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Abstract
The aim of this work is to offer sufficient conditions for the oscillation of neutral
differential equation second order

(r(t)
[
(y(t) + p(t)y(τ (t)))′]γ

)
′ + f (t, y(σ (t))) = 0,

where
∫ ∞ r–1/γ (s)ds =∞. Based on the comparison with first order delay equations

and by employ the Riccati substitution technique, we improve and complement a
number of well-known results. Some examples are provided to show the importance
of these results.
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1 Introduction
In this paper, we are interested in finding the sufficient conditions which ensure that the
solutions of the equation

(
r(t)

[(
y(t) + p(t)y

(
τ (t)

))′]γ )′ + f
(
t, y

(
σ (t)

))
= 0 (1.1)

are oscillatory, where t ≥ t0. Throughout this work, we suppose that:
(Π1) γ = a/b and a, b are odd positive integers;
(Π2) r, p ∈ C([t0,∞),R), 0 ≤ p(t) < 1, r(t) > 0,

η(t, s) :=
∫ t

s
r–1/γ (u) du, s ≤ t,

and η(∞, t0) = ∞;
(Π3) τ ,σ ∈ C([t0,∞),R), τ (t) ≤ t, 0 < σ (t) ≤ t, and limt→∞ τ (t) = limt→∞ σ (t) = ∞;
(Π4) f (t, y) ∈ C([t0,∞) ×R,R), yf (t, y) > 0 for all y �= 0, there exists q ∈ C([t0,∞), (0,∞))

such that |f (t, y)| ≥ q(t)|y|β and β is a quotient of odd positive integers.
Here, we define

u(t) :=
(
y + py(τ )

)
(t). (1.2)
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For a solution of (1.1), we propose a nontrivial function y ∈ C([ty,∞),R), ty ≥ t0, which
satisfies (1.1) on [ty,∞), and has the property u(t) and r(t)(u′(t))γ are continuously dif-
ferentiable for t ∈ [ty,∞). We only focus on solutions of (1.1) which exist on [t0,∞) and
satisfy sup{|y(t)| : ty ≤ t} > 0 for every t ≥ ty. If y is neither eventually positive nor eventu-
ally negative, then y(t) is called oscillatory, otherwise it is called non-oscillatory.

Differential equations with neutral argument have interesting applications in problems
of real world life. In the networks containing lossless transmission lines, the neutral differ-
ential equations appear in the modeling of these phenomena as is the case in high-speed
computers. In addition, second order neutral equations appear in the theory of automatic
control and in aeromechanical systems, in which inertia plays an important role. More-
over, second order delay equations play an important role in studying vibrating masses
attached to an elastic bar, as the Euler equation, see [1, 2, 7]. One area of active research
in recent times is to study the sufficient criterion for oscillation of delay differential equa-
tions, see [1–30].

Over this decade, a great amount of work has been done on development the oscillation
theory of second order delay and advanced equations, see [3, 4, 9, 11–14, 16, 17, 22], and
the oscillation theory of higher order delay equations, see [8, 10, 18, 19, 21, 24–26, 29].

In particular, by using the comparison technique, the equation

(
r
[
u′]γ )′(t) +

(
qyβ (σ )

)
(t) = 0 (1.3)

have been studied by Baculikova and Dzurina in [6] when γ ≥ β , σ (t) and τ (t) are nonde-
creasing, τ (σ (t)) = σ (τ (t)). By using the Riccati transformation technique, in [23, 28, 30],
the oscillatory properties of solutions of the equation

(
r
∣
∣u′∣∣γ –1u′)′(t) +

(
q
∣
∣y(σ )

∣
∣β–1y(σ )

)
(t) = 0 (1.4)

have been considered. Liu et al. [23] studied the oscillation properties for (1.4) under the
conditions γ ≥ β , r′(t) > 0, and σ ′(t) > 0. Zeng et al. [30] used the technique of Riccati
transformation to obtain oscillation conditions for (1.4), which improves the results in
[23]. Under a more general case, namely for all γ > 0 and β > 0, Wu et al. [28] studied the
oscillation criteria of equation (1.4).

The purpose of this work is to contribute to the development of the oscillation theory of
second order nonlinear equations with delay argument. Firstly, by using comparison the-
orems that compare the second order equation with first order delay equation, we obtain
two different conditions to ensure oscillation of (1.1) when γ < β and γ > β . The results
of this part improve and complement the results in [6].

