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Abstract
In this paper, we consider the local and global bifurcation of nonnegative
nonconstant solutions of a general Brusselator model

⎧
⎪⎨

⎪⎩

–d1�u = a – (b + 1)f (u) + u2v, x ∈ Ω ,

–d2�v = bf (u) – u2v, x ∈ Ω ,
∂u
∂n =

∂v
∂n = 0, x ∈ ∂Ω ,

where d1,d2,a > 0 are fixed parameters with d2 > d1, b > 0 is a bifurcation parameter;
f ∈ C([0,∞), [0,∞)) is a strictly increasing function and f ′(f –1(a)) ∈ (0,∞). Moreover, via
the Rabinowitz bifurcation theorem, we obtain the global structure of nonconstant
solutions under the condition that f (s)

s2
is nonincreasing in (0,∞).
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1 Introduction
In 1968, Prigogine and Lefever [15] introduced firstly the Brusselator model for a chemical
reaction-diffusion of self-catalysis as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – d1�u = a – (b + 1)u + u2v, x ∈ Ω , t > 0,
∂v
∂t – d2�v = bu – u2v, x ∈ Ω , t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω , t > 0,

(1.1)

where Ω ⊂ R
N (N ≥ 1) is a smooth and bounded domain, n denotes the outward unit

normal vector on ∂Ω , u and v represent the concentration of two intermediary reactants
having the diffusion rates d1, d2 ∈ (0,∞) with d2 > d1, a, b > 0 are the fixed concentrations.
Indeed, (1.1) has been extensively investigated in the last decades from both analytical and
numerical point of view (see [1–8, 11–14, 17, 18]). Most of the authors are interested in
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finding spatially nonconstant solutions of the equilibrium problem

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = a – (b + 1)u + u2v, x ∈ Ω ,

–d2�v = bu – u2v, x ∈ Ω ,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω .

(1.2)

In [3, 4, 13, 14], they obtained the existence or nonexistence of the nonconstant solutions
of (1.2) by a priori estimate and topological degree theory. Peng and Wang [13] considered
the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–θ�u = λ(1 – (b + 1)u + bu2v), x ∈ Ω ,

–�v = λa2(u – u2v), x ∈ Ω ,

∂nu = ∂nv = 0, x ∈ ∂Ω ,

(1.3)

and proved the nonexistence for nonconstant of (1.3) for either small λ, large θ , or small b.
Note that [3, 4, 13, 14] only studied the existence and nonexistence of nonnegative non-
constant solutions of (1.2). They could not get the global structure of the nonconstant
solutions due to the limitations of the tools used. Ma and Hu [11] applied the Rabinowitz
bifurcation theorem to get the global structure of nonconstant solutions of (1.2). Inspired
by [11], we will consider the new, more general form of the Brusselator model:

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = a – (b + 1)f (u) + u2v, x ∈ Ω ,

–d2�v = bf (u) – u2v, x ∈ Ω ,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω ,

(1.4)

where d1, d2, a > 0 are fixed parameters and d2 > d1, b > 0 is a bifurcation parameter.
Clearly, f (u) = f (u)

u · u, then (1.4) is seen to be equivalent to

⎧
⎪⎪⎨

⎪⎪⎩

–d1�u = a – (b + 1) f (u)
u · u + u2v, x ∈ Ω ,

–d2�v = b f (u)
u · u – u2v, x ∈ Ω ,

∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω .

(1.5)

Compared with problem (1.2), f (u)
u can be regarded as a variable coefficient. It is well

known that the linear terms (b + 1)u and bu in (1.2) cannot withstand any small pertur-
bation. In fact, (1.5) has been widely applied in chemical and biological fields. We will
study the local and global behavior of nonnegative nonconstant solutions of (1.4) under
the following assumptions:

(H1) f ∈ C([0,∞), [0,∞)) is a strictly increasing function.
(H2) f ′(f –1(a)) ∈ (0,∞).
(H3) f (s)

s2 is nonincreasing in (0,∞).

Remark 1.1 If f (u) = u, then (1.4) will reduce to (1.2). However, if f (u) = u + u2, a pertur-
bation term is added to bu and (b + 1)u in (1.2). It is easy to see that this small perturbation
leads to the results in [11] that are not available.
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The rest of the paper is organized as follows: In Sect. 2, we give a priori estimate and
some preliminary results. Section 3 is devoted to studying the local bifurcation of non-
negative nonconstant solutions of (1.4) with N = 1 under conditions (H1)–(H2). Finally, in
Sect. 4, we add condition (H3) to obtain the global bifurcation of nonnegative nonconstant
solutions of (1.4) with N = 1.

