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Abstract
In this paper, a delayed virus model with two different transmission methods and
treatments is investigated. This model is a time-delayed version of the model in
(Zhang et al. in Comput. Math. Methods Med. 2015:758362, 2015). We show that the
virus-free equilibrium is locally asymptotically stable if the basic reproduction number
is smaller than one, and by regarding the time delay as a bifurcation parameter, the
existence of local Hopf bifurcation is investigated. The results show that time delay
can change the stability of the endemic equilibrium. Finally, we give some numerical
simulations to illustrate the theoretical findings.
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1 Introduction and model formulation
Infectious diseases are still important diseases that endanger human health [2]. Not only
do some ancient infectious disease pathogens continue to mutate and change, but new
pathogens are also emerging, bringing many difficulties for us to discover, diagnose, and
prevent infectious diseases. Studies have shown that many diseases are caused by viruses.
Of more than 4000 viruses discovered so far, more than 100 can directly threaten human
health and life. For example, rabies, a zoonotic disease caused by rabies virus, can cause
severe encephalitis. Because the virus invades the central nervous system, if the treatment
is not taken in time, the mortality rate is almost 100%. Another example is the Ebola virus,
which causes Ebola hemorrhagic fever with a mortality rate from 50% to 90%. In addi-
tion, recent research has shown that several viruses have been found to link with cancer
in humans, even that can push the cell toward becoming cancerous, such as human pa-
pilloma viruses (HPVs) which are considered to be the biggest factor that causes various
cancers such as cervical cancer [3–5], anal cancer [6, 7], and oropharyngeal cancers [8].
The sudden outbreak of the SARS virus and the Ebola virus in the past 20 years has given
us a major warning that public health issues are no longer just health issues, but also an
important part of national security and urban security systems.
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Using mathematical models to help discover the mechanism of viral transmission to
predict the development of infectious diseases has become the mainstream method for
controlling and preventing infectious diseases [9–12]. Therefore, for over a century, lots
of mathematical models have been established to explain the evolution of the free virus
in a body, and mathematical analysis was implemented to explore the threshold associ-
ated with eradication and persistence of the virus; for example, [13–16] studied the global
dynamic behavior of HIV models, [17–24] analysed the global dynamics of HBV mod-
els [25–28]. A general class of models describing the process of virus invading the target
cells and release of the virus due to the infected cell apoptosis has been established and
analyzed by Perelson et al. [29, 30] and Nelson et al. [31] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = Λ – dx – αvx,
dy
dt = αvx – ay,
dv
dt = ky – uv,

(1)

where x, y, and v represent the concentrations of uninfected target cells, infected cells, and
virus, respectively. Λ and d are the generation rate and mortality rate of uninfected target
cells respectively, α is the infection rate, a is the mortality rate of infected cells, k and u
are the generation rate and mortality rate of free virus respectively.

However, the above model only considers that free viruses can infect uninfected cells by
direct contact with them. Recent studies have shown that virus can be transmitted directly
from cell to cell by virological synapses, i.e., cell-to-cell transmission [32–39]. Spouge et
al. [40] built a model to characterize this phenomenon:

⎧
⎪⎪⎨

⎪⎪⎩

dC
dt = rCC(1 – C+I+γ M

Cm
) – kIIC,

dI
dt = kIIC – μI I,
dM
dt = μCC + μI I,

(2)

where C, I , M represent the concentrations of uninfected cells, infected cells, and dead
cells, respectively. kI is the rate constant for cell-to-cell spread, rC is the reproductive rate
of uninfected cell. μI , μC are the rate constants at which uninfected or infected cells die
respectively, and the term kIIC represents the cell-to-cell transmission. However, research
[41] shows that there is a delay between the time an uninfected cell becomes infected and
when it begins to infect other uninfected cells, then Culshaw et al. [42] improved the model
by introducing a distributed delay into model (2) and got the following model:

