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Abstract
In this paper, we consider differential delay systems of the form

x′(t) = –
2k–1∑

s=1

(–1)s+1∇F(x(t – s)),

in which the coefficients of the nonlinear terms with different hysteresis have
different signs. Such systems have not been studied before. The multiplicity of the
periodic orbits is related to the eigenvalues of the limit matrix. The results provide
a theoretical basis for the study of differential delay systems.
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1 Introduction
We consider the asymptotically linear differential delay system

x′(t) = –
2k–1∑

s=1

(–1)s+1∇F
(
x(t – s)

)
, (1.1)

where

x ∈ RN , F ∈ C1(RN , R
)
, ∇F(–x) = –∇F(x), (1.2)

and there are real symmetric matrices A0, A∞ ∈ RN×N such that

∇F(x) = A0x + ◦(|x|), |x| → 0, ∇F(x) = A∞x + ◦(|x|), |x| → ∞. (1.3)

In the past several decades, many papers [1–16] have studied the existence of periodic
solutions of delay differential equations. In 1974, Kaplan and Yorke [15] studied the mul-
tiple periodic solutions of the equations

x′(t) = –f
(
x(t – 1)

)
(1.4)
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and

x′(t) = –f
(
x(t – 1)

)
– f
(
x(t – 2)

)
(1.5)

by transforming them respectively into associated systems of ordinary differential equa-
tions and then making analysis by qualitative approaches. Meanwhile, they guessed that
there should exist 2(n + 1)-periodic solutions to the equation

x′(t) = –
n∑

i=1

f
(
x(t – i)

)
, (1.6)

where f ∈ C0(R, R) with f (–x) = –f (x), xf (x) > 0, x �= 0. This was proved in [17]. On the
basis of this work, Fei [3, 4] studied the multiple periodic solutions of differential delay
equations via Hamiltonian systems. Li and He [10–12] studied the multiple solutions by
an asymptotically linear Hamiltonian system. Guo and Yu [13, 14] gave some multiple
results for periodic solutions via critical point theory.

In this paper, our main purpose is to study system (1.1), in which the coefficients of non-
linear terms corresponding to different hysteresis have different signs, which is an exten-
sion of [3]. To construct the even functional, the variation structure here is much simpler
since we do not transform system (1.1) into a 2kN-dimensional system. At the same time,
according to the variational method and the method of Kaplan–Yorke coupling system, we
get an exact counting method of the number of 4k-periodic orbits. Moreover, our results
are easier to examine by introducing the eigenvalues and eigenvectors of the matrices A∞
and A0.

Let

α1 ≤ α2 ≤ · · · ≤ αN and β1 ≤ β2 ≤ · · · ≤ βN

be the eigenvalues of A0 and A∞, respectively, and let u1, u2, . . . , uN and v1, v2, . . . , vN be
the corresponding unit eigenvectors in space. For convenience, we make the following
assumptions:

(f1) F satisfies (1.2) and (1.3),
(f2) there are M > 0 and a function r ∈ C0(R+, R+) satisfying r(s) → ∞ and r(s)/s → 0 as

s → ∞ such that
∣∣∣∣F(x) –

1
2

(A∞x, x)
∣∣∣∣ > r

(|x|) – M,

(f ±
3 ) ±[F(x) – 1

2 (A∞x, x)] > 0, |x| → ∞,
(f ±

4 ) ±[F(x) – 1
2 (A0x, x)] > 0, 0 < |x| 
 1.

2 Variational structure
Let

X̂ =
{

x ∈ L2 : x(t – 2k) = –x(t)
}

=

{ ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
: ai, bi ∈ RN

}
,
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X = cl

{ ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
:

ai, bi ∈ RN ,
∞∑

i=0

(2i + 1)
(
a2

i + b2
i
)

< ∞
}

⊂ X̂,

and define P : X → L2 by

Px(t) = P

( ∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

))

=
∞∑

i=0

(2i + 1)
(

ai cos
(2i + 1)π t

2k
+ bi sin

(2i + 1)π t
2k

)

and the inverse of P as

P–1x(t) =
∞∑

i=0

1
2i + 1

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
.