2 Preliminary results
At first, let us look for the constant solution of (1.4). To get it, it suffices to look for the
constant solution of the following problem:

⎧
⎨

⎩

a – (b + 1)f (u(x)) + u2(x)v(x) = 0, x ∈ Ω ,

bf (u(x)) – u2(x)v(x) = 0, x ∈ Ω .
(2.1)

By (H1), problem (2.1) has a unique solution (f –1(a), ab
[f –1(a)]2 ). Obviously, this is the unique

solution of (1.4).
Basic to a priori estimate of the solutions of (1.4) is the following result which is due to

Lou and Ni (see [9, Proposition 2.2] or [10, Lemma 2.1]).

Lemma 2.1 Let g ∈ C1(Ω̄ ×R).
(1) If w ∈ C2(Ω) ∩ C1(Ω̄) satisfies

�w + g(x, w) ≥ 0 in Ω ,
∂w
∂n

≤ 0 on ∂Ω ,

and w(x0) = maxΩ̄ w, then g(x0, w(x0)) ≥ 0.
(2) If w ∈ C2(Ω) ∩ C1(Ω̄) satisfies

�w + g(x, w) ≤ 0 in Ω ,
∂w
∂n

≥ 0 on ∂Ω ,

and w(x0) = minΩ̄ w, then g(x0, w(x0)) ≤ 0.

Now, we will give a priori estimate of the nonnegative nonconstant solutions of (1.4).

Lemma 2.2 Let (H1), (H2), and (H3) hold. Then any nonnegative nonconstant solution
(u, v) of (1.4) satisfies

f –1
(

a
b + 1

)

≤ u(x) ≤ f –1(a) +
d2

d1
· ab

(b + 1)[f –1( a
b+1 )]2 , x ∈ Ω ,

bf (f –1(a) + d2
d1

· ab
(b+1)[f –1( a

b+1 )]2 )

[f –1(a) + d2
d1

· ab
(b+1)[f –1( a

b+1 )]2 ]2
≤ v(x) ≤ ab

(b + 1)[f –1( a
b+1 )]2 , x ∈ Ω .

Proof Let x0 ∈ Ω̄ be the minimum point of u. From (2) of Lemma 2.1, we have

a – (b + 1)f
(
u(x0)

)
+ u2(x0)v(x0) ≤ 0,

a – (b + 1)f
(
u(x0)

) ≤ 0,
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f
(
u(x0)

) ≥ a
b + 1

.

Then u(x0) ≥ f –1( a
b+1 ) by (H1), and so

u(x) ≥ u(x0) ≥ f –1
(

a
b + 1

)

, x ∈ Ω . (2.2)

Let x1 ∈ Ω̄ be the maximum point of v. Similarly, we can get that

bf
(
u(x1)

)
– u2(x1)v(x1) ≥ 0.

Then

v(x) ≤ v(x1) ≤ bf (u(x1))
u2(x1)

, x ∈ Ω .

Combining this with (2.2), from (H3), we show

v(x) ≤ bf (u(x1))
u2(x1)

≤ ab
(b + 1)[f –1( a

b+1 )]2 , x ∈ Ω . (2.3)

Let w = d1u + d2v. Then it follows from (1.4) that

⎧
⎨

⎩

–�w(x) = a – f (u(x)), x ∈ Ω ,
∂w
∂n = 0, x ∈ ∂Ω .

Now, let x2 ∈ Ω̄ be the maximum point of w. By (1) of Lemma 2.1, a – f (u(x2)) ≥ 0. Then,
from (H1), it is easy to see u(x2) ≤ f –1(a). Combining this with (2.3), we know that, for any
x ∈ Ω̄ ,

d1u(x) ≤ w(x) ≤ w(x2) ≤ d1f –1(a) + d2 · ab
(b + 1)[f –1( a

b+1 )]2 ,

then

u(x) ≤ f –1(a) +
d2

d1
· ab

(b + 1)[f –1( a
b+1 )]2 , x ∈ Ω .

From (2) of Lemma 2.1, if x3 ∈ Ω̄ is the minimum point of v, then

bf
(
u(x3)

)
– u2(x3)v(x3) ≤ 0,

and

v(x) ≥ v(x3) ≥ bf (u(x3))
u2(x3)

≥
bf (f –1(a) + d2

d1
· ab

(b+1)[f –1( a
b+1 )]2 )

[f –1(a) + d2
d1

· ab
(b+1)[f –1( a

b+1 )]2 ]2
, x ∈ Ω .

