equations with boundary
conditions.

Using standard fixed point theorems, we study the existence and uniqueness of solutions
for the impulsive fractional boundary value problem (1.1). An auxiliary result useful to
transform problem (1.1) into an equivalent integral equation is proved in Sect. 2. The main
results are presented in Sect. 3, where an existence and uniqueness result is proved via
Banach’s fixed point theorem and an existence result with the help of the Leray–Schauder
nonlinear alternative. Some illustrative examples are constructed in Sect. 4.

2 An auxiliary lemma
In this section, we prove an auxiliary lemma, which is the basic tool to express the solution
of problem (1.1) in an equivalent integral equation. Note that two boundary conditions in
(1.1) are separated: one condition is stated at the initial point t = 0, and the other at the
end point t = T . We use the notation

〈tj+1〉 =

⎧
⎨

⎩

t, tj+1 > tk ,

tj+1, tj+1 ≤ tk .

For example, if t ∈ (t3, t4], then tk = t3, and
∑3

j=0〈tj+1〉 = 〈t1〉+ 〈t2〉+ 〈t3〉+ 〈t4〉 = t1 + t2 + t3 + t.
In addition, we define Gj = gj(〈tj+1〉) – gj(tj) and also the nonzero constant

Ω = (β2 – β1) +
m∑

j=0

Gj.

The next lemma concerns a linear variant of problem (1.1).

Lemma 2.1 The separated boundary value problem of impulsive fractional differential
equations with respect to other functions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk Dαk
gk x(t) = y(t), t �= tk , k = 0, 1, 2, . . . , m,

x(t+
k ) – x(t–

k ) = φk(x(tk)), k = 1, 2, . . . , m,

Dgk x(t+
k ) – Dgk–1 x(t–

k ) = φ∗
k (x(tk)), k = 1, 2, . . . , m,

x(0) + β1Dg0 x(0) = λ1, x(T) + β2Dgm x(T) = λ2,

(2.1)
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is equivalent to the integral equation

x(t) =
λ1

Ω

(

β2 +

( m∑

j=0

Gj

)

–

( k∑

j=0

Gj

))

+
1
Ω

(

–β1 +

( k∑

j=0

Gj

)){

λ2 –
m–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]

–
(

tm Iαm
gm y

)
(T) –

m–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

– β2
(

tm Iαm–1
gm y

)
(T) – β2

m–1∑

j=0

[(
tj I

αj–1
gj y

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
}

+
k–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]

+
k–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

+
(

tk Iαk
gk

y
)
(t), t ∈ Jk . (2.2)

Proof First, we transform problem (1.1) into an integral equation by applying the frac-
tional integral of order 1 < α0 ≤ 2 for t ∈ (t0, t1] with respect to a function g0(t) to both
sides of equation (1.1) and also using (1.8):

t0 Iα0
g0

(
t0 Dα0

g0 x
)
(t) = x(t) – c0 – c1

(
g0(t) – g0(t0)

)

=
(

t0 Iα0
g0 y

)
(t), (2.3)

where c0 = x(t+
0 ) and c1 = Dg0 x(t+

0 ). After that, from (2.3) we obtain

Dg0 x(t) = c1 +
(

t0 Iα0–1
g0 y

)
(t).

For t ∈ (t1, t2], by applying the fractional integral of order 1 < α1 ≤ 2 with respect to the
function g1(t) to the first equation of (1.1) and again using (1.8), we have

x(t) = x
(
t+
1
)

+
(
g1(t) – g1(t1)

)
Dg1 x

(
t+
1
)

+
(

t1 Iα1
g1 y

)
(t).

From the impulsive conditions x(t+
1 ) = x(t1) + φ1(x(t1)) and Dg1 x(t+

1 ) = Dg0 x(t1) + φ∗
1 (x(t1))

we have

x(t) = c0 + c1
[(

g0(t1) – g0(t0)
)

+
(
g1(t) – g1(t1)

)]
+

(
t0 Iα0

g0 y
)
(t1) + φ1

(
x(t1)

)

+
(
g1(t) – g1(t1)

)[(
t0 Iα0–1

g0 y
)
(t1) + φ∗

1
(
x(t1)

)]
+

(
t1 Iα1

g1 y
)
(t).