Define

〈x, y〉 =
∫ 4k

0

(
Px(t), y(t)

)
dt, ‖x‖ =

√〈x, x〉,

〈x, y〉2 =
∫ 4k

0

(
x(t), y(t)

)
dt, ‖x‖2 =

√〈x, x〉2.

Then (X,‖ · ‖) is an H
1
2

4k([0, 4k], RN ) space.
For system (1.1), define the following functional Φ : X → R:

Φ(x) =
1
2
〈Lx, x〉 +

∫ 4k

0
F
(
x(t)
)

dt, (2.1)

where

Lx = –P–1
2k–1∑

s=1

x′(t – s). (2.2)

Let

X(i) =
{

x(t) = ai cos
(2i + 1)π t

2k
+ bi sin

(2i + 1)π t
2k

: ai, bi ∈ RN
}

.

Then we have

X =
∞∑

h=0

[ k–1∑

i=0

(
X(2hk + i) + X(2hk + 2k – i – 1)

)
]

. (2.3)

On the basis of Theorem 1.4 in [18], we can get that the differential of Φ satisfies

Φ ′(x) = Lx + K(x), (2.4)

where K(x) = P–1∇F(x).
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For convenience of further calculations, we can also make a more detailed division of
space X by introducing the eigenvalues and eigenvectors mentioned before.

Suppose that

X0j(i) =
{

x(t) =
(

aj cos
(2i + 1)π t

2k
+ bj sin

(2i + 1)π t
2k

)
uj : aj, bj ∈ R, j = 1, 2, . . . , N

}
,

X∞j(i) =
{

x(t) =
(

aj cos
(2i + 1)π t

2k
+ bj sin

(2i + 1)π t
2k

)
vj : aj, bj ∈ R, j = 1, 2, . . . , N

}
.

Then we have

X(i) =
N∑

j=1

X∞j(i) =
N∑

j=1

X0j(i)

and

X =
∞∑

i=0

X(i) =
∞∑

i=0

N∑

j=1

X∞j(i) =
∞∑

i=0

N∑

j=1

X0j(i).

Therefore from (2.2) we find that if

x(t) =
∞∑

i=0

(
ai cos

(2i + 1)π t
2k

+ bi sin
(2i + 1)π t

2k

)
,

then

〈Lx, x〉 = –
∞∑

i=0

(2i + 1)π
(
a2

i + b2
i
)

cot
(2i + 1)π

4k

=
∞∑

h=0

[
–

k–1∑

i=0

(4hk + 2i + 1)π
(
a2

2hk+i + b2
2hk+i

)
cot

(2i + 1)π
4k

+
k–1∑

i=0

(4hk + 4k – 2i – 1)π
(
a2

2hk+2k–i–1 + b2
2hk+2k–i–1

)
cot

(2i + 1)π
4k

]
.

On the other hand, when

x ∈ X∞j =
∞∑

i=0

X∞j(i)

=
∞∑

i=0

{
x(t) =

(
aj cos

(2i + 1)π t
2k

+ bj sin
(2i + 1)π t

2k

)
vj : aj, bj ∈ R, j = 1, 2, . . . , N

}
,

we have

〈
P–1A∞x, x

〉
=

∞∑

i=0

2kβj
(
a2

i + b2
i
)

=
∞∑

h=0

[ k–1∑

i=0

2kβj
(
a2

2hk+i + b2
2hk+i

)
+

k–1∑

i=0

2kβj
(
a2

2hk+2k–i–1 + b2
2hk+2k–i–1

)
]

.
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Then we can get

〈(
L + P–1A∞

)
x, x
〉

= 2k
N∑

j=1

∞∑

h=0

[ k–1∑

i=0

(
–

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ βj

)(
a2

2lk+i + b2
2hk+i

)

+
k–1∑

i=0

(
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ βj

)(
a2

2hk+2k–i–1 + b2
2hk+2k–i–1

)
]

.

Similarly,

〈(
L + P–1A0

)
x, x
〉

= 2k
N∑

j=1

∞∑

h=0

[ k–1∑

i=0

(
–

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ αj

)(
a2

2hk+i + b2
2hk+i

)

+
k–1∑

i=0

(
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ αj

)(
a2

2hk+2k–i–1 + b2
2hk+2k–i–1

)
]

.