Consequently, the proof is completed. �
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For any fixed l > 0. It is well known that

⎧
⎨

⎩

–ϕ′′ = μϕ, x ∈ (0, l),

ϕ′(0) = ϕ′(l) = 0

has a sequence of simple eigenvalues

μj =
(

jπ
l

)2

, j = 0, 1, 2, . . . ,

the corresponding eigenfunctions are

ϕj(x) =

⎧
⎨

⎩

1, j = 0,

cos( jπx
l ), j > 0.

(2.4)

Let

X :=
{

(u, v) : u, v ∈ C2[0, l], u′(0) = u′(l) = v′(0) = v′(l) = 0
}

, Y := L2(0, l) × L2(0, l).

X constitutes the Banach space in C2 norm and Y is a Hilbert space based on the inner
product

(w1, w2)Y = (u1, u2)L2(0,l) + (v1, v2)L2(0,l),

where w1 = (u1, v1), w2 = (u2, v2) ∈ Y .

3 Local bifurcation
For simplicity, let us consider (1.4) with N = 1 and Ω = (0, l),

⎧
⎪⎪⎨

⎪⎪⎩

–d1u′′ = a – (b + 1)f (u) + u2v, x ∈ (0, l),

–d2v′′ = bf (u) – u2v, x ∈ (0, l),

u′(0) = u′(l) = v′(0) = v′(l) = 0.

(3.1)

Clearly, w̄ := (f –1(a), ab
[f –1(a)]2 ) is the unique constant solution of (3.1).

Define the mapping P : (0,∞) × X → Y ,

P(b, w) =

(
d1u′′ + a – (b + 1)f (u) + u2v

d2v′′ + bf (u) – u2v

)

.

For the fixed b > 0, w = (u, v) is a solution of (3.1) if and only if (b, w) is a zero-point of P.
Note that P(b, w̄) =

( 0
0

)
for any b > 0, since w̄ is the constant solution of (3.1). Let

⎧
⎨

⎩

u = f –1(a) +
∑∞

k=1 εkuk ,

v = ab
[f –1(a)]2 +

∑∞
k=1 εkvk ,

(3.2)
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and

b = b0 +
∞∑

k=1

εkbk . (3.3)

We also have to Taylor expand f at the point f –1(a). The purpose of the rest of this section
is to solve b0 and prove that (b0, w̄) is the bifurcation point of P(b, w) = ( 0

0 ). First of all, we
substitute (3.2) and (3.3) into (3.1) and let the higher-order term of ε be equal to 0. Then
we can get the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–d1u′′
1 = (–b0f ′(f –1(a)) – f ′(f –1(a)) + 2ab0

f –1(a) )u1 + [f –1(a)]2v1, x ∈ (0, l),

–d2v′′
1 = (b0f ′(f –1(a)) – 2ab0

f –1(a) )u1 – [f –1(a)]2v1, x ∈ (0, l),

u′
1(0) = u′

1(l) = v′
1(0) = v′

1(l) = 0.

(3.4)

In (3.4), by using the undetermined coefficient method, it follows that

b0 =
f –1(a){d1d2μ

2
j + d2f ′(f –1(a))μj + d1[f –1(a)]2μj + [f –1(a)]2f ′(f –1(a))}

2ad2μj – d2f –1(a)f ′(f –1(a))μj

:= bj
0, j = 1, 2, . . . .

Moreover, it is not difficult to prove that (3.4) has a nontrivial solution (u1, v1),

⎧
⎨

⎩

u1 = c1(j) cos( jπ
l x) = c1(j)ϕj(x), c1(j) = – d2μj

d1μj+f ′(f –1(a)) ,

v1 = cos( jπ
l x) = ϕj(x).

Next, we substitute (3.2) and (3.3) into (3.1) and let the higher-order term of ε2 be equal
to 0, then (3.1) becomes the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1u′′
2 + (–b0f ′(f –1(a)) – f ′(f –1(a)) + 2ab0

f –1(a) )u2 + [f –1(a)]2v2 = –F1, x ∈ (0, l),

d2v′′
2 + (b0f ′(f –1(a)) – 2ab0

f –1(a) )u2 – [f –1(a)]2v2 = F1, x ∈ (0, l),

u′
2(0) = u′

2(l) = v′
2(0) = v′

2(l) = 0,

(3.5)

where

F1 =
(

2ab1

f –1(a)
– b1f ′(f –1(a)

)
)

u1 + 2f –1(a)u1v1 +
ab0

[f –1(a)]2 u2
1.