⎧
⎨

⎩

dC
dt = rCC(t)(1 – C(t)+I(t)

CM
) – kIC(t)I(t),

dI
dt = k′

I
∫ t

–∞ C(u)I(u)F(t – u) du – μI I(t),

where F(u) is the delay kernel.
Lai et al. [43] proposed a model containing two different types of infection as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dT
dt = rT(t)(1 – T(t)+αT∗(t)

TM
) – β1T(t)V (t) – β2T(t)T∗(t),

dT∗
dt = β1T(t)V (t) + β2T(t)T∗(t) – dT∗T∗(t),

dV
dt = kT∗(t) – dV V (t),
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where T , T∗, and V are the concentrations of uninfected cells, infected cells, and free
virus, respectively. β1 is the infection rate of cell-free virus transmission and β2 is the
infection rate of cell-to-cell transmission. For more details on parameters, please see [43].
The authors proved that a Hopf bifurcation can occur under certain conditions. Recently,
Zhang et al. [1] proposed an ordinary differential equations virus model with both two
different types of infection and cure rate as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = π – dx – (βy + αv)x + ρy,
dy
dt = (βy + αv)x – (a + ρ)y,
dv
dt = ky – uv,

(3)

where x, y, and v represent the concentrations of uninfected cells, infected cells, and free
virus respectively. π is the regeneration rate of uninfected cells, d, a, u are the death rates
of three kinds of cells. ρ represents the cure rate, ky is the rate at which infected cells pro-
duce free viruses. By constructing suitable Lyapunov function, the authors proved that the
equilibria are globally asymptotically stable under some conditions. However, the authors
did not consider the time delay in model (3). In order to understand whether the introduc-
tion of time delay or not will change the stability of the equilibria, then motivated by the
works [42, 43] and based on [1], we further consider model (4) by introducing a discrete
delay into model (3) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = π – dx(t) – (βy(t – τ ) + αv(t – τ ))x(t – τ ) + ρy(t),
dy
dt = (βy(t – τ ) + αv(t – τ ))x(t – τ ) – (a + ρ)y(t),
dv
dt = ky(t) – uv(t),

(4)

where τ is time delay. βxy is the term of cell-to-cell transmission. αvx represents cell-
free virus transmission. For more details on parameters, please see [1]. Considering the
biological meanings, we analyze model (4) in region A = {(x, y, v) ∈ R3

+|0 ≤ x + y ≤ π/λ,
v ≥ 0}, where λ = min{a, d}.

The paper is organized as follows. Firstly, we summarize some basic results about model
(4) in Sect. 2. The local stability of the free equilibrium and Hopf bifurcation of the system
are discussed in Sect. 3. We give the properties of Hopf bifurcation in Sect. 4. Finally, we
perform some numerical simulations to verify the results in Sect. 5.

2 Some basic results
From [1], we can conclude some basic results and summarize them in the following theo-
rem in this section.

Theorem 2.1
(i) Model (3) or (4) always has a virus-free equilibrium E0 = (x0, 0, 0), where x0 = π/d.

(ii) If R > 1, model (3) or (4) has a unique endemic equilibrium E1(x∗, y∗, v∗), where

x∗ =
π

dR
, y∗ =

π

a

(

1 –
1
R

)

, v∗ =
k
u

y∗,
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and

R =
π (αk + βu)
du(a + ρ)

is the basic reproduction number.

3 Local stability of the free equilibrium and Hopf bifurcation
Theorem 3.1 For model (4), if R < 1, E0 is locally stable, and if R > 1, then E0 is unstable.

Proof Letting X = x – x0, Y = y, V = v in (4) yields

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = π – d(X(t) + x0) – (βY (t – τ ) + αV (t – τ ))(X(t – τ ) + x0) + ρY (t),
dY
dt = (βY (t – τ ) + αV (t – τ ))(X(t – τ ) + x0) – (a + ρ)Y (t),
dV
dt = kY (t) – uV (t).