3 Division of space X and lemmas
Let

X+
∞ =

N∑

j=1

{
X∞j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ βj > 0

}

∪
N∑

j=1

{
X∞j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ βj > 0
}

,

X–
∞ =

N∑

j=1

{
X∞j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ βj < 0

}

∪
N∑

j=1

{
X∞j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ βj < 0
}

,

X+
0 =

N∑

j=1

{
X0j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ αj > 0

}

∪
N∑

j=1

{
X0j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ αj > 0
}

,
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X–
0 =

N∑

j=1

{
X0j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ αj < 0

}

∪
N∑

j=1

{
X0j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ αj < 0
}

,

X0
∞ =

N∑

j=1

{
X∞j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ βj = 0

}

∪
N∑

j=1

{
X∞j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ βj = 0
}

,

X0
0 =

N∑

j=1

{
X0j(2hk + i) : h ≥ 0, 0 ≤ i ≤ k – 1, –

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
+ αj = 0

}

∪
N∑

j=1

{
X0j(2hk + 2k – i – 1) :

h ≥ 0, 0 ≤ i ≤ k – 1,
(4hk + 4k – 2i – 1)π

2k
cot

(2i + 1)π
4k

+ αj = 0
}

.

It is easy to see that dim X0∞ < ∞ and dim X0
0 < ∞.

Lemma 3.1 ([3], Lemma 2.4) Suppose X is a Hilbert space, Φ : X → R is a differentiable
functional, and L : X → X is a linear operator. Then there are two closed S1-invariant linear
subspaces X+ and X– such that

(a) X+ ∪ X– is closed and of finite codimension in X ,
(b) L̂(X–) ⊂ X–, L̂ = L + P–1A0 or L̂ = L + P–1A∞,
(c) there exists c0 ∈ R such that

inf
x∈X+

Φ(x) ≥ c0,

(d) there is c∞ ∈ R such that

Φ(x) ≤ c∞ < Φ(0) = 0, ∀x ∈ X– ∩ Sr =
{

x ∈ X– : ‖x‖ = r
}

,

(e) Φ satisfies the (P.S)c-condition for c0 < c < c∞, that is, every {xn} ⊆ X satisfying
Φ(xn) → c and Φ ′(xn) → 0 has a convergent subsequence. Then Φ has at least
1
2 [dim(X+ ∩ X–) – codimX(X+ ∪ X–)] generally different critical orbits in
Φ–1([c0, c∞]) if

[
dim
(
X+ ∩ X–) – codimX

(
X+ ∪ X–)] > 0.
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Lemma 3.2 There exists σ > 0 such that

〈(
L + P–1A∞

)
x, x
〉
> σ‖x‖2, x ∈ X+

∞, (3.1)

and

〈(
L + P–1A∞

)
x, x
〉
< –σ‖x‖2, x ∈ X–

∞. (3.2)

Proof Let

X∞j =
∞∑

i=0

X∞j(i)

=

{
x(t) =

∞∑

i=0

(
aj cos

(2i + 1)π t
2k

+ bj sin
(2i + 1)π t

2k

)
vj : aj, bj ∈ R, j = 1, 2, . . . , N

}
.

Then X =
∑N

j=1 X∞j. We need to consider two cases, βj ≥ 0 and βj < 0. In the following
part, we just give the proof for βj ≥ 0, as the other case is similar.

For βj ≥ 0, i ∈ {0, 1, . . . , k – 1}, and x ∈ X∞j,

–
(4hk + 2i + 1)π

2k
cot

(2i + 1)π
4k

+ βj > –
(4h+(i)k + 2i + 1)π

2k
cot

(2i + 1)π
4k

+ βj > 0,

where h+(i) = max{h ∈ N : – (4hk+2i+1)π
2k cot (2i+1)π

4k + βj > 0}, and

–
(4hk + 2i + 1)π

2k
cot

(2i + 1)π
4k

+ βj < –
(4h–(i)k + 2i + 1)π

2k
cot

(2i + 1)π
4k

+ βj < 0,

where h–(i) = min{h ∈ N : – (4hk+2i+1)π
2k cot (2i+1)π

4k + βj < 0}.
Then we can choose

σi = min

{
–

π

2k
cot

(2i + 1)π
4k

+
βj

4h+(i)k + 2i + 1
,

π

2k
cot

(2i + 1)π
4k

–
βj

4h–(i)k + 2i + 1

}

> 0,

and let σj = min{σ0,σ1, . . . ,σk–1} > 0, and then let σ = min{σj : j = 1, 2, . . . , N}. The proof is
over. �

Lemma 3.3 If (f1) and (f2) hold, then the functional Φ given by (2.1) satisfies the (P.S)-
condition.