Secondly, we present a new result for oscillation of (1.1) by using the technique of Riccati
transformation, which improves the related results reported in [23, 28]. In order to show
the importance of our results, we introduce two examples and compare the results in this
paper with the previous results.

We will need the following two lemmas in the next parts.

Lemma 1.1 ([5, Lemma 3]) If the function w satisfies w > 0, w′ > 0, and w′′ ≤ 0 for t ≥ t0,
then there exists tμ ≥ t0 such that

w(σ )(t) ≥ μ
1
t
σ (t)w(t)
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for all μ ∈ (0, 1).

Lemma 1.2 Assume that Ψ (s) := ks – ls1+1/γ , where k and l are real constants, l > 0 and γ

is defined as (Π1). Then we have

Ψ (s) ≤ max
s∈R

Ψ (s) =
1
γ

(
γ

γ + 1

)γ +1

kγ +1l–γ .

2 Main results
Throughout this paper, we will be employing the following notation:

G(t) := q(t)
(
1 – p

(
σ (t)

))β ,

Θ(t) := η(t, t0) +
μβ

γ

∫ t

t0

σβ(ν)
νβ

ρ(ν)η1+γ (ν, t0)G(ν) dν,

Θ̂(t) := η(t, t1) +
Cβ–γ

γ

∫ t

t1

η(ν, t1)ηγ
(
σ (ν), t1

)
G(ν) dν,

and

ρ(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

λ1 if γ < β ;

1 if γ = β ;

λ2η
β–γ (t, t0) if γ > β ,

where μ ∈ (0, 1) and C, λ1, and λ2 are positive real constants.

Theorem 2.1 Assume that r′(t) ≥ 0. If every solution of

v′(t) + G(t)Θβ
(
σ (t)

)
vβ/γ (

σ (t)
)

= 0 (2.1)

oscillates for any λ1,λ2 > 0, then every solution of (1.1) oscillates.

Proof Assume the contrary and suppose that equation (1.1) has a nonoscillatory solution
y on [t0,∞). Now, we suppose, without loss of generality, that y > 0, y(τ ) > 0, and y(σ ) > 0
for t ≥ t1 ≥ t0. Hence, we find u(t) > 0 and (r(t)(u′(t))γ )′ ≤ 0 for t ≥ t1. From [6, Lemma 3],
we have that u′(t) > 0 for t ≥ t1. From definition (1.2), we get

y(t) = u(t) – p(t)y
(
τ (t)

)

≥ u(t) – p(t)u
(
τ (t)

)

≥ (
1 – p(t)

)
u(t). (2.2)

From (1.1), (Π4), and (2.2), we obtain

(
r(t)

(
u′(t)

)γ )′ = –f
(
t, y

(
σ (t)

)) ≤ –q(t)yβ
(
σ (t)

)

≤ –G(t)uβ
(
σ (t)

)
. (2.3)
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Since (r(t)(u′(t))γ )′ ≤ 0, we see that the function U(t) := r1/γ (t)u′(t) is nonincreasing, and
hence

u(t) = u(t1) +
∫ t

t1

u′(ν) dν = u(t1) +
∫ t

t1

1
r1/γ (ν)

U(ν) dν

≥ U(t)
∫ t

t1

1
r1/γ (ν)

dν = η(t, t1)U(t). (2.4)

By a simple computation, we note that

d
dt

(
u(t) – η(t, t1)U(t)

)
= u′(t) – η′(t, t1)r1/γ (t)u′(t) – η(t, t1)

(
r1/γ (t)u′(t)

)′

= –η(t, t1)U ′(t) (2.5)

and

(
r(t)

(
u′(t)

)γ )′ =
d
dt

Uγ (t) = γ Uγ –1(t)U ′(t),

which with (2.3) yields

–η(t, t1)U ′(t) = –
1
γ

η(t, t1)U1–γ (t)
(
r(t)

(
u′(t)

)γ )′

≥ 1
γ

η(t, t1)G(t)U1–γ (t)uβ
(
σ (t)

)
. (2.6)

Combining (2.5) with (2.6), we get

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ 1
γ

η(t, t1)G(t)U1–γ (t)uβ
(
σ (t)

)
. (2.7)

Since r′(t) ≥ 0 and (r(t)(u′(t))γ )′ ≤ 0, we have that u′′(t) ≤ 0. Thus, from Lemma 1.1, we
obtain

u
(
σ (t)