For t ∈ (t2, t3], using the fractional integral of order 1 < α2 ≤ 2 with respect to the function
g2(t) to both sides of the first equation in (1.1), we obtain

x(t) = x
(
t+
2
)

+
(
g2(t) – g2(t2)

)
Dg2 x

(
t+
2
)

+
(

t2 Iα2
g2 y

)
(t).
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By substituting impulsive conditions we obtain

x(t) = c0 + c1
[(

g0(t1) – g0(t0)
)

+
(
g1(t2) – g1(t1)

)
+

(
g2(t) – g2(t2)

)]

+
(

t0 Iα0
g0 y

)
(t1) + φ1

(
x(t1)

)
+

(
t1 Iα1

g1 y
)
(t2) + φ2

(
x(t2)

)

+
(
g1(t2) – g1(t1)

)[(
t0 Iα0–1

g0 y
)
(t1) + φ∗

1
(
x(t1)

)]

+
(
g2(t) – g2(t2)

)[(
t0 Iα0–1

g0 y
)
(t1) + φ∗

1
(
x(t1)

)
+

(
t1 Iα1–1

g1 y
)
(t2) + φ∗

2
(
x(t2)

)]

+
(

t2 Iα2
g2 y

)
(t).

Repeating the procedure, for any t ∈ (tk , tk+1], k = 0, 1, 2, . . . , m, we get the integral equation

x(t) = c0 + c1

k∑

j=0

[
gj
(〈tj+1〉

)
– gj(tj)

]
+

k–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]

+
k–1∑

j=0

[
gj+1

(〈tj+2〉
)

– gj+1(tj+1)
]
( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

+
(

tk Iαk
gk

y
)
(t). (2.4)

From the first boundary condition in (1.1) we have

c0 + β1c1 = λ1. (2.5)

Since

x(T) = c0 + c1

m∑

j=0

[
gj(tj+1) – gj(tj)

]
+

m–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]

+
m–1∑

j=0

[
gj+1(tj+2) – gj+1(tj+1)

]
( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

+
(

tm Iαm
gm y

)
(T)

and

Dgm x(T) = c1 +
m–1∑

j=0

[(
tj I

αj–1
gj y

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
+

(
tm Iαm–1

gm y
)
(T),

by substituting in the second boundary condition of (1.1) we obtain

c0 + c1

(

β2 +
m∑

j=0

[
gj(tj+1) – gj(tj)

]
)

= λ2 –
m–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]
–

(
tm Iαm

gm y
)
(T) – β2

(
tm Iαm–1

gm y
)
(T)
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–
m–1∑

j=0

[
gj+1(tj+2) – gj+1(tj+1)

]
( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

– β2

m–1∑

j=0

[(
tj I

αj–1
gj y

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
. (2.6)

Solving the two linear equations (2.5) and (2.6) for constants c0 and c1, we obtain

c0 =
λ1

Ω

(

β2 +
m∑

j=0

Gj

)

–
β1

Ω

{

λ2 –
m–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]

–
(

tm Iαm
gm y

)
(T) –

m–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

– β2
(

tm Iαm–1
gm y

)
(T) – β2

m–1∑

j=0

[(
tj I

αj–1
gj y

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
}

and

c1 =
1
Ω

{

(λ2 – λ1) –
m–1∑

j=0

[(
tj I

αj
gj y

)
(tj+1) + φj+1

(
x(tj+1)

)]
–

(
tm Iαm

gm y
)
(T)

–
m–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr y
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

– β2
(

tm Iαm–1
gm y

)
(T) – β2

m–1∑

j=0

[(
tj I

αj–1
gj y

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
}

.

Substituting the values of c0 and c1 into (2.4), we obtain (2.2). The converse follows by
direct computation. The proof is completed. �

Remark 2.2 If k = 0, then problem (2.1) is reduced to a nonimpulsively fractional differ-
ential equation with boundary conditions of the form

⎧
⎨

⎩

t0 Dα0
g0 x(t) = y(t), t ∈ (0, T),

x(0) + β1Dg0 x(0) = λ1, x(T) + β2Dg0 x(T) = λ2.
(2.7)

Consequently, the result in Theorem 2.1 can be presented by

x(t) =
λ1

Ω

(
β2 + g0(T) – g0(t)

)
+

1
Ω

(
–β1 + g0(t) – g0(t0)

){
λ2 –

(
t0 Iα0

g0 y
)
(T)

– β2
(

t0 Iα0–1
g0 y

)
(T)

}
+

(
t0 Iα0

g0 y
)
(t), t ∈ [0, T], (2.8)

where Ω = (β2 – β1) + (g0(T) – g0(t0)), provided that Ω �= 0.