(5)

Then linearization at the original results in a characteristic equation is as follows:

(λ + d)
[
λ2 + (u + a + ρ)λ + (a + ρ)u + (–βx0λ – βux0 – αkx0)e–λτ

]
= 0. (6)

Clearly, it has a root λ = –d < 0. Thus we only need to analyze the distribution of roots,
which determines the stability of solution of system (5) of the equation

P1(λ) + P2(λ)e–λτ = 0, (7)

where

P1(λ) = λ2 + Aλ + B, P2(λ) = Cλ + D

and

A = a + ρ + u > 0, B = (a + ρ)u > 0, C = –βx0 < 0, D = –(βu + αk)x0 < 0.

When τ = 0, (7) reduces to

λ2 + (A + C)λ + B + D = 0. (8)

Since R = (αk+βu)x0
(a+ρ)u < 1 implies A + C > 0 and B + D > 0, we know the two roots of (8)

always have a negative real part. Next, we assume that equation (7) with τ �= 0 has two
pure imaginary roots ±i
 (
 > 0), which implies that the equation

F(
 ) = 
 4 +
(
A2 – C2 – 2B

)

 2 + B2 – D2 = 0 (9)

has at least one positive solution.
Obviously, B2 – D2 > 0, then we can see that

A2 – C2 – 2B = (a + ρ + u)2 – (βx0)2 – 2(a + ρ)u
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= (a + ρ)2 + u2 – (βx0)2

> 0,

where a + ρ > βx0 is used. Then we can conclude that when R < 1, equation (9) has no
positive real root, which leads to that equation (7) does not have a pure imaginary root.
Thus, all the roots of (7) always have negative real parts. Therefore, E0 is locally stable.
When R > 1, it is easy to see B + D < 0, then equation (7) has at least one positive root,
thus E0 is unstable. This proof is completed. �

Next we discuss the existence of Hopf bifurcation. For this purpose, we let X = x – x∗,
Y = y – y∗, V = v – v∗, to shift the equilibrium to the original. Then linearization at the
original results in a characteristic equation is as follows:

�(λ, τ ) = λ3 + b2λ
2 + b1λ + b0 +

(
c2λ

2 + c1λ + c0
)
e–λτ = 0, (10)

where

b0 = d(a + ρ)u,

b1 = d(a + ρ + u) + (a + ρ)u,

b2 = d + a + ρ + u,

c0 = au
(
βy∗ + αv∗) – d

(
βux∗ + αkx∗),

c1 = (u + a)
(
βy∗ + αv∗) – x∗(βu + αk) – dβx∗,

c2 = βy∗ + αv∗ – βx∗.

When τ = 0, (10) reduces to

�(λ, 0) = f (λ) = λ3 + a2λ
2 + a1λ + a0 = 0,

where

a2 = b2 + c2

= d + a + ρ + u + βy∗ + αv∗ – βx∗

= d + u + βy∗ + αv∗ + αk/ux∗ > 0,

a1 = b1 + c1

= d(a + ρ + u) + (a + ρ)u + (u + a)
(
βy∗ + αv∗) – x∗(βu + αk) – dβx∗

= du + (u + a)
(
βy∗ + αv∗) + dαk/ux∗ > 0,

a0 = b0 + c0

= au
(
βy∗ + αv∗) > 0,

here (a + ρ)u = (βu + αk)x∗ is used. And

a2a1 – a0 =
(
d + u + βy∗ + αv∗ + αk/ux∗)(du + (u + a)

(
βy∗ + αv∗) + αk/ux∗)
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– au
(
βy∗ + αv∗)

=
(
d + βy∗ + αv∗ + αk/ux∗)(du + (u + a)

(
βy∗ + αv∗) + αk/ux∗)

+ u
(
du + u

(
βy∗ + αv∗) + αk/ux∗)

> 0.

