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Abstract
Recently, Masjed-Jamei, Beyki, and Koepf studied the so-called new type Euler
polynomials without using Euler polynomials of complex variable. Here we study the
type 2 degenerate cosine-Euler and type 2 degenerate sine-Euler polynomials, which
are type 2 degenerate versions of these new type Euler polynomials, by considering
the degenerate Euler polynomials of complex variable and by treating the real and
imaginary parts separately. In addition, we investigate the corresponding ones for
Bernoulli polynomials in the same manner. We derive some explicit expressions for
those new polynomials and some identities relating to them. Here we note that the
idea of separating the real and imaginary parts separately gives an affirmative answer
to the question asked by Hacène Belbachir.
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1 Introduction
As is known, the type 2 Bernoulli polynomials Bn(x), (n ≥ 0) and the type 2 Euler polyno-
mials En(x), (n ≥ 0) are respectively defined by
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(see [5, 20]). (1.2)

When x = 0, Bn = Bn(0) (or En = En(0)) are called the type 2 Bernoulli (or type 2 Euler)
numbers.

For n ≥ 0, the central factorial numbers of the second kind are defined by the generating
function to be
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(see [3, 7, 19]). (1.3)
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From (1.3), we note that

xn =
n∑

k=0

T(n, k)x[k] (n ≥ 0), (see [12]), (1.4)

where x[0] = 1, x[n] = x(x + n
2 – 1)(x + n

2 – 2) · · · (x – n
2 + 1), (n ≥ 1). For λ ∈R, the degenerate

exponential functions are defined as

ex
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1
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By (1.5), we get
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where

(x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ
)
, (n ≥ 1). (1.7)

In [1, 2], Carlitz considered the degenerate Bernoulli polynomials given by
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When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers. In [12], Kim and
Kim introduced the degenerate central factorial polynomials of the second kind given by
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where k is a nonnegative integer. When x = 0, Tλ(n, k) = Tλ(n, k|0) are called the degenerate
central factorial numbers of the second kind.

Recently, as a degenerate version of (1.1), the type 2 degenerate Bernoulli polynomials
have been defined by
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When x = 0, Bn,λ = Bn,λ(0) are the type 2 degenerate Bernoulli numbers. By the same mo-
tivation as (1.10), the type 2 Euler polynomials are defined by
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When x = 0, En,λ = En,λ(0) are the type 2 degenerate Euler numbers.
Recently, several authors studied the degenerate Bernoulli and degenerate Euler num-

bers and polynomials (see [1, 2, 4, 5, 8, 10–18, 21]). In addition, Jeong, Kang, and Rim
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introduced symmetry identities for Changhee polynomials of type 2 closely related to the
type 2 degenerate Euler polynomials (see [6]), and Zhang and Lin obtained some interest-
ing identities involving trigonometric functions and Bernoulli numbers (see [21]).

In [9], the authors considered the degenerate Bernoulli and degenerate Euler polyno-
mials of complex variable. By treating the real and imaginary parts separately, they were
able to introduce the degenerate cosine-Bernoulli polynomials, degenerate sine-Bernoulli
polynomials, degenerate cosine-Euler polynomials, and degenerate sine-Euler polynomi-
als and derived some interesting results for them.

In this paper, we study the type 2 degenerate Bernoulli and type 2 degenerate Euler poly-
nomials of complex variable, of which the latter are type 2 degenerate versions of the new
type Euler polynomials studied in [16]. By treating the real and imaginary parts separately,
the type 2 degenerate cosine-Bernoulli and type 2 degenerate sine-Bernoulli polynomi-
als are introduced. We derive some explicit expressions for those polynomials and some
identities related to them. Moreover, the type 2 degenerate cosine-Euler and type 2 degen-
erate sine-Euler polynomials are investigated, and analogous results to the type 2 degen-
erate cosine-Bernoulli and type 2 degenerate sine-Bernoulli polynomials are obtained for
them.

2 Type 2 degenerate Bernoulli and Euler polynomials of complex variable
From (1.10), we define the type 2 degenerate Bernoulli polynomials of complex variable
by
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where i =
√

–1. As is known, the degenerate cosine and sine functions are defined by
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Note that limλ→0 cos(y)
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and
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Now, we define the type 2 degenerate cosine-Bernoulli and sine-Bernoulli polynomials by
the generating functions as follows:
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Therefore, by (2.5), (2.6), (2.7), and (2.8), we obtain the following theorem.