3 Main results
In the section, we establish the existence and uniqueness results for problem (1.1). We
define the space of piecewise continuous functions PC(J ,R) = {x : J → R : x(t) is con-
tinuous everywhere except for some tk at which x(t+

k ) and x(t–
k ) exist and x(t–

k ) = x(tk),
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k = 1, 2, . . . , m}. Note that PC(J ,R) is a Banach space equipped with the norm ‖x‖ =
sup{|x(t)| : t ∈ J}.

In the following, for the convenience of the reader, we express the fractional integral
defined in (1.4) of a nonlinear two-variable function f (t, x(t)) by a subscript notation by

(
aIγ

g fx
)
(t) := aIγ

g f
(
t, x(t)

)
=

1
Γ (γ )

∫ t

a

g ′(s)f (s, x(s))
[g(t) – g(s)]1–γ

ds.

In view of Lemma 2.1, to establish existence theorems, we consider the operator equa-
tion x = Ax, where A : PC(J ,R) → PC(J ,R) is defined by

Ax(t) =
λ1

Ω

(

β2 +

( m∑

j=0

Gj

)

–

( k∑

j=0

Gj

))

+
1
Ω

(

–β1 +

( k∑

j=0

Gj

)){

λ2 –
m–1∑

j=0

[(
tj I

αj
gj fx

)
(tj+1) + φj+1

(
x(tj+1)

)]

–
(

tm Iαm
gm fx

)
(T) –

m–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr fx
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

– β2
(

tm Iαm–1
gm fx

)
(T) – β2

m–1∑

j=0

[(
tj I

αj–1
gj fx

)
(tj+1) + φ∗

j+1
(
x(tj+1)

)]
}

+
k–1∑

j=0

[(
tj I

αj
gj fx

)
(tj+1) + φj+1

(
x(tj+1)

)]

+
k–1∑

j=0

Gj+1

( j∑

r=0

[(
tr Iαr–1

gr fx
)
(tr+1) + φ∗

r+1
(
x(tr+1)

)]
)

+
(

tk Iαk
gk

fx
)
(t), t ∈ Jk ,

and also apply fixed point theory.
Next, we use the Lipschitz condition of a nonlinear function f to prove the existence of

a unique solution using the Banach fixed point theorem.
For convenience, we denote

Q1 =
|λ1|
|Ω|

(

|β2| + 2
m∑

j=0

|Gj|
)

, Q2 =
1

|Ω|

(

|β1| +
m∑

j=0

|Gj|
)

,

Q3 = (Q2 + 1)
m∑

j=0

(gj(tj+1) – gj(tj))αj

Γ (αj + 1)
+ Q2|β2|

m∑

j=0

(gj(tj+1) – gj(tj))αj–1

Γ (αj)

+ (Q2 + 1)
m–1∑

j=0

|Gj+1|
j∑

r=0

(gr(tr+1) – gr(tr))αr–1

Γ (αr)
,

Q4 = Q2|β2|m + (Q2 + 1)
m–1∑

j=0

|Gj+1|(j + 1),
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and

Q5 = (Q2 + 1)m.

Theorem 3.1 Let gk ∈ C2([0, T]) with g ′
k(t) > 0 for t ∈ [0, T], k = 0, 1, . . . , m. Assume that

functions f : J ×R →R, φk : R →R, and φ∗
k : R →R, k = 1, 2, . . . , m, satisfy

(H1) |f (t, x) – f (t, y)| ≤ L1|x – y|, L1 > 0, ∀t ∈ J , x, y ∈R,
(H2) |φk(x) – φk(y)| ≤ L2|x – y|, |φ∗

k (x) – φ∗
k (y)| ≤ L3|x – y|, L2, L3 > 0, ∀x, y ∈R.

If

L1Q3 + L2Q5 + L3Q4 < 1, (3.1)

then the separated boundary value problem of impulsive fractional differential equations
with respect to other functions (1.1) has a unique solution on J .

Proof The Banach fixed point theorem guarantees a unique solution in a set Bρ =
{x ∈ PC(J ,R) : ‖x‖ ≤ ρ}, where ρ is chosen such that

ρ >
Q1 + |λ2|Q2 + ρ(L1Q3 + L2Q5 + L3Q4) + M1Q3 + M2Q5 + M3Q4

1 – (L1Q3 + L2Q5 + L3Q4)
.