In order to solve b1 from (3.5), let us consider the following adjoint system of the homo-
geneous system related to (3.5):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d1y′′
2 + (–b0f ′(f –1(a)) – f ′(f –1(a)) + 2ab0

f –1(a) )y2

+ (b0f ′(f –1(a)) – 2ab0
f –1(a) )z2 = 0, x ∈ (0, l),

d2z′′
2 + [f –1(a)]2y2 – [f –1(a)]2z2 = 0, x ∈ (0, l),

y′
2(0) = y′

2(l) = z′
2(0) = z′

2(l) = 0.

(3.6)
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It is not difficult to verify that (3.6) has a solution (y2, z2),

⎧
⎨

⎩

y2 = c2(j) cos( jπ
l x) = c2(j)ϕj(x), c2(j) = 1 + d2μj

[f –1(a)]2 ,

z2 = cos( jπ
l x) = ϕj(x).

It is obvious that the vectors (–F1, F1) and (y2, z2) should be orthogonal in L2(0, l) by virtue
of the solvability condition for (3.5), i.e.,

∫ l

0
(z2 – y2)F1 dx = 0.

In fact,

∫ l

0
(z2 – y2)F1 dx

=
∫ l

0
–

d2μj

[f –1(a)]2

[(
2ab1

f –1(a)
– b1f ′(f –1(a)

)
)

u1

+ 2f –1(a)u1v1 +
ab0

[f –1(a)]2 u2
1

]

cos

(
jπx

l

)

dx

= 0. (3.7)

Let us substitute b0, u1, and v1 into (3.7), then bj
1 := b1 = 0, and so F1 will reduce to

F1 = 2f –1(a)c1(j)ϕ2
j (x) +

ab0

[f –1(a)]2 c2
1(j)ϕ2

j (x)

= 2f –1(a)c1(j) cos2
(

jπ
l

x
)

+
ab0

[f –1(a)]2 c2
1(j) cos2

(
jπ
l

x
)

= f –1(a)c1(j)
(

cos

(
2jπ

l
x
)

+ 1
)

+
1
2

· ab0

[f –1(a)]2 c2
1(j)

(

cos

(
2jπ

l
x
)

+ 1
)

=
1
2

[

2f –1(a)c1(j) +
ab0

[f –1(a)]2 c2
1(j)

]

+
1
2

[

2f –1(a)c1(j) +
ab0

[f –1(a)]2 c2
1(j)

]

ϕ2j(x).

Therefore, a particular solution (u2, v2) of (3.5) can be obtained as follows:

⎧
⎨

⎩

u2 = a1(j) + a2(j) cos( 2jπ
l x) = a1(j) + a2(j)ϕ2j(x),

v2 = a3(j) + a4(j) cos( 2jπ
l x) = a3(j) + a4(j)ϕ2j(x),

where

a2(j) =
(

[
f –1(a)

]2c1d2μ2j +
ab0 d2μ2jc2

1

2f –1(a)

)

/
(
d1d2μ

2
2jf

–1(a) + f ′(f –1(a)
)
f –1(a)

([
f –1(a)

]2 + d2μ2j(1 + b0)
)

–
(
2ab0d2 – d1

[
f –1(a)

]3)
μ2j

)
,
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a1(j) = 0, a3(j) = –
c1

[f –1(a)]2

(

f –1(a) +
ab0

2[f –1(a)]2 c1

)

,

a4(j) = –
d1μ2j + f ′(f –1(a))

d2μ2j
a2(j).

Since b1 = 0, we have to solve b2. We substitute (3.2) and (3.3) into (3.1) and let the
higher-order term of ε3 be equal to 0, then a problem similar to (3.5) is obtained:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1u′′
3 + (–b0f ′(f –1(a)) – f ′(f –1(a)) + 2ab0

f –1(a) )u3 + [f –1(a)]2v3 = –F2, x ∈ (0, l),

d2v′′
3 + (b0f ′(f –1(a)) – 2ab0

f –1(a) )u3 – [f –1(a)]2v3 = F2, x ∈ (0, l),

u′
3(0) = u′

3(l) = v′
3(0) = v′

3(l) = 0,

(3.8)

where

F2 =
(

–b2f ′(f –1(a)
)

+
2ab2

f –1(a)

)

u1 + 2f –1(a)u1v2 + 2f –1(a)u2v1 + u2
1v1 +

2ab0

[f –1(a)]2 u1u2.