Proof Let Π , Λ, and Γ be the orthogonal mappings from X to X+∞, X–∞, and X0∞, respec-
tively. From (1.3) we get

∣∣〈P–1(∇F(x) – A∞x
)
, x
〉∣∣ <

σ

2
‖x‖2 + M̃, x ∈ X,

for some M̃ > 0.
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Suppose that {xn} ⊂ X is a subsequence such that Φ ′(xn) → 0 and Φ(xn) is bounded. Let
wn = Πxn, yn = Λxn, and zn = Γ xn. Then

Π
(
L + P–1A∞

)
=
(
L + P–1A∞

)
Π ,Λ

(
L + P–1A∞

)
=
(
L + P–1A∞

)
Λ. (3.3)

From

〈
Φ ′(xn), xn

〉
=
〈
Lxn + P–1∇F(xn), xn

〉
=
〈(

L + P–1A∞
)
xn, xn

〉
+
〈
P–1(∇F(xn) – A∞xn

)
, xn
〉

and (3.1) we have

〈
ΠΦ ′(xn), xn

〉
=
〈
Π
(
L + P–1A∞

)
xn, xn

〉
+
〈
ΠP–1(∇F(xn) – A∞xn

)
, xn
〉

=
〈(

L + P–1A∞
)
wn, wn

〉
+
〈
ΠP–1(∇F(xn) – A∞xn

)
, wn
〉

>
σ

2
‖wn‖2 – M̃.

Then we get that wn is bounded. Similarly, yn is bounded. Meanwhile, from (f2) we get

Φ(xn) =
1
2
〈(

L + P–1A∞
)
xn, xn

〉
+
∫ 4k

0

(
F(xn) –

1
2

(A∞xn, xn)
)

dt

≥ 1
2
〈(

L + P–1A∞
)
wn, wn

〉
+

1
2
〈(

L + P–1A∞
)
yn, yn

〉

+
∫ 4k

0
r
(∣∣xn(t)

∣∣)dt – 4kM.

Then ‖zn‖ is bounded since Φ(xn) is bounded. So, ‖xn‖ is bounded.
Furthermore, from (2.4) we have

(Π + N)Φ ′(xn) = (Π + Λ)Lxn + (Π + N)K(xn)

= L(wn + yn) + (Π + N)K(xn).

Then we can suppose without loss of generality that K(xn) → η because K is compact and
xn is bounded. Then

L|x+∞+x–∞ (wn + yn) → –(Π + N)η. (3.4)

Meanwhile, we can easily see that the dimension of X0∞ is finite, so we can suppose that
zn → ϕ as zn is bounded. Hence

xn = zn + wn + yn → ϕ – (L|x+∞+x–∞ )–1(Π + Λ)η,

and the (P.S)-condition is proved. �

Lemma 3.4 If x is a critical point of Φ , then it is a solution to system (1.4).
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Proof Suppose x is a critical point of Φ given by (2.1). Then x(t) satisfies

–
2k–1∑

s=1

x′(t – s) + ∇F
(
x(t)
)

= 0, a.e. t ∈ [0, 4k]. (3.5)

Consequently,

–
2k–1∑

s=1

x′(t – s – 1) + ∇F
(
x(t – 1)

)
= 0, (3.5_1)

–
2k–1∑

s=1

x′(t – s – 2) + ∇F
(
x(t – 2)

)
= 0, (3.5_2)

–
2k–1∑

s=1

x′(t – s – 3) + ∇F
(
x(t – 3)

)
= 0, (3.5_3)

...