We set supt∈J |f0| = M1, maxk|φk(0)| = M2, and maxk|φ∗
k (0)| = M3, where f0 = f (t, 0). Using

|fx| ≤ |fx – f0| + |f0|, |φk(x)| ≤ |φk(x) – φk(0)| + |φk(0)|, and |φ∗
k (x)| ≤ |φ∗

k (x) – φ∗
k (0)| + |φ∗

k (0)|,
k = 1, 2, 3, . . . , m, for any x ∈ Br , we have

∣
∣Ax(t)

∣
∣

≤ |λ1|
|Ω|

(

|β2| +

( m∑

j=0

|Gj|
)

+

( k∑

j=0

|Gj|
))

+
1

|Ω|

(

|β1| +

( k∑

j=0

|Gj|
)){

|λ2| +
m–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tm Iαm
gm |fx|

)
(T) +

m–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

+ |β2|
(

tm Iαm–1
gm |fx|

)
(T) + |β2|

m–1∑

j=0

[(
tj I

αj–1
gj |fx|

)
(tj+1) +

∣
∣φ∗

j+1
(
x(tj+1)

)∣
∣
]
}

+
k–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tk Iαk
gk

|fx|
)
(t)

+
k–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

≤ Q1 + |λ2|Q2 + ρ(L1Q3 + L2Q5 + L3Q4) + M1Q3 + M2Q5 + M3Q4

< ρ.
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This means the ABρ ⊂ Bρ . To prove the contractivity of the operator A, for any x, y ∈ Bρ ,
we consider

∣
∣Ax(t) – Ay(t)

∣
∣

≤ 1
|Ω|

(

|β1| +

( k∑

j=0

|Gj|
)){m–1∑

j=0

[(
tj I

αj
gj |fx – fy|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)
– φj+1

(
y(tj+1)

)∣
∣
]

+
(

tm Iαm
gm |fx – fy|

)
(T) + |β2|

(
tm Iαm–1

gm |fx – fy|
)
(T)

+
m–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx – fy|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)
– φ∗

r+1
(
y(tr+1)

)∣
∣
]
)

+ |β2|
m–1∑

j=0

[(
tj I

αj–1
gj |fx – fy|

)
(tj+1) +

∣
∣φ∗

j+1
(
x(tj+1)

)
– φ∗

j+1
(
y(tj+1)

)∣
∣
]
}

+
k–1∑

j=0

[(
tj I

αj
gj |fx – fy|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)
– φj+1

(
y(tj+1)

)∣
∣
]

+
k–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx – fy|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)
– φ∗

r+1
(
y(tr+1)

)∣
∣
]
)

+
(

tk Iαk
gk

|fx – fy|
)
(t)

≤ (L1Q3 + L2Q5 + L3Q4)‖x – y‖,

which implies ‖Ax – Ay‖ ≤ (L1Q3 + L2Q5 + L3Q4)‖x – y‖. Since inequality (3.1) holds, we
get that the operator A is a contraction. The benefit of the Banach contraction principle
leads to the existence of a unique fixed point of operator A, which is a unique solution of
problem (1.1) on J . The proof is finished. �

If m = 0, then Q4 and Q5 in the previous theorem are reduced to zero, and the constants
Q1, Q2, Q3 are reduced to

Q∗
1 =

|λ1|
|Ω|

(|β2| + 2
∣
∣g0(T) – g0(0)

∣
∣
)
,

Q∗
2 =

1
|Ω|

(|β1| +
∣
∣g0(T) – g0(0)

∣
∣
)
,

Q∗
3 =

(
Q∗

2 + 1
) (g0(T) – g0(0))α0

Γ (α0 + 1)
+ Q∗

2|β2| (g0(T) – g0(0))α0–1

Γ (α0)
,

respectively. Consequently, we get a result for nonimpulse effects.

Corollary 3.2 Assume that the function f satisfies (H1). If Q∗
3L1 < 1, then there exists a

unique solution on [0, T] of the problem

⎧
⎨

⎩

t0 Dα0
g0 x(t) = f (t, x(t)), t ∈ (0, T),

x(0) + β1Dg0 x(0) = λ1, x(T) + β2Dg0 x(T) = λ2.
(3.2)

The next existence result is based on the Leray–Schauder nonlinear alternative.
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Lemma 3.3 (Nonlinear alternative for single-valued maps [20]) Let E be a Banach space,
let C be a closed convex subset of E, and let U be an open subset of C such that 0 ∈ U .
Suppose that F : U → C is a continuous and compact map, that is, F(U) is a relatively
compact subset of C. Then either

(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 3.4 Suppose that:
(H3) There exist a continuous nondecreasing function ψ1 : [0,∞) → (0,∞) and a contin-

uous function p : J →R
+ such that

∣
∣f (t, x)

∣
∣ ≤ p(t)ψ1

(|x|), (t, x) ∈ J ×R.