Clearly, (3.6) is also the adjoint system of the homogeneous system related to (3.8), then

∫ l

0
(z2 – y2)F2 dx = 0,

and, according to values of u1, u2, v1, and v2, we have

∫ l

0
(z2 – y2)F2 dx

=
(

–b2f ′(f –1(a)
)

+
2ab2

f –1(a)

)

c1

∫ l

0
cos

(
jπ
l

x
)

dx

+ 2f –1(a)
∫ l

0
c1

(

a3 + a4 cos

(
2jπ

l
x
))

· cos2
(

jπ
l

x
)

dx

+ 2f –1(a)a2

∫ l

0
cos

(
2jπ

l
x
)

· cos2
(

jπ
l

x
)

dx +
∫ l

0
c2

1 cos4
(

jπ
l

x
)

dx

+
2ab0c1a2

[f –1(a)]2

∫ l

0
cos2

(
jπ
l

x
)

· cos

(
2jπ

l
x
)

dx

= 0.

Thus,

b2 = –
[f –1(a)]3(2c1a3 + c1a4 + a2) + 3c2

1[f –1(a)]2 + abj
0c1a2

2ac1f –1(a) – f ′(f –1(a))[f –1(a)]2c1
:= bj

2 �= 0, j = 1, 2, . . . .

From the above analysis, we obtain the main result of this section.

Theorem 3.1 Assume that (H1) and (H2) hold. Then, for any positive integer j, (bj
0, w̄)

is a bifurcation point of P(b, w) =
( 0

0

)
. Moreover, there is a nontrivial solution φ(ε) =

(b(ε), u(ε), v(ε)) of (3.1) if ε is small enough, where b, u, and v are continuous with respect
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to ε, and

u(ε) = f –1(a) + εc1(j)ϕj + ε2(a1(j) + a2(j)ϕ2j
)

+ o
(
ε2),

v(ε) =
ab

[f –1(a)]2 + εϕj + ε2(a3(j) + a4(j)ϕ2j
)

+ o
(
ε2),

b(ε) = bj
0 + ε2bj

2 + o
(
ε2).

The set of zero-points of P constitutes two curves in a neighborhood of the bifurcation point
(bj

0, w̄).

Let C be the closure of the nonconstant solution set of P(b, w) =
( 0

0

)
, Γj be a connected

component of C∪ {(bj
0, w̄)}, and (bj

0, w̄) ∈ Γj. In a small neighborhood of bifurcation point
(bj

0, w̄), the curve Γj is determined by the eigenfunction ϕj, where ϕj has j zeros in the
interval [0, l].

4 Global bifurcation
Theorem 4.1 Let (H1), (H2), and (H3) hold. If μj �= [f –1(a)]2

d2
, j = 1, 2, . . . , then the projection

of continuum Γj is unbounded on the b-axis.

Proof (3.1) can be written as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–u′′(x) = g(u, v), x ∈ (0, l),

–v′′(x) = h(u, v), x ∈ (0, l),

u′(0) = u′(l) = v′(0) = v′(l) = 0,

(4.1)

where

g(u, v) =
1
d1

(
a – (b + 1)f (u) + u2v

)
, h(u, v) =

1
d2

(
bf (u) – u2v

)
.

Let ũ = u – f –1(a), ṽ = v – ab
[f –1(a)]2 . Then (4.1) is equivalent to the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

–ũ′′ = g0ũ + g1ṽ + g̃(ũ, ṽ), x ∈ (0, l),

–ṽ′′ = h0ũ + h1ṽ + h̃(ũ, ṽ), x ∈ (0, l),

ũ′(0) = ũ′(l) = ṽ′(0) = ṽ′(l) = 0,

(4.2)

where g̃ and h̃ are higher-order terms of ũ, ṽ, and

g0 = gu(u, v)|(f –1(a), ab
[f –1(a)]2

) =
1
d1

(

–(b + 1)f ′(f –1(a)
)

+
2ab

f –1(a)

)

,

g1 = gv(u, v)|(f –1(a), ab
[f –1(a)]2

) =
[f –1(a)]2

d1
,

h0 = hu(u, v)|(f –1(a), ab
[f –1(a)]2

) =
1
d2

(

bf ′(f –1(a)
)

–
2ab

f –1(a)

)

,

h1 = hv(u, v)|(f –1(a), ab
[f –1(a)]2

) = –
[f –1(a)]2

d2
.