–
2k–1∑

s=0

x′(t – s – (2k – 1)
)

+ ∇F
(
x
(
t – (2k – 1)

))
= 0. (3.5_(2k – 1))

Calculating (3.5_1) – (3.5_2) + (3.5_3) – · · ·+ (3.5_(2k – 1)), we have

x′(t) +
2k–1∑

s=1

(–1)s+1∇F
(
x(t – s)

)
= 0, a.e. t ∈ [0, 4k],

that is,

x′(t) = –
2k–1∑

s=1

(–1)s+1∇F
(
x(t – s)

)
, a.e. t ∈ [0, 4k],

and hence x is a solution of (1.1). �

4 Main results
Denote

N(αj) =

⎧
⎨

⎩
–
∑k–1

i=0 �{h ≥ 0 : 0 < (4hk+4k–2i–1)π
2k cot (2i+1)π

4k < –αj}, αj < 0,
∑k–1

i=0 �{h ≥ 0 : 0 < (4hk+2i+1)π
2k cot (2i+1)π

4k < αj}, αj ≥ 0,

N(βj) =

⎧
⎨

⎩
–
∑k–1

i=0 �{h ≥ 0 : 0 < (4hk+4k–2i–1)π
2k cot (2i+1)π

4k < –βj}, βj < 0,
∑k–1

i=0 �{h ≥ 0 : 0 < (4hk+2i+1)π
2k cot (2i+1)π

4k < βj}, βj ≥ 0,

N0(αj–) =
k–1∑

i=0

�

{
h ≥ 0 : 0 <

(4hk + 4k – 2i – 1)π
2k

cot
(2i + 1)π

4k
= –αj

}
, αj < 0,

N0(αj+) =
k–1∑

i=0

�

{
h ≥ 0 : 0 <

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
= αj

}
, αj ≥ 0,
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N0(βj–) =
k–1∑

i=0

�

{
h ≥ 0 : 0 <

(4hk + 4k – 2i – 1)π
2k

cot
(2i + 1)π

4k
= –βj

}
, βj < 0,

N0(βj+) =
k–1∑

i=0

�

{
h ≥ 0 : 0 <

(4hk + 2i + 1)π
2k

cot
(2i + 1)π

4k
= βj

}
, βj ≥ 0,

and

N(A∞) =
N∑

j=1

N(βj), N(A0) =
N∑

j=1

N(αj),

N0(A∞–) =
N∑

j=1

N0(βj–), N0(A∞+) =
N∑

j=1

N0(βj+),

N0(A0–) =
N∑

j=1

N0(αj–), N0(A0+) =
N∑

j=1

N0(αj+).

Theorem 4.1 System (1.1) has at least

n = max
{

N(A∞) – N(A0) – N0(A∞–) – N0(A0+),

N(A0) – N(A∞) – N0(A0–) – N0(A∞+)
}

> 0

4k-periodic orbits when (f1) and (f2) hold.

Proof Without loss of generality, we suppose

n = N(A∞) – N(A0) – N0(A∞–) – N0(A0+).

Then letting X+ = X+∞ and X– = X–
0 , we get

X \ (X+ ∪ X–) = X \ (X+
∞ ∪ X–

0
)⊆ X0

∞ ∪ X0
0 ∪ (X+

∞ ∩ X–
0
)
.

Obviously,

codimX
(
X+ + X–)≤ dim X0

∞ + dim X0
0 + dim

(
X+

∞ ∩ X–
0
)

< ∞,

which means that the codimension of (X+ ∪ X–) is finite. For each x ∈ X(i), we have (L +
P–1A∞)x ∈ X(i). The (PS)-condition is satisfied by Lemma 3.3. Moreover, from (1.3) we
get |F(x) – 1

2 (A∞x, x)| < 1
4σ‖x‖2 + M1, x ∈ RN , for some M1 > 0, and from Lemma 3.2 we

know that there exists σ > 0 such that 〈(L + P–1A∞)x, x〉 > σ‖x‖2, x ∈ X+∞. Then

Φ(x) =
1
2
〈(

L + P–1A∞
)
x, x
〉
+
∫ 4k

0

[
F
(
x(t)
)

–
1
2

(A∞x, x)
]

dt

≥ 1
2
σ‖x‖2 –

1
4
σ‖x‖2 – 4kM1

≥ 1
4
σ‖x‖2 – 4kM1
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for x ∈ X+. Therefore there exists c0 ∈ R such that

inf
x∈X+

Φ(x) ≥ c0.