(H4) There exist two continuous nondecreasing functions ψ2,ψ3 : [0,∞) → (0,∞) such
that

∣
∣φk(x)

∣
∣ ≤ ψ2

(|x|) and
∣
∣φ∗

k (x)
∣
∣ ≤ ψ3

(|x|)

for all x ∈R, k = 1, 2, . . . , m.
(H5) There exists a constant M > 0 such that

M
(Q1 + |λ2|Q2) + (‖p‖ψ1(M)Q3 + ψ2(M)Q5 + ψ3(M)Q4)

> 1.

Then the impulsive fractional boundary value problem (1.1) has at least one solution on J .

Proof First, we prove the continuity of A. Let Bρ∗ = {x ∈ PC(J ,R) : ‖x‖ ≤ ρ∗,ρ∗ > 0} be a
bounded ball in PC(J ,R), and let {xn} be a sequence such that xn → x in Bρ∗ . From the
continuity of f on J ×R we obtain

f
(
t, xn(t)

) → f
(
t, x(t)

)
as n → ∞.

Then, for any t ∈ J , we get

∣
∣Axn(t) – Ax(t)

∣
∣

≤ 1
|Ω|

(

|β1| +

( k∑

j=0

|Gj|
)){m–1∑

j=0

[(
tj I

αj
gj |fxn – fx|

)
(tj+1) +

∣
∣φj+1

(
xn(tj+1)

)

– φj+1
(
x(tj+1)

)∣
∣
]

+
(

tm Iαm
gm |fxn – fx|

)
(T) + |β2|

(
tm Iαm–1

gm |fxn – fx|
)
(T)

+
m–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fxn – fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
xn(tr+1)

)
– φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

+ |β2|
m–1∑

j=0

[(
tj I

αj–1
gj |fxn – fx|

)
(tj+1) +

∣
∣φ∗

j+1
(
xn(tj+1)

)
– φ∗

j+1
(
x(tj+1)

)∣
∣
]
}

+
k–1∑

j=0

[(
tj I

αj
gj |fxn – fx|

)
(tj+1) +

∣
∣φj+1

(
xn(tj+1)

)
– φj+1

(
x(tj+1)

)∣
∣
]
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+
k–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fxn – fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
xn(tr+1)

)
– φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

+
(

tk Iαk
gk

|fxn – fx|
)
(t),

which leads to ‖Axn – Ax‖ → 0 as n → ∞. Therefore A is continuous.
Next, we prove that A maps bounded sets into bounded sets in PC(J ,R). For any x ∈ Bρ∗

and t ∈ J , we get

∣
∣Ax(t)

∣
∣

≤ |λ1|
|Ω|

(

|β2| +

( m∑

j=0

|Gj|
)

+

( k∑

j=0

|Gj|
))

+
1

|Ω|

(

|β1| +

( k∑

j=0

|Gj|
)){

|λ2| +
m–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tm Iαm
gm |fx|

)
(T) +

m–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

+ |β2|
(

tm Iαm–1
gm |fx|

)
(T) + |β2|

m–1∑

j=0

[(
tj I

αj–1
gj |fx|

)
(tj+1) +

∣
∣φ∗

j+1
(
x(tj+1)

)∣
∣
]
}

+
k–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tk Iαk
gk

|fx|
)
(t)

+
k–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

≤ |λ1|
|Ω|

(

|β2| + 2
m∑

j=0

|Gj|
)

+
1

|Ω|

(

|β1| +
m∑

j=0

|Gj|
)

×
{

|λ2| +
m–1∑

j=0

[‖p‖ψ1
(‖x‖)(tj I

αj
gj (1)

)
(tj+1) + ψ2

(‖x‖)]

+ ‖p‖ψ1
(‖x‖)(tm Iαm

gm (1)
)
(T)

+
m–1∑

j=0

|Gj+1|
( j∑

r=0

[‖p‖ψ1
(‖x‖)(tr Iαr–1

gr (1)
)
(tr+1) + ψ3

(‖x‖)]
)

+ |β2|‖p‖ψ1
(‖x‖)(tm Iαm–1

gm (1)
)
(T)

+ |β2|
m–1∑

j=0

[‖p‖ψ1
(‖x‖)(tj I

αj–1
gj (1)

)
(tj+1) + ψ3

(‖x‖)]
}

+
m–1∑

j=0

[‖p‖ψ1
(‖x‖)(tj I

αj
gj (1)

)
(tj+1) + ψ2

(‖x‖)] + ‖p‖ψ1
(‖x‖)(tm Iαm

gm (1)
)
(T)