) ≥ μ
σ (t)

t
u(t) (2.8)

for all t ≥ tμ. From (2.4), (2.7), and (2.8), we find

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ μβ

γ

σβ (t)
tβ

η(t, t1)G(t)U1–γ (t)uβ (t)

=
μβ

γ

σβ (t)
tβ

η(t, t1)G(t)U1–γ (t)uβ–γ (t)uγ (t)

≥ μβ

γ

σβ (t)
tβ

η1+γ (t, t1)G(t)U(t)uβ–γ (t) (2.9)

for t ≥ max{t1, tμ}. Now, since u(t) is positive and increasing, we have that u(t) ≥ u(t2) ≥
m > 0 for t ≥ t2 ≥ t1. Moreover, since r(t)(u′(t))γ is positive and decreasing, we see that
r(t)(u′(t))γ ≤ r(t2)(u′(t2))γ = M for t ≥ t2, and hence

u(t) ≤ u(t2) + M1/γ η(t, t2). (2.10)
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Since η(∞, t1) = ∞, there exist constant N > 0 and tN > tμ such that η(t, t1) > N for all
t ≥ tN . Hence, from (2.10), we find

u(t) ≤ Kη(t, t2),

where K := ( 1
N u(t2) + M1/γ ). Then we can pick t2 ≥ tN sufficiently large such that

uβ–γ (t) ≥

⎧
⎪⎪⎨

⎪⎪⎩

λ1 if γ < β ;

1 if γ = β ;

λ2η
β–γ (t, t2) if γ > β ,

(2.11)

for t ≥ t2, where λ1 = mβ–γ and λ2 = Kβ–γ . Combining (2.11) with (2.9), we arrive at

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ μβ

γ

σβ(t)
tβ

ρ(t)η1+γ (t, t1)G(t)U(t).

By integrating this inequality from t2 to t, we obtain

u(t) ≥ η(t, t1)U(t) +
μβ

γ

∫ t

t2

σβ (ν)
νβ

ρ(ν)η1+γ (ν, t1)G(ν)U(ν) dν.

From the monotonicity of U(t), we get

u(t) ≥ U(t)
(

η(t, t1) +
μβ

γ

∫ t

t2

σβ (ν)
νβ

ρ(ν)η1+γ (ν, t1)G(ν) dν

)
. (2.12)

This means that

u
(
σ (t)

) ≥ U
(
σ (t)

)
Θ

(
σ (t)

)
,

which together with (2.3) implies that

(
Uγ (t)

)′ + G(t)Θβ
(
σ (t)

)(
Uγ

(
σ (t)

))β/γ ≤ 0. (2.13)

We can see that v(t) = Uγ (t) is a positive solution of the first order delay differential in-
equality (2.13). In view of [27, Lemma 1], the associated delay differential equation (2.1)
also has a positive solution. This contradiction completes the proof. �

Theorem 2.2 If every solution of

v′(t) + G(t)Θ̂β
(
σ (t)

)
vβ/γ (

σ (t)
)

= 0 (2.14)

oscillates for all C > 0, then every solution of (1.1) oscillates.

Proof As in the proof of Theorem 2.1, we get that (2.2)–(2.7) hold. Now, we consider the
following cases: In the case where γ > β , combining (2.4) with (2.7), we get

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ 1
γ

η(t, t1)ηβ
(
σ (t), t1

)
G(t)U1–γ (t)Uβ

(
σ (t)

)
.
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Since σ (t) ≤ t and U ′(t) ≤ 0, we have U(σ (t)) ≥ U(t), and so

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ 1
γ

η(t, t1)ηβ
(
σ (t), t1

)
G(t)U(t)Uβ–γ (t).

From the fact that U(t) is positive and nonincreasing, we get that U(t) ≤ A, where A > 0
and t ≥ t2 ≥ t1. Hence, Uβ–γ (t) ≥ Aβ–γ and

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ Aβ–γ

γ
η(t, t1)ηβ

(
σ (t), t1

)
G(t)U(t). (2.15)

In the case where γ ≤ β , using the facts u(t) > 0 and u′(t) > 0, we have u(t) ≥ B > 0 for t
sufficiently large. It follows from (2.4) and (2.7) that

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ 1
γ

η(t, t1)G(t)U1–γ (t)uγ
(
σ (t)

)
uβ–γ

(
σ (t)

)

≥ Bβ–γ

γ
η(t, t1)G(t)U1–γ (t)uγ

(
σ (t)

)