Similarly, we get that there exist r,σ > 0 such that |F(x) – 1
2 (A0x, x)| < 1

4σ‖x‖2, ‖x‖ = r.
Then

Φ(x) =
1
2
〈(

L + P–1A0
)
x, x
〉
+
∫ 4k

0

[
F
(
x(t)
)

–
1
2

(A0x, x)
]

dt

≤ –
1
2
σ‖x‖2 +

1
4
σ‖x‖2

≤ –
1
4
σ‖x‖2

for x ∈ X–. This means that there exist r > 0 and c∞ < 0, such that

Φ(x) ≤ c∞ < 0 = Φ(0), ∀x ∈ X– ∩ Sr =
{

x ∈ X : ‖x‖ = r
}

.

On the other hand, for i ∈ {0, 1, . . . , k – 1},

〈(
L + P–1A∞

)
x, x
〉
=
(

–
π

2k
cot

(2i + 1)π
4k

+
βj

4hk + 2i + 1

)
‖x‖2, x ∈ X(2hk + i),

〈(
L + P–1A∞

)
x, x
〉
=
(

π

2k
cot

(2i + 1)π
4k

+
βj

4hk + 4k – 2i – 1

)
‖x‖2,

x ∈ X(2hk + 2k – i – 1),

and

〈(
L + P–1A0

)
x, x
〉
=
(

–
π

2k
cot

(2i + 1)π
4k

+
αj

4hk + 2i + 1

)
‖x‖2, x ∈ X(2hk + i),

〈(
L + P–1A0

)
x, x
〉
=
(

π

2k
cot

(2i + 1)π
4k

+
αj

4hk + 4k – 2i – 1

)
‖x‖2,

x ∈ X(2hk + 2k – i – 1).

Hence we have that

X+
∞(2hk + i) = X+

∞ ∩ X(2hk + i) = ∅,

X–
0 (2hk + 2k – i – 1) = X–

0 ∩ X(2hk + 2k – i – 1) = ∅,

X–
0 (2hk + i) = X–

0 ∩ X(2hk + i) = X(2hk + i),

X+
∞(2hk + 2k – i – 1) = X+

∞ ∩ X(2hk + 2k – i – 1) = X(2hk + 2k – i – 1),

when h ≥ 0 is large enough. So there is M > 0 such that

dim
(
X+

∞(s) ∩ X–
0 (r)

)
– codimX

(
X+

∞(s) + X–
0 (s)
)

= 0, s > M.
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Then

n =
1
2
[
dim
(
X+ ∩ X–) – codimX

(
X+ + X–)]

=
1
2
[
dim
(
X+

∞ ∩ X–
0
)

– codimX
(
X+

∞ + X–
0
)]

=
1
2

M∑

s=0

[
dim
(
X+

∞(s) ∩ X–
0 (s)
)

– codimX(s)
(
X+

∞(s) + X–
0 (s)
)]

=
1
2

M∑

s=0

[
dim X+

∞(s) + dim X–
0 (s) – 2N

]

=
1
2

M∑

s=0

[
dim X+

∞(s) + dim X–
0 (s)
]

– N(M + 1).

Then we have

M∑

s=0

dim(X+
∞(s)) = 2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N(A∞)

+ N × �{2hk + 2k – i – 1 : 0 ≤ 2hk + 2k – i – 1 ≤ M}, βj ≥ 0,

N(A∞) – N0(A∞–)

+ N × �{2hk + 2k – i – 1 : 0 ≤ 2hk + 2k – i – 1 ≤ M}, βj < 0,

M∑

s=0

dim(X–
0 (s)) = 2

⎧
⎨

⎩
–N(A0) – N0(A0+) + N × �{2hk + i : 0 ≤ 2hk + i ≤ M}, αj ≥ 0,

–N(A0) + N × �{2hk + i : 0 ≤ 2hk + i ≤ M}, αj < 0,

and

M∑

s=0

[
dim X+

∞(s) + dim X–
0 (s)
]

= 2
[
N(A∞) – N(A0) – N0(A∞–) – N0(A0+)

]

+ 2N(M + 1). (4.1)

Therefore

n = N(A∞) – N(A0) – N0(A∞–) – N0(A0+). �

Theorem 4.2 System (1.1) possesses at least

n = N(A∞) – N(A0) + N0(A∞+) + N0(A0–) > 0

4k-periodic orbits when (f1), (f2), (f +
3 ), and (f –

4 ) hold.