+
m–1∑

j=0

|Gj+1|
( j∑

r=0

[‖p‖ψ1
(‖x‖)(tr Iαr–1

gr (1)
)
(tr+1) + ψ3

(‖x‖)]
)
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= Q1 + |λ2|Q2 + ‖p‖ψ1
(
ρ∗)Q3 + ψ2

(
ρ∗)Q5 + ψ3

(
ρ∗)Q4

:= Q∗,

which implies that ‖Ax‖ ≤ Q∗. Thus the set ABρ∗ is uniformly bounded.
In the next step, we will show that A maps bounded sets into equicontinuous sets of

PC(J ,R). Let τ1, τ2 ∈ Jk for some k ∈ {0, 1, 2, . . . , m}, τ1 < τ2. Then, for any x ∈ Bρ∗ , we
have

∣
∣Ax(τ2) – Ax(τ1)

∣
∣

≤ |λ1|
|Ω|

∣
∣gk(τ2) – gk(τ1)

∣
∣

+
1

|Ω|
∣
∣gk(τ2) – gk(τ1)

∣
∣

{

|λ2| + ‖p‖ψ1
(
ρ∗)

m∑

j=0

(gj(tj+1) – gj(tj))αj

Γ (αj + 1)

+ mψ2
(
ρ∗) + ‖p‖ψ1

(
ρ∗)

m–1∑

j=0

|Gj+1|
j∑

r=0

(gr(tr+1) – gr(tr))αr–1

Γ (αr)

+ ψ3
(
ρ∗)

m–1∑

j=0

|Gj+1|(j + 1) + ‖p‖ψ1
(
ρ∗)|β2|

m∑

j=0

(gj(tj+1) – gj(tj))αj–1

Γ (αj)

+ |β2|mψ3
(
ρ∗)

}

+ ‖p‖ψ1
(
ρ∗)

∣
∣
∣
∣
(gk(τ2) – gk(tk))αk

Γ (αk + 1)
–

(gk(τ1) – gk(tk))αk

Γ (αk + 1)

∣
∣
∣
∣.

As τ1 → τ2, the right-hand side of this inequality tends to zero independently of un-
known variable x. Therefore by the Arzelá–Ascoli theorem it follows that the operator
A : PC(J ,R) → PC(J ,R) is completely continuous.

Finally, we show that there exists an open set U ⊆ PC(J ,R) with x �= λA(x) for λ ∈ (0, 1)
and x ∈ ∂U .

Let x ∈ PC(J ,R) and x = λA(x) for some 0 < λ < 1. Thus, for each t ∈ J , we have

∣
∣x(t)

∣
∣ = λ

∣
∣Ax(t)

∣
∣

≤ |λ1|
|Ω|

(

|β2| +

( m∑

j=0

|Gj|
)

+

( k∑

j=0

|Gj|
))

+
1

|Ω|

(

|β1| +

( k∑

j=0

|Gj|
)){

|λ2| +
m–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tm Iαm
gm |fx|

)
(T) +

m–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

+ |β2|
(

tm Iαm–1
gm |fx|

)
(T) + |β2|

m–1∑

j=0

[(
tj I

αj–1
gj |fx|

)
(tj+1) +

∣
∣φ∗

j+1
(
x(tj+1)

)∣
∣
]
}

+
k–1∑

j=0

[(
tj I

αj
gj |fx|

)
(tj+1) +

∣
∣φj+1

(
x(tj+1)

)∣
∣
]

+
(

tk Iαk
gk

|fx|
)
(t)
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+
k–1∑

j=0

|Gj+1|
( j∑

r=0

[(
tr Iαr–1

gr |fx|
)
(tr+1) +

∣
∣φ∗

r+1
(
x(tr+1)

)∣
∣
]
)

≤ (
Q1 + |λ2|Q2

)
+

(‖p‖ψ1
(‖x‖)Q3 + ψ2

(‖x‖)Q5 + ψ3
(‖x‖)Q4

)
,

which can be expressed as

‖x‖
(Q1 + |λ2|Q2) + (‖p‖ψ1(‖x‖)Q3 + ψ2(‖x‖)Q5 + ψ3(‖x‖)Q4)

≤ 1.

In view of (H5), there exists M such that ‖x‖ �= M. Let

U =
{

x ∈ PC(J ,R) : ‖x‖ < M
}

.

Note that the operator A : U → PC(J ,R) is continuous and completely continuous. From
the choice of U there is no x ∈ ∂U such that x = λA(x) for some λ ∈ (0, 1). Consequently,
by the nonlinear alternative of Leray–Schauder type (Lemma 3.3) we deduce that A has a
fixed point x ∈ U , which is a solution of problem (1.1). This completes the proof. �

In the particular case p(t) = 1 and ψi(‖x‖) = Λi‖x‖ + Ni, i = 1, 2, 3, we have the following
corollary.