≥ Bβ–γ

γ
η(t, t1)ηγ

(
σ (t), t1

)
G(t)U1–γ (t)Uγ

(
σ (t)

)

≥ Bβ–γ

γ
η(t, t1)ηγ

(
σ (t), t1

)
G(t)U(t). (2.16)

From (2.15) and (2.16), we obtain

d
dt

(
u(t) – η(t, t1)U(t)

) ≥ Cβ–γ

γ
η(t, t1)ηγ

(
σ (t), t1

)
G(t)U(t), (2.17)

where C = min{A, B}. The rest of the proof is similar to that of Theorem 2.1 and so we omit
it. �

For the oscillatory behavior of

v′(t) + Q(t)vα
(
σ (t)

)
= 0, (2.18)

where Q is a positive continuous function, Erbe et al. [15] and Ladde et al. [20] showed
that every solution of (2.18) is oscillatory if and only if

∫ ∞

t0

Q(ν) dν = ∞ for all α ∈ (0, 1). (2.19)

Moreover, Baculikova and Dzurina [6] proved that equation (2.18) is oscillatory if α ∈ (0, 1]
and

lim inf
t→∞

∫ t

σ (t)
Q(ν) dν >

1
e

.

For the case α > 1, Tang [27] studied the oscillation behavior of (2.18). In the following, by
using the results of [6, 15], and [27], we obtain new criteria for oscillation of solutions of
(1.1).
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Corollary 2.1 Assume that γ > β . If

∫ ∞

t0

G(ν)Θ̂β
(
σ (ν)

)
dν = ∞, (2.20)

then every solution of (1.1) oscillates.

Proof From [20], the associated delay differential equation (2.14) is oscillatory if and only
if (2.20) holds. �

Corollary 2.2 Assume that γ ≥ β . If

lim inf
t→∞

∫ t

σ (t)
G(ν)Θ̂β

(
σ (ν)

)
dν >

1
e

, (2.21)

then every solution of (1.1) oscillates.

Proof In view of [6, Lemma 4], the first order delay equation (2.14) is oscillatory if (2.21)
holds. �

Corollary 2.3 Assume that γ < β . Let there exist a function ψ ∈ C1([t0,∞),R) such that
ψ ′ > 0, limt→∞ ψ(t) = ∞,

lim sup
t→∞

βψ ′(σ (t))σ ′(t)
γψ ′(t)

< 1,

and

lim inf
t→∞

(
1

ψ ′(t)
e–ψ(t)G(t)Θ̂β

(
σ (t)

)
)

> 0 (2.22)

for any C > 0, then every solution of (1.1) oscillates.

Proof By using the results of [27] in Theorem 1, we get that equation (2.14) is oscillatory
if (2.22) holds. �

In the next theorem, we use the technique of Riccati to get a new oscillation condition
for equation (1.1).

Theorem 2.3 Assume that there exists a function ϕ ∈ C1([t0,∞), (0,∞)) such that

∫ ∞

t1

(
ϕ(ν)Ĝ(ν) –

r(ν)(ϕ′
+(ν))γ +1

(γ + 1)γ +1ϕγ (ν)

)
dν = ∞ (2.23)

for some sufficiently large t1 ≥ t0, where

Ĝ(t) := G(t)ρ(t) exp

(
–γ

∫ t

σ (t)

1
r1/γ (ν)Θ(ν)

dν

)

and ϕ′
+(t) = max{ϕ′(t), 0}, then every solution of (1.1) oscillates.
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Proof As in the proof of Theorem 2.1, we get (2.2)–(2.12) hold. From (2.12), we deduce
that

u′(t)
u(t)

≤ 1
r1/γ (t)Θ(t)

.

By integrating this inequality from σ (t) to t, we get

u
(
σ (t)

) ≥ u(t) exp

(
–

∫ t

σ (t)

1
r1/γ (ν)Θ(ν)

dν

)
. (2.24)

Now, we define the following function:

R(t) := ϕ(t)r(t)
(

u′(t)
u(t)

)γ

, t ≥ t1. (2.25)

Then we have

R′(t) =
ϕ′(t)
ϕ(t)

R(t) + ϕ(t)
(

(r(t)(u′(t))γ )′

uγ (t)
– γ r(t)

(
u′(t)
u(t)

)γ +1)
. (2.26)

By (2.3) and (2.11), we deduce that

(r(t)(u′(t))γ )′

uγ (t)
≤ –G(t)

uβ (σ (t))
uγ (t)