Zhao and Ma Advances in Difference Equations        (2019) 2019:491 Page 10 of 14

In this way, we convert the constant solution w̄ = (f –1(a), ab
[f –1(a)]2 ) of (3.1) to the trivial

solution θ = (0, 0) of (4.2).
Let H1 : Y → X and H2 : Y → X be the inverse of operators f ′(f –1(a))

d1
I – d2

dx2 and [f –1(a)]2

d2
I –

d2

dx2 with Neumann boundary conditions, respectively. Set U = (ũ, ṽ),

K(b)U =
(

1
d1

[

–bf ′(f –1(a)
)

+
2ab

f –1(a)

]

H1(ũ)

+
[f –1(a)]2

d1
H1(ṽ),

1
d2

[

bf ′(f –1(a)
)

–
2ab

f –1(a)

]

H2(ũ)
)

,

W (U) =
(
H1

(
g̃(ũ, ṽ)

)
, H2

(
h̃(ũ, ṽ)

))
.

It can be verified that (4.2) is equivalent to

U = K(b)U + W (U) (4.3)

in X. For any fixed number b > 0, K(b) and W (U) are linear compact operators in X and
W (U) = o(‖U‖). By the Rabinowitz global bifurcation theorem [16], we need to verify

(i) 1 is an eigenvalue of K(bj
0) and its algebraic multiplicity is 1;

(ii) the index of I – K(b) – W changes when b crosses bj
0.

Now, we will prove (i). Suppose Ψ =
( ξ

ψ

)
, ξ =

∑
ajϕj, ψ =

∑
cjϕj. Let

(
K(b) – I

)
Ψ =

(
0
0

)

,

i.e.,

⎛

⎝
1

d1
[–(b + 1)f ′(f –1(a)) + 2ab

f –1(a) ] + d2

dx2
[f –1(a)]2

d1
1

d2
[bf ′(f –1(a)) – 2ab

f –1(a) ] – [f –1(a)]2

d2
+ d2

dx2

⎞

⎠Ψ =

(
0
0

)

,

thus,

∞∑

j=0

Lj

(
aj

cj

)

ϕj =

(
0
0

)

,

where

Lj =

⎛

⎝
1

d1
[–(b + 1)f ′(f –1(a)) + 2ab

f –1(a) ] – μj
[f –1(a)]2

d1
1

d2
[bf ′(f –1(a)) – 2ab

f –1(a) ] – [f –1(a)]2

d2
– μj

⎞

⎠ .

By computation, det Lj = 0 if and only if b = bj
0, taking b = bj

0 leads to

det Lj = det

( [f –1(a)]2

d1d2μj
(f ′(f –1(a)) + d1μj) [f –1(a)]2

d1d2μj
· d2μj

– 1
d2

f ′(f –1(a)) – d1
d2

μj –μj

)

= 0
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and

Lj

(
aj

cj

)

=

(
0 0

f ′(f –1(a)) + d1μj d2μj

)(
aj

cj

)

.

Then ker(K(bj
0) – I) = span(Ψ ), Ψ =

( –d2μj
f ′(f –1(a))+d1μj

ϕj
)
. This implies that 1 is the eigenvalue

of K = K(bj
0) and dim ker(K – I) = 1. The algebraic multiplicity of the eigenvalue 1 is the

dimension of the generalized null space
⋃∞

i=1 ker(K – I)i, therefore, ker(K – I)∩ Im(K – I) =
{θT }.

Let KT be the transposed matrix of K ,

KT =

(
1

d1
[–bf ′(f –1(a)) + 2ab

f –1(a) ]H1
1

d2
[bf ′(f –1(a)) – 2ab

f –1(a) ]H2
[f –1(a)]2

d1
H1 0

)

,

and Ψ ∗ =
( ξ∗

ψ∗
)
, ξ ∗ =

∑
a∗

j ϕj, ψ∗ =
∑

c∗
j ϕj. Suppose Ψ ∗ ∈ ker(KT – I). Then

⎧
⎨

⎩

1
d1

[–bf ′(f –1(a)) + 2ab
f –1(a) ]H1(ξ ∗) + 1

d2
[bf ′(f –1(a)) – 2ab

f –1(a) ]H2(ψ∗) = ξ ∗,
[f –1(a)]2

d1
H1(ξ ∗) = ψ∗.