Corollary 3.5 Let f : J × R → R and φk ,φ∗
k : R → R, k = 1, 2, . . . , m, be continuous func-

tions. Assume that:
(A1) There exist constants Λi, Ni > 0, i = 1, 2, 3, such that

∣
∣f (t, x)

∣
∣ ≤ Λ1‖x‖ + N1 for all t ∈ J , x ∈R,

∣
∣φk(x)

∣
∣ ≤ Λ2‖x‖ + N2,

∣
∣φ∗

k
∣
∣ ≤ Λ3‖x‖ + N3 for all x ∈R, k = 1, 2, . . . , m.

If

Λ1Q3 + Λ2Q5 + Λ3Q4 < 1,

then the impulsive fractional boundary value problem (1.1) has at least one solution on J .

The result for nonimpulse effects is given by the following:

Corollary 3.6 Assume that condition (H3) holds. In addition, we suppose that:
(B1) There exists a constant M > 0 such that

M
Q∗

1 + |λ2|Q∗
2 + ‖p‖ψ1(M)Q∗

3
> 1.

Then boundary value problem (3.2) has at least one solution on J .
In addition, suppose that (A1) holds with m = 0 (i.e., φk(·) = φ∗

k (·) ≡ 0) and that Λ1Q∗
3 < 1.

Then problem (2.7) has at least one solution on J .



Promsakon et al. Advances in Difference Equations        (2019) 2019:486 Page 14 of 17

4 Examples
In this section, we present some examples to illustrate our results.

Example 4.1 Consider the following impulsive boundary value problem containing Ca-
puto fractional derivative with respect to another function of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk D
( 2k+3

k+2 )
(et+tk )x(t) = f (t, x(t)), t �= tk = k, k = 0, 1, 2, 3,

x(t+
k ) – x(t–

k ) = φk(x(tk)), k = 1, 2, 3,

D(et+tk )x(t+
k ) – D(et+tk–1)x(t–

k ) = φ∗
k (x(tk)), k = 1, 2, 3,

x(0) + 2
3 (D(et+1)x)(0) = 1

2 , x(4) + 3
5 (D(et+t3)x)(4) = 5

7 .

(4.1)

Here αk = (2k + 3)/(k + 2), gk(t) = et + tk , k = 0, 1, 2, 3, m = 3, T = 4, β1 = 2/3, β2 = 3/5,
λ1 = 1/2, and λ2 = 5/7. Then we can compute that Ω ≈ 96.53148336, Q1 ≈ 1.003798415,
Q2 ≈ 1.007596831, Q3 ≈ 5114.088162, Q4 ≈ 514.9585869, and Q5 ≈ 6.022790493.

(i) Let f : [0, 4] ×R →R, φk : R →R, and φ∗
k : R →R be the functions defined by

f (t, x) =
cos2 π t

2(t + 100)2

(
x2 + 2|x|
|x| + 1

)

+
3
2

,

φk(x) =
1

(k + 20)
sin |x| +

1
3

, k = 1, 2, 3,

φ∗
k (x) =

1
(k + 60)2 tan–1 |x| +

2
5

, k = 1, 2, 3.

(4.2)

It follows that |f (t, x) – f (t, y)| ≤ (1/100)2|x – y|, |φk(x) – φk(y)| ≤ (1/21)|x – y|, and |φ∗
k (x) –

φ∗
k (y)| ≤ (1/61)2|x – y| with L1 = (1/100)2, L2 = 1/21, and L3 = (1/61)2. Therefore we obtain

L1Q3 + L2Q5 + L3Q4 ≈ 0.9366008889 < 1. Hence by Theorem 3.1 we get that problem (4.1)
with f (t, x), φk(x), and φ∗

k (x) defined in (4.2) has a unique solution on [0, 4].
(ii) Now we consider the functions f : [0, 4] × R → R, φk : R → R, and φ∗

k : R → R

defined by

f (t, x) =
e–t

5(t + 40)

(
1

900
x2 +

1
150

)

,

φk(x) =
1

800
x2 +

1
k + 19

, k = 1, 2, 3,

φ∗
k (x) =

1
9000

x2 +
1

(39 + k)2 , k = 1, 2, 3.