Theorem 2.1 For n ≥ 0, we have
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where S1(k, l) are the Stirling numbers of the first kind. By the same method as in (2.9), we
get
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Therefore, by (2.7), (2.8), (2.9), and (2.10), we obtain the following theorem.

Theorem 2.2 For n ∈ N∪ {0}, we have
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Therefore, by (2.11), we obtain the following theorem.

Theorem 2.3 For n ≥ 0, we have
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From (2.7), we note that
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Therefore, by (2.12) and (2.13), we obtain the following theorem.
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By replacing t by 1
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(eλt – 1) in (2.7), we get

1
λt

(
eλt – 1

)( t
e t

2 – e– t
2

ext cos yt
)

=
∞∑

k=0

B(c)
k,λ(x, y)

1
k!

(
eλt – 1

)k
λ–k

=
∞∑

k=0

B(c)
k,λ(x, y)λ–k

∞∑

n=k

S2(n, k)λn tn

n!

=
∞∑

n=0

( n∑

k=0

λn–kB(c)
k,λ(x, y)S2(n, k)

)
tn

n!
, (2.14)

where S2(n, k) are the Stirling numbers of the second kind. On the other hand,
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Therefore, by (2.14) and (2.15), we obtain the following theorem.
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Then, from (2.7), (2.8), and (2.16), we have
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Theorem 2.6 For n ≥ 0, we have
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where n is a nonnegative integer.

B(s,α)
n,λ (x, y) =

B(α)
n,λ(x + iy) – B(α)

n,λ(x – iy)
2i

, (2.28)

where n is a positive integer. Proceeding just as in (2.9) and (2.10), we have

∞∑

n=0

(B(α)
n,λ(x + iy) + B(α)

n,λ(x – iy)
2

)
tn

n!

=
(

t

e
1
2
λ (t) – e– 1

2
λ

(t)
)α

ex
λ(t) cos(y)

λ (t)

=
∞∑

n=0

( n∑

k=0

[ k
2 ]∑

m=0

(
n
k

)
B(α)

n–k,λ(x)(–1)mλk–2my2mS1(k, 2m)

)
tn

n!
(2.29)

and

∞∑

n=0

(B(α)
n,λ(x + iy) – B(α)

n,λ(x – iy)
2i

)
tn

n!

=
(

t

e
1
2
λ (t) – e– 1

2
λ (t)

)α

ex
λ(t) sin(y)

λ (t)

=
∞∑

n=1

( n∑

k=1

[ k–1
2 ]∑

m=0

(
n
k

)
B(α)

n–k,λ(x)(–1)mλk–2m–1y2m+1S1(k, 2m + 1)

)
tn

n!
. (2.30)

Therefore, by (2.27), (2.28), (2.29), and (2.30), we obtain the following theorem.

Theorem 2.7 For n ≥ 0, we have

B(c,α)
n,λ (x, y) =

n∑

k=0

[ k
2 ]∑

m=0

(
n
k

)
B(α)

n–k,λ(x)(–1)mλk–2my2mS1(k, 2m).

Furthermore, for n ∈N, we have

B(s,α)
n,λ (x, y)

=
n∑

k=1

[ k–1
2 ]∑

m=0

(
n
k

)
B(α)

n–k,λ(x)(–1)mλk–2m–1y2m+1S1(k, 2m + 1).
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For k ∈N, let α = –k. Then, by (2.25), we get

∞∑

n=0

B(c,–k)
n,λ (x, y)

tn

n!

=
k!
tk

1
k!

(
e

1
2
λ (t) – e– 1

2
λ (t)

)kex
λ(t) cos(y)

λ (t)

=
∞∑

l=0

Tλ(l + k, k|x)
(l+k

k
)

tl

l!

∞∑

j=0

( [ j
2 ]∑

m=0

(–1)my2mλj–2mS1(j, 2m)

)
tj

j!

=
∞∑

n=0

( n∑

j=0

[ j
2 ]∑

m=0

(n
j
)

(n–j+k
k

)Tλ(n – j + k, k|x)(–1)my2mλj–2mS1(j, 2m)

)
tn

n!
. (2.31)

Therefore, by (2.31), we obtain the following theorem.