(4.4)

From the definition of H1, H2, (4.4) can also be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–d1d2ξ
∗′′ = (d2[–bf ′(f –1(a)) + 2ab

f –1(a) ] – [f –1(a)]2d1)ξ ∗

– d2f ′(f –1(a))
[f –1(a)]2 [–bf ′(f –1(a)) + 2ab

f –1(a) ]ψ∗,

–d1ψ
∗′′ = [f –1(a)2]ξ ∗ – f ′(f –1(a))ψ∗.

That is to say,

∞∑

j=0

Bj

(
a∗

j

c∗
j

)

ϕj =

(
0
0

)

,

where

Bj =

(
d2[–bf ′(f –1(a)) + 2ab

f –1(a) ] – [f –1(a)]2d1 – d1d2μj – d2f ′(f –1(a))
[f –1(a)]2 [–bf ′(f –1(a)) + 2ab

f –1(a) ]
[f –1(a)]2 –d1μj – f ′(f –1(a))

)

.

Similarly, det Bj = 0 if and only if b = bj
0, taking b = bj

0 leads to

det Bj = det

⎛

⎝
[f –1(a)]2+d2μj

[f –1(a)]2μj
[f –1(a)]2 [f –1(a)]2+d2μj

[f –1(a)]2μj
(–d1μj – f ′(f –1(a)))

[f –1(a)]2 –d1μj – f ′(f –1(a))

⎞

⎠ = 0

and

Bj

(
a∗

j

c∗
j

)

=

(
0 0

[f –1(a)]2 –d1μj – f ′(f –1(a))

)(
a∗

j

c∗
j

)

.
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Then ker(K∗ – I) = span
( d1μj+f ′(f –1(a))

[f –1(a)]2

)
ϕj. According to μj �= [f –1(a)]2

d2
, we obtain

(
Ψ ,Ψ ∗)

Y =
(
–d2μjϕj,

(
d1μj + f ′(f –1(a)

)
ϕj

))

L2[0,l]

+
((

f ′(f –1(a) + d1μj
))

ϕj,
[
f –1(a)

]2
ϕj

)

L2[0,l]

=
(
d1μj + f ′(f –1(a)

))([
f –1(a)

]2 – d2μj
)
∫ l

0
cos2

(
jπ
l

x
)

dx

=
l
2
(
d1μj + f ′(f –1(a)

))([
f –1(a)

]2 – d2μj
) �= 0.

This suggests that Ψ /∈ (ker(K∗ – I))⊥ = Im(K – I), and so (i) is proved. Now, we will prove
(ii). From (i), for any b > 0, b �= bj

0 and b belongs to a small neighborhood of bj
0, K(b) – I :

X → X is a bijection. Fix b > 0, then θ is a solution of (4.3) and θ is isolated. From the
Leray–Schauder fixed point theory, we can get

index
(
I – K(b) – W , (b, θ )

)
= deg

(
I – K(b), B, θ

)
= (–1)γ ,

where B is a sufficiently small ball centered at θ , γ is the sum of the algebraic multiplicity
of the eigenvalues of K(b) and γ > 1. We are going to verify that, for ε > 0 is small enough,

index
(
I – K

(
bj

0 – ε
)

– W ,
(
bj

0 – ε, θ
)) �= index

(
I – K

(
bj

0 + ε
)

– W ,
(
bj

0 + ε, θ
))

. (4.5)

If τ is an eigenvalue of K(b) and Ψ =
( ξ

ψ

)
is the corresponding eigenfunction, then

(
K(b) – I

)
Ψ =

(
0
0

)

,

i.e.,

⎧
⎨

⎩

–τd1ξ
′′ = (–bf ′(f –1(a)) + 2ab

f –1(a) – τ f ′(f –1(a)))ξ + [f –1(a)]2ψ ,

–τd2ψ
′′ = (bf ′(f –1(a)) + 2ab

f –1(a) )ξ – [f –1(a)]2τψ .

By virtue of ξ =
∑

ajϕj and ψ =
∑

cjϕj, we can get

∞∑

j=0

(
τμjd1 + bf ′(f –1(a)) – 2ab

f –1(a) + τ f ′(f –1(a)) –[f –1(a)]2

–bf ′(f –1(a)) + 2ab
f –1(a) τμjd2 + τ [f –1(a)]2

)(
aj

cj

)

ϕj =

(
0
0

)

.