(4.3)

Setting p(t) = 1/(5(t + 40)), ψ1(x) = (1/900)x2 + (1/150), ψ2(x) = (1/800)x2 + (1/20), and
ψ3(x) = (1/9000)x2 + (1/1600), conditions (H3)–(H4) are fulfilled. From ‖p‖ = 1/200 by di-
rect computing we find that there exists a constant M ∈ (4.029734051, 6.704750535) sat-
isfying condition (H5) in Theorem 3.4. By Theorem 3.4 problem (4.1) with all functions
defined in (4.3) has at least one solution in [0, 4].
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(iii) Let us consider the functions f : [0, 4]×R→R, φk : R →R, and φ∗
k : R →R defined

by

f (t, x) =
(

1
(130 + t)2

)
x8e–x2

|x|7 + 1
+ tan–1 |x| + 2,

φk(x) =
(

1
19 + k

)
x10 cos2 |x|

|x|9 + 3
+

1
2

sin4 |x| + 1, k = 1, 2, 3,

φ∗
k (x) =

(
1

(39 + k)2

) |x|5 sin2 |x|
x4 + 5

+
1
4

e–|x| k = 1, 2, 3.

(4.4)

It is obvious that |f (t, x)| ≤ (1/16900)|x| + ((π/2) + 2), |φk(x)| ≤ (1/20)|x| + (3/2), and
|φ∗

k (x)| ≤ (1/1600)|x| + (1/4), so that condition A1 is satisfied. Further, by directly com-
putation we have Λ1Q3 + Λ2Q5 + Λ3Q4 ≈ 0.9255974084 < 1. Then from Corollary 3.5 it
follows that problem (4.1) with nonlinear functions in (4.4) has at least one solution in
[0, 4].

5 Discussion
Problem (1.1) can be extended to impulsive fractional differential equations with delays by
replacing the function f (t, x(t)) with f (t, x(t), x(θ (t))), where θ : J → J and θ (t) ≤ t. Next,
we give the existence theorems without proofs for impulsive delay fractional differential
equations with boundary conditions of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk Dαk
gk x(t) = f (t, x(t), x(θ (t))), t �= tk , k = 0, 1, 2, . . . , m,

x(t+
k ) – x(t–

k ) = φk(x(tk)), k = 1, 2, . . . , m,

Dgk x(t+
k ) – Dgk–1 x(t–

k ) = φ∗
k (x(tk)), k = 1, 2, . . . , m,

x(0) + β1Dg0 x(0) = λ1, x(T) + β2Dgm x(T) = λ2.

(5.1)

Theorem 5.1 Let gk ∈ C2([0, T]) with g ′
k(t) > 0 for t ∈ [0, T], k = 0, 1, . . . , m. Suppose that

the function f : J ×R
2 → R satisfies

(H6) |f (t, x, u) – f (t, y, v)| ≤ L1|x – y| + L4|u – v|, L1, L4 > 0, ∀t ∈ J , x, y, u, v ∈ R.
In addition, assume that the functions φk : R → R and φ∗

k : R → R, k = 1, 2, . . . , m, satisfy
(H2).

If

(L1 + L4)Q3 + L2Q5 + L3Q4 < 1, (5.2)

then the boundary value problem of impulsive delay fractional differential equations with
respect to other functions (5.1) has a unique solution on J .

Theorem 5.2 Assume that the functions φk and φ∗
k satisfy (H4) for k = 1, 2, . . . , m and sup-

pose that
(H7) There exist two continuous nondecreasing functions ψ1,ψ4 : [0,∞) → (0,∞) and

two continuous functions p1, p2 : J →R
+ such that

∣
∣f (t, x, y)

∣
∣ ≤ p1(t)ψ1

(|x|) + p2(t)ψ4
(|y|), (t, x, y) ∈ J ×R

2.
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(H8) There exists a constant N > 0 such that

N
(Q1 + |λ2|Q2) + [{‖p1‖ψ1(N) + ‖p2‖ψ4(N)}Q3 + ψ2(N)Q5 + ψ3(N)Q4]

> 1.

Then the impulsive fractional boundary value problem with delay (5.1) has at least one
solution on J .

6 Conclusion
In this paper, we initiate the study of existence and uniqueness of solutions for a new class
of impulsive fractional boundary value problems with separated boundary conditions con-
taining the Caputo fractional derivative of a function with respect to another function.
The existence of solutions is established by using the Leray–Schauder nonlinear alterna-
tive, whereas the uniqueness result is proved via Banach’s contraction mapping principle.
Examples are also constructed to illustrate the main results. The considered problem gen-
erates many types and also mixed types of impulsive fractional differential equations with
boundary conditions.
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