= –G(t)
uγ (σ (t))

uγ (t)
uβ–γ

(
σ (t)

)

≤ –G(t)ρ(t) exp

(
–γ

∫ t

σ (t)

1
r1/γ (ν)Θ(ν)

dν

)

= –Ĝ(t). (2.27)

By the definition (2.25), we obtain

(
u′(t)
u(t)

)γ +1

=
1

r1+1/γ (t)ϕ1+1/γ (t)
R1+1/γ (t). (2.28)

From (2.26)–(2.28), we find

R′(t) ≤ –ϕ(t)Ĝ(t) +
ϕ′(t)
ϕ(t)

R(t) –
γ

r1/γ (t)ϕ1/γ (t)
R1+1/γ (t).

Next, by using Lemma 1.2 with k = ϕ′
+/ϕ, l = γ r–1/γ ϕ–1/γ and s = R, we have

R′(t) ≤ –ϕ(t)Ĝ(t) +
r(t)(ϕ′

+(t))γ +1

(γ + 1)γ +1ϕγ (t)
.

Integrating the latter inequality from t1 to t, we get

∫ t

t1

(
ϕ(ν)Ĝ(ν) –

r(ν)(ϕ′
+(ν))γ +1

(γ + 1)γ +1ϕγ (ν)

)
dν ≤ R(t1) – R(t) ≤ R(t1),

which contradicts (2.23). Therefore, equation (1.1) is oscillatory. �
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Example 2.1 Consider the equation

([(
y(t) + p0y(δt)

)′]γ )′ +
q0

t(γ +3)/2 y(λt) = 0, (2.29)

where t > 0, γ ≥ 1 is a quotient of odd positive integers, β = 1, p0 ∈ [0, 1), δ,λ ∈ (0, 1], and
q0 > 0. By using Theorem 2.2, we get that equation (2.29) is oscillatory if every solution
of

v′(t) + φ(t)v1/γ (λt) = 0

oscillates, where

φ(t) := q0(1 – p0)
(

λ

t(γ +1)/2 + q0(1 – p0)λ(3γ +1)/2 2C1–γ

γ (γ + 1)
1
t

)

for all C > 0.
By Corollary 2.1, if γ > 1, then

∫ ∞

t0

φ(ν) dν = ∞,

and hence equation (2.29) is oscillatory. Obviously, the results of Baculikova and Dzurina
in [6] fail to apply on this equation.

Let γ = 1. From Corollary 2.2, we obtain that equation (2.29) is oscillatory if

q0(1 – p0)
(
λ + q0(1 – p0)λ2) ln

1
λ

>
1
e

.

As a special case of equation (2.29), the equation

(
y(t) +

1
2

y
(

1
2

t
))′′

+
q0

t2 y
(

1
3

t
)

= 0 (2.30)

is oscillatory if q0 > 1.58856. By applying Corollary 2 in [6], the known related criterion
for (2.30) is q0 > 5.44381. On the other hand, equation (2.30) has nonoscillatory solution
y(t) :=

√
t when

q =
√

3
16

(4 +
√

2) < 1.58856.

Example 2.2 Consider the equation

(
y(t) +

1
2

y(δt)
)′′

+
q0

t2 y(λt) = 0, (2.31)

where t > 0 and δ,λ ∈ (0, 1], the known related criteria for oscillation of this equation are
as follows:

1. By applying Corollary 2 in [6],we get

q0λ ln
1

2λ
>

2
e

; (C1)
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Figure 1 Regions for which Conditions (C1)–(C4) are satisfied

2. By applying Theorem 1 in [28] or Theorem 2.1 in [23],we obtain

q0λ >
1
2

; (C2)

3. By applying our results in Corollary 2.2, we have

1
2

q0λ

(
1 +

1
2
λq0

)
ln

1
λ

>
1
e

; (C3)

4. By applying our results in Theorem 2.3, we find

q0λ
1/(1+λq0/2) >

1
2

. (C4)

In Fig. 1, we test the strength of oscillation criteria (C1)–(C4).

Remark 2.1 From the previous examples, we note that:
– By using the technique of comparison with first order delay equations, Corollary 2.1

improves Corollary 2 in [6].
– Based on the technique of Riccati transformation, Theorem 2.3 improves Theorem 1

in [28] and Theorem 2.1 in [23].
– Condition (C3) supports the most efficient condition for values of λ ∈ (0, 0.2), and

Condition (C4) supports the most efficient condition for values of λ ∈ (0.2, 1).
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