Proof Let X+ = X+∞ + X0∞ and X– = X0
– + X0

0 . The verification of conditions (a), (b), (c),
(d), and (e) is similar to Theorem 4.1, so we can assume that (4.1) still holds. Let X0∞(i) =
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X0∞ ∩ X(i) and X0
0 (i) = X0

0 ∩ X(i). Then

n =
1
2

M∑

i=0

[
dim
(
X+

∞(i) ∩ X–
0 (i)
)

– codimX(i)
(
X+

∞(i) + X–
0 (i)
)]

+
(
dim X0

∞ + dim X0
0
)

=
1
2

M∑

i=0

[
dim X+

∞(i) + dim X–
0 (i) – 2N

]
+
(
dim X0

∞ + dim X0
0
)

=
1
2

M∑

i=0

[
dim X+

∞(i) + dim X–
0 (i)
]

– N(M + 1) +
(
dim X0

∞ + dim X0
0
)

= N(A∞) – N(A0) – N0(A∞–) – N0(A0+)

+
(
N0(A∞+) + N0(A0–) + N0(A0+) + N0(A0–)

)

= N(A∞) – N(A0) + N0(A∞+) + N0(A0–). �

Theorem 4.3 System (1.1) possesses at least

n = N(A0) – N(A∞) + N0(A0+) + N0(A∞–) > 0

4k-periodic orbits when (f1), (f2), (f –
3 ), and (f +

4 ) hold.

The proof is almost the same as that of Theorem 4.2, and we omit it.

5 Example
Assume that F ∈ C1(R2, R) satisfies

F(x) =

⎧
⎨

⎩

3π
2 x2

1 + π
2 x2

2 + (2x2
1 + x2

2) 2
3 , |x| � 1,

π
2 x2

1 – 3π
2 x2

2 – 3x
12
5

1 – x
8
3
2 , |x| 
 1.

We are to discuss the multiplicity of 12-periodic solutions of the equation

x′(t) = –
5∑

s=1

(–1)s+1∇F
(
x(t – s)

)
. (5.1)

In this case, k = 3, α1 = π , α2 = –3π , β1 = 3π , β2 = π . Then

N(α1) = �

{
h ≥ 0 : 0 <

(12h + 1)π
6

cot
π

12
< π

}

+ �

{
h ≥ 0 : 0 <

(12h + 3)π
6

cot
3π

12
< π

}

+ �

{
h ≥ 0 : 0 <

(12h + 5)π
6

cot
5π

12
< π

}

= 4,
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N(α2) = –�

{
h ≥ 0 : 0 <

(12h + 11)π
6

cot
π

12
< 3π

}

– �

{
h ≥ 0 : 0 <

(12h + 9)π
6

cot
3π

12
< 3π

}

– �

{
h ≥ 0 : 0 <

(12h + 7)π
6

cot
5π

12
< 3π

}

= –7,

N(β1) = �

{
h ≥ 0 : 0 <

(12h + 1)π
6

cot
π

12
< 3π

}

+ �

{
h ≥ 0 : 0 <

(12h + 3)π
6

cot
3π

12
< 3π

}

+ �

{
h ≥ 0 : 0 <

(12h + 5)π
6

cot
5π

12
< 3π

}

= 9,

N(β2) = �

{
h ≥ 0 : 0 <

(12h + 1)π
6

cot
π

12
< π

}

+ �

{
h ≥ 0 : 0 <

(12h + 3)π
6

cot
3π

12
< π

}

+ �

{
h ≥ 0 : 0 <

(12h + 5)π
6

cot
5π

12
< π

}

= 4,

N(A0) = N(α1) + N(α2) = –3, N(A∞) = N(β1) + N(β2) = 13,

N0(α+) = N0(β–) = N0(α–) = N0(β+) = 0.

According to Theorem 4.2, we get that Eq. (5.1) has at least 16 different 12-periodic
orbits satisfying x(t – 6) = –x(t).
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