Theorem 2.8 For k ∈N and n ∈N∪ {0}, we have

B(c,–k)
n,λ (x, y) =

n∑

j=0

[ j
2 ]∑

m=0

(n
j
)

(n–j+k
k

)Tλ(n – j + k, k|x)(–1)my2mλj–2mS1(j, 2m).

From (1.11), we define the type 2 degenerate Euler polynomials of complex variable by

2

e
1
2
λ (t) + e– 1

2
λ (t)

ex+iy
λ (t) =

∞∑

n=0

En,λ(x + iy)
tn

n!
. (2.32)

From (2.32), we have

∞∑

n=0

(
En,λ(x + iy) + En,λ(x – iy)

2

)
tn

n!
=

2ex
λ(t)

e
1
2
λ (t) + e– 1

2
λ (t)

cos(y)
λ (t), (2.33)

and

∞∑

n=0

(
En,λ(x + iy) – En,λ(x – iy)

2i

)
tn

n!
=

2ex
λ(t)

e
1
2
λ (t) + e– 1

2
λ (t)

sin(y)
λ (t). (2.34)

Now, we define the type 2 degenerate cosine-Euler and type 2 degenerate sine-Euler
polynomials as follows:

2

e
1
2
λ (t) + e– 1

2
λ (t)

ex
λ(t) cos(y)

λ (t) =
∞∑

n=0

E(c)
n,λ(x, y)

tn

n!
(2.35)

and

2

e
1
2
λ (t) + e– 1

2
λ (t)

ex
λ(t) sin(y)

λ (t) =
∞∑

n=0

E(s)
n,λ(x, y)

tn

n!
. (2.36)
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By (1.11), we see that

2

e
1
2
λ (t) + e– 1

2
λ (t)

ex
λ(t) cos(y)

λ (t)

=
∞∑

l=0

El,λ(x)
tl

l!
cos(y)

λ (t)

=
∞∑

n=0

( n∑

k=0

[ k
2 ]∑

m=0

(
n
k

)
En–k,λ(x)(–1)mλk–2my2mS1(k, 2m)

)
tn

n!
(2.37)

and

2

e
1
2
λ (t) + e– 1

2
λ (t)

ex
λ(t) sin(y)

λ (t)

=
∞∑

n=0

( n∑

k=0

[ k–1
2 ]∑

m=0

(
n
k

)
En–k,λ(x)(–1)mλk–2m–1y2m+1S1(k, 2m + 1)

)
tn

n!
. (2.38)

Therefore, by (2.35), (2.36), (2.37), and (2.38), we obtain the following theorem.

Theorem 2.9 For n ∈ N∪ {0}, we have

E(c)
n,λ(x, y) =

n∑

k=0

[ k
2 ]∑

m=0

(
n
k

)
En–k,λ(x)(–1)mλk–2my2mS1(k, 2m).

Moreover, for n ∈N,

E(s)
n,λ(x, y) =

n∑

k=0

[ k–1
2 ]∑

m=0

(
n
k

)
En–k,λ(x)(–1)mλk–2m–1y2m+1S1(k, 2m + 1).

By replacing t by 1
λ

(eλt – 1) in (2.32), we get

2
e t

2 + e– t
2

e(x+iy)t =
∞∑

k=0

Ek,λ(x + iy)λ–k 1
k!

(
eλt – 1

)k

=
∞∑

k=0

Ek,λ(x + iy)λ–k
∞∑

n=k

S2(n, k)λn tn

n!

=
∞∑

n=0

( n∑

k=0

Ek,λ(x + iy)S2(n, k)λn–k

)
tn

n!
. (2.39)

On the other hand,

2
e t

2 + e– t
2

e(x+iy)t =
∞∑

n=0

En(x + iy)
tn

n!
. (2.40)

Therefore, by (2.39) and (2.40), we obtain the following theorem.
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Theorem 2.10 For n ≥ 0, we have

En(x + iy) =
n∑

k=0

Ek,λ(x + iy)S2(n, k)λn–k .

From (2.40), we can easily derive the following equation:

∞∑

n=0

(
En(x + iy) + En(x – iy)

2

)
tn

n!

=
2

e t
2 + e– t

2
ext cos yt

=
∞∑

l=0

El(x)
tl

l!