Then the characteristic equation is

(
d1d2μ

2
j + d2μjf ′(f –1(a)

)
+ d1μj

[
f –1(a)

]2 + f ′(f –1(a)
)[

f –1(a)
]2)

τ 2

+ b
(

d2f ′(f –1(a)
)
μj –

2ad2μj

f –1(a)
+ f ′(f –1(a)

)[
f –1(a)

]2 – 2af –1(a)
)

τ

+
[
f –1(a)

]2
(

–bf ′(f –1(a)
)

+
2ab

f –1(a)

)

= 0, j = 0, 1, 2, . . . . (4.6)
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If τ = 1, b can be solved from (4.6):

b =
f –1(a){d1d2μ

2
j + d2f ′(f –1(a))μj + d1[f –1(a)]2μj + [f –1(a)]2f ′(f –1(a))}

2ad2μj – d2f –1(a)f ′(f –1(a))μj
= bj

0. (4.7)

Therefore, by calculating the corresponding eigenvalues of (4.6), we can obtain that when
b passes through bj

0, the number of eigenvalues of K(b), which is greater than 1, is the same
and their algebraic multiplicities are equal. By plugging (4.7) into (4.6), we have

2ad2μj – d2f –1(a)f ′(f –1(a))μj

f –1(a)
τ 2 +

(

f ′(f –1(a)
)(

d2μj +
[
f –1(a)

]2)

–
2ad2μj

f –1(a)
– 2af –1(a)

)

τ +
[
f –1(a)

]2
(

–f ′(f –1(a)
)

+
2a

f –1(a)

)

= 0. (4.8)

Then

� :=
(

d2f ′(f –1(a)
)
μj –

2ad2μj

f –1(a)
+ f ′(f –1(a)

)[
f –1(a)

]2 – 2af –1(a)
)2

– 4
(
2ad2μj – d2f –1(a)f ′(f –1(a)

)
μj

) · (–f ′(f –1(a)
)
f –1(a) + 2a

)

=
[(

d2f ′(f –1(a)
)
μj –

2ad2μj

f –1(a)

)

–
(
f ′(f –1(a)

)[
f –1(a)

]2 – 2af –1(a)
)
]2

> 0,

and so (4.8) has two different roots τ1 = 1, τ2 = [f –1(a)]2

d2μj
. Thus two things will happen:

(a) if μj > [f –1(a)]2

d2
, then τ1(bj

0) = 1, τ2(bj
0) < 1;

(b) if μj < [f –1(a)]2

d2
, then τ1(bj

0) = 1, τ2(bj
0) > 1.

When scenario (a) occurs, b passes through bj
0 and τ2(b) < 1. From (4.6), τ1(bj

0 + ε) > 1,
τ1(bj

0 – ε) < 1. Therefore, the matrix K(bj
0 + ε) has exactly one more eigenvalue, that is, > 1,

than K(bj
0 – ε) does, and its algebraic multiplicity is 1. Then (4.5) holds. That is to say, the

index jumps as b goes through bj
0.

When scenario (b) occurs, b passes through bj
0 and τ2(b) > 1. From (4.6), τ1(bj

0 + ε) > 1,
τ1(bj

0 – ε) < 1. Similarly, the index jumps as b goes through bj
0. Therefore, (ii) is true re-

gardless of (a) or (b). Thus, by the index jump principle and [16, Theorem 1.3], it follows
that there exists a connected component Γ̂j of nontrivial solutions of (4.3) and Γ̂j comes
from the bifurcation point (bj

0, θ ). We know that Γ̂j is also the connected component Γj

of the nonconstant solution of (3.1) from (bj
0, w̄). Γ̂j and Γj are both in R × X. By the Ra-

binowitz global bifurcation theorem, the connected component Γj joins (bj
0, w̄) to either

∞ or (bk
0, w̄) in R× X, where k �= j. We first prove that the latter situation will not happen.

According to Theorem 3.1, the solution on the connected component sent from (bj
0, w̄) is

related to ϕj, and ϕj has j zeros in the interval [0, l]. In the same way, the solution on the
connected component sent from (bk

0, w̄) is related to ϕk , and ϕk has k zeros in the interval
[0, l]. If the connected component sent Γj joining (bj

0, w̄) to (bk
0, w̄), the solution (b, w) ∈ Γj

is related to both ϕj and ϕk , which is impossible. On the other hand, Lemma 2.2 shows
that, if b = bc ∈ (0,∞), then the solutions u and v of (3.1) are both bounded. So the con-
nected component Γj will not join (bj

0, w̄) to (bc,∞). Therefore, the connected component
Γj can only join (bj

0, w̄) to either (∞,∞) or (∞, m), where m ∈ (0,∞). But in any case, the
projection of continuum Γj is unbounded on the b-axis. �
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