Then all the roots of f (λ) = 0 have negative real parts by using the Routh–Hurwitz criterion
[44], which implies the local asymptotic stability of E∗ for τ = 0.

For τ > 0, let iω (ω > 0) be the root of (10), we get

⎧
⎨

⎩

sinωτ = c2ω5+(b2c1–b1c2–c0)ω3+(b1c0–b0c1)ω
(c2ω2–c0)2+c2

1ω2 = P(ω),

cosωτ = (c1–b2c2)ω4+(b0c2+b2c0–b1c1)ω2–b0c0
(c2ω2–c0)2+c2

1w2 = Q(ω).
(11)

By setting μ = ω2, we get

G(μ) = μ3 + d2μ
2 + d1μ + d0 = 0, (12)

where

d0 = b2
0 – c2

0,

d1 = b2
1 + 2c0c2 – 2b0b2 – c2

1,

d2 = b2
2 – 2b1 – c2

2.

By the method in [45], we get the following lemmas.

Lemma 3.1
(i) If conditions b0 > c0 and d2

2 – 3d1 ≤ 0 hold, then (12) has no positive root.
(ii) If conditions b0 > c0, (H1)d2

2 – 3d1 > 0, z∗
1 > 0, and G(z∗

1) < 0 hold, then (12) has two

positive roots, where z∗
1 = –d2+

√
d2

2–3d1
3 .

(iii) If condition b0 < c0 holds, then (12) has at least one positive root.

If b0 > c0 and (H1) hold, suppose z1 < z2, then dG
dz1

< 0 and dG
dz2

> 0. Substituting ωk = √zk

(k = 1, 2) into (11), we have

τ
(j)
k =

⎧
⎨

⎩

1
ωk

[arccos(Q(ωk)) + 2jπ ], P(ωk) ≥ 0,
1
ωk

[2π – arccos(Q(ωk)) + 2jπ ], P(ωk) < 0,
j = 0, 1, 2, . . . . (13)

Lemma 3.2 If (H1) holds, then dα
dτ1

< 0 and dα
dτ2

> 0, where λ(τ ) = α(τ ) + iω(τ ) is the root of
(10) and α(τ (j)

k ) = 0, ω(τ (j)
k ) = ωk (k = 1, 2; j = 0, 1, 2, . . .).

Proof Substituting λ(τ ) into (10), we get

[
dα

dτ
(j)
k

]–1

=
3ω0

4 + 2d2ω0
2 + d1

c1ω02 + (c0 – c2ω02)2ω02 =
dG
dZk

c1ω02 + (c0 – c2ω02)2ω02 .
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Obviously, Sign dα

dτ
(j)
k

= Sign dG
dzk

. Since dG
dz1

< 0 and dG
dz2

> 0, then we have dα
dτ1

< 0 and dα
dτ2

> 0.

The proof is completed. �

About the existence of Hopf bifurcation, we have the following theorem.

Theorem 3.2 If R > 1, b0 > c0, and (H1) hold, then system (4) undergoes a Hopf bifurcation
at E∗ when τ = τ

(j)
k (k = 1, 2; j = 0, 1, 2, . . .). Furthermore, E∗ is stable when τ ∈ [0, τ0) and

unstable when τ > τ0. τ0 is the Hopf bifurcation value.

4 Property of Hopf bifurcation at E∗

From Theorem 3.2, we got the sufficient conditions for the Hopf bifurcation to appear.
We assume that when τ = τ0, system (4) produces a Hopf bifurcation at E∗. Next by the
normal form theory and the center manifold [46], we try to establish the explicit formula
determining the directions, stability, and period of periodic solutions bifurcating from E∗

at τ = τ0 and ω(τ0) = ω0.
Let ω0 = ω(t0), τ = τ0 + ς , ς ∈ R, then ς = 0 is the Hopf bifurcation value of model (4).