∞∑

m=0

(–1)my2m

(2m)!
t2m

=
∞∑

n=0

( [ n
2 ]∑

m=0

(
n

2m

)
En–2m(x)(–1)my2m

)
tn

n!
. (2.41)

By (2.41), we get

En(x + iy) + En(x – iy)
2

=
[ n

2 ]∑

m=0

(
n

2m

)
En–2m(x)(–1)my2m, (2.42)

where n is a nonnegative integer. From Theorem 2.10 and (2.42), we have

[ n
2 ]∑

m=0

(
n

2m

)
En–2m(x)(–1)my2m

=
n∑

k=0

S2(n, k)λn–k
(

En,λ(x + iy) + En,λ(x – iy)
2

)

=
n∑

k=0

S2(n, k)λn–k
k∑

l=0

[ l
2 ]∑

m=0

(
k
l

)
Ek–l,λ(x)(–1)mλl–2my2mS1(l, 2m)

=
n∑

k=0

k∑

l=0

[ l
2 ]∑

m=0

S2(n, k)λn+l–k–2m
(

k
l

)
Ek–l,λ(x)(–1)my2mS1(l, 2m). (2.43)

Thus, by (2.43), we get

[ n
2 ]∑

m=0

(
n

2m

)
En–2m(x)(–1)my2m

=
n∑

k=0

k∑

l=0

[ l
2 ]∑

m=0

S2(n, k)λn+l–k–2m
(

k
l

)
Ek–l,λ(x)(–1)my2mS1(l, 2m).

3 Conclusions
In [9], the authors considered the degenerate Bernoulli and degenerate Euler polynomi-
als of complex variable. By treating the real and imaginary parts separately, they were
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able to introduce the degenerate cosine-Bernoulli polynomials, degenerate sine-Bernoulli
polynomials, degenerate cosine-Euler polynomials, and degenerate sine-Euler polynomi-
als and derived some interesting results for them. Actually, the degenerate Euler polyno-
mials of complex variable are degenerate versions of the so-called ’new type Euler poly-
nomials’ studied by Masjed-Jamei, Beyki, and Koepf in [16]. Furthermore, the results in
[9] gave an affirmative answer to the question asked by Hacène Belbachir in Mathematical
Reviews (MR3808565): “Is it possible to obtain their results by considering the classical
Euler polynomials of complex variable z and treating the real part and the imaginary part
separately?”

Carlitz [1, 2] initiated the study of degenerate versions of Bernoulli and Euler polynomi-
als. As it turns out (see [3–5, 9–12, 14] and the references therein), studying degenerate
versions of some special polynomials and numbers has been very fruitful and promis-
ing. This idea of considering degenerate versions of some special polynomials is not only
limited to polynomials but also can be extended to transcendental functions like gamma
functions [11].

In Sect. 2, we studied the type 2 degenerate Bernoulli and type 2 degenerate Euler poly-
nomials of complex variable, of which the latter are degenerate and type 2 versions of
the aforementioned new type Euler polynomials studied in [16]. By treating the real and
imaginary parts separately, the type 2 degenerate cosine-Bernoulli and type 2 degenerate
sine-Bernoulli polynomials were introduced. They were expressed in terms of the type
2 degenerate Bernoulli polynomials and Stirling numbers of the first kind. In addition,
they were represented in terms of the type 2 Bernoulli polynomials and Stirling num-
bers of the first kind. Identities involving the type 2 degenerate cosine-polynomials (or
the type 2 degenerate sine-polynomials) and Stirling numbers of the first kind were ob-
tained. Another identity connecting the type 2 degenerate cosine-Bernoulli polynomials,
Stirling numbers of the second kind, and the type 2 Bernoulli polynomials was derived. As
natural extensions of the type 2 degenerate cosine-Bernoulli and type 2 degenerate sine-
Bernoulli polynomials, the type 2 degenerate cosine-Bernoulli and type 2 degenerate sine-
Bernoulli polynomials of order α were introduced. They were expressed in terms of the
type 2 degenerate Bernoulli polynomials of order α and Stirling numbers of the second
kind. In addition, the type 2 degenerate cosine-Bernoulli polynomials of negative order
were represented in terms of the degenerate central factorial polynomials of the second
kind and Stirling numbers of the first kind. Moreover, the type 2 degenerate cosine-Euler
and type 2 degenerate sine-Euler polynomials were investigated, and analogous results to
the type 2 degenerate cosine-Bernoulli and type 2 degenerate sine-Bernoulli polynomials
were obtained for them.

Funding
This research received no external funding.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TK and DSK conceived of the framework and structured the whole paper; TK wrote the paper. All the authors read and
approved the final manuscript.

Author details
1Schoo of Science, Xian Technological University, Xian, China. 2Department of Mathematics, Kwangwoon University,
Seoul, Republic of Korea. 3Department of Mathematics, Sogang University, Seoul, Republic of Korea. 4Graduate School of
Education, Konkuk University, Seoul, Republic of Korea.



Kim et al. Advances in Difference Equations        (2019) 2019:490 Page 15 of 15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 August 2019 Accepted: 14 November 2019

References
1. Carlitz, L.: A degenerate Staudt–Clausen theorem. Arch. Math. (Basel) 7, 28–33 (1956)
2. Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51–88 (1979)
3. Dolgy, D.V., Jang, G.-W., Kim, T.: A note on degenerate central factorial polynomials of the second kind. Adv. Stud.

Contemp. Math. (Kyungshang) 29(1), 7–13 (2019)
4. Haroon, H., Khan, W.A.: Degenerate Bernoulli numbers and polynomials associated with degenerate Hermite

polynomials. J. Korean Math. Soc. 33(2), 651–669 (2018)
5. Jang, G.-W., Kim, T.: A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math.

(Kyungshang) 29(1), 147–159 (2019)
6. Jeong, J., Kang, D.-J., Rim, S.-H.: Symmetry identities of Changhee polynomials of type two. Symmetry 10, 740 (2018)
7. Kilar, N., Simsek, Y.: Two parametric kinds of Eulerian-type polynomials associated with Euler’s formula. Symmetry

11(9), 1097 (2019)
8. Kim, D.S., Kim, H.Y., Kim, D., Kim, T.: Identities of symmetry for type 2 Bernoulli and Euler polynomials. Symmetry 11(5),

613 (2019)
9. Kim, D.S., Kim, T., Lee, H.: A note on degenerate Euler and Bernoulli polynomials of complex variable.

https://arxiv.org/abs/1908.03783. arXiv:1908.03783 [math.NT]
10. Kim, T.: A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 20(3), 319–331

(2017)
11. Kim, T., Kim, D.S.: Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 24(2), 241–248

(2017)
12. Kim, T., Kim, D.S.: Degenerate central factorial numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A

Mat. (2019). https://doi.org/10.1007/s13398-019-00700-w
13. Kim, T., Kim, D.S.: A note on type 2 Changhee and Daehee polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A

Mat. 113(3), 2783–2791 (2019)
14. Kim, T., Kim, G.-W.: A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv.

Stud. Contemp. Math. (Kyungshang) 28(2), 207–214 (2018)
15. Kim, T., Ryoo, C.S.: Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 7, 56 (2018)
16. Masjed-Jamei, M., Beyki, M.R., Koepf, W.: A new type of Euler polynomials and numbers. Mediterr. J. Math. 15(3), Art.

138, 17 pp. (2018)
17. Roman, S.: The Umbral Calculus. Pure and Applied Mathematics, vol. III. Academic Press, New York (1984)
18. Simsek, Y.: Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math.

(Kyungshang) 27(2), 199–212 (2017)
19. Simsek, Y.: Construction method for generating functions of special numbers and polynomials arising from analysis

of new operators. Math. Methods Appl. Sci. 41, 6934–6954 (2018)
20. Simsek, Y.: New families of special numbers for computing negative order Euler numbers and related numbers and

polynomials. Appl. Anal. Discrete Math. 12, 1–35 (2018)
21. Zhang, W., Lin, X.: Identities involving trigonometric functions and Bernoulli numbers. Appl. Math. Comput. 334,

288–294 (2018)

https://arxiv.org/abs/1908.03783
http://arxiv.org/abs/arXiv:1908.03783
https://doi.org/10.1007/s13398-019-00700-w

	On type 2 degenerate Bernoulli and Euler polynomials of complex variable
	Abstract
	MSC
	Keywords

	Introduction
	Type 2 degenerate Bernoulli and Euler polynomials of complex variable
	Conclusions
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