Let w1(t) = x – x∗, w2(t) = y – y∗, w3(t) = v – v∗, then (4) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dw1
dt = –dw1(t) + ρw2(t) – (βy∗ + αv∗)w1(t – τ ) – βx∗w2(t – τ ) – αx∗w3(t – τ )

– βw1(t – τ )w2(t – τ )t – αw1(t – τ )w3(t – τ ),
dw2
dt = –(a + ρ)w2(t) + (βy∗ + αv∗)w1(t – τ ) + βx∗w2(t – τ ) + αx∗w3(t – τ )

+ βw1(t – τ )w2(t – τ ) + αw1(t – τ )w3(t – τ ),
dw3
dt = kw2(t) – uw3(t).

(14)

Let C = C([–τ , 0], R3), we have

ẇt = Lς wt + F(ς , wt), (15)

where wt(θ ) = w(t + θ ) ∈ C and Lς is given by

Lςϕ = B1ϕ(0) + B2ϕ(–τ0),

where ϕ = (ϕ1,ϕ2,ϕ3)T ,

B1 =

⎛

⎜
⎝

–d ρ 0
0 –(a + ρ) 0
0 k –u

⎞

⎟
⎠ , B2 =

⎛

⎜
⎝

–(βy∗ + αv∗) –βx∗ –αx∗

βy∗ + αv∗ βx∗ αx∗

0 0 0

⎞

⎟
⎠ ,

F(ς , wt) =

⎛

⎜
⎝

–βw1(t – τ )w2(t – τ ) – αw1(t – τ )w3(t – τ )
βw1(t – τ )w2(t – τ ) + αw1(t – τ )w3(t – τ )

0

⎞

⎟
⎠ .

By using the Riesz representation theorem, we have a function ζ (θ ,ς ) such that, for ϕ ∈ C,

Lςϕ =
∫ 0

–τ0

dζ (θ ,ς )ϕ(θ ),
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where ζ (θ ,ς ) is a bounded variation function for [–τ0, 0]. And we can choose

ζ (θ ,ς ) = B1δ(θ ) – B2δ(θ + τ ),

where

δ(θ ) =

⎧
⎨

⎩

1, θ = 0,

0, θ �= 0.

For ϕ ∈ C1 = C([0, τ ], R3∗), let us define

H(ς )ϕ =

⎧
⎨

⎩

ϕ̇(θ ), θ ∈ (–τ0, 0),
∫ 0

–τ0
dζ (s,ς )ϕ(s), θ = 0,

and

R(ς )ϕ =

⎧
⎨

⎩

0, θ ∈ [–τ , 0),

F(ς ,ϕ), θ = 0

is the nonlinear part of the right-hand side of system (15), where

F(ς ,ϕ) =

⎛

⎜
⎝

–βϕ1(–τ )ϕ2(–τ ) – αϕ1(–τ )ϕ3(–τ )
βϕ1(–τ )ϕ2(–τ ) + αϕ1(–τ )ϕ3(–τ )

0

⎞

⎟
⎠ .

For ψ ∈ C1([0, τ0], R3∗) and ϕ ∈ C([–τ0, 0], R3), define

H∗ψ(s) =

⎧
⎨

⎩

–ψ̇(s), s ∈ (0, τ0],
∫ 0

–τ0
dζ T (t, 0)ψ(–t), s = 0,

and

〈ψ ,ϕ〉 = ψ̄(0)ϕ(0) –
∫ 0

–τ0

∫ θ

ξ=0
ψ̄T (ξ – θ ) dζ (θ )ϕ(ξ ) dξ ,

where ζ (θ ) = ζ (θ , 0). We have that H∗ and H = H(0) are adjoint operators. Then ±iω0 are
eigenvalues of H(0) when τ = τ0. Thus they are also eigenvalues of H∗. Also, we can get
q(θ ) = (1, q2, q3)eiω0θ and q∗(s) = D̄(1, q∗

2, q∗
3)eiω0s, which are the eigenvectors of H and H∗

corresponding to iω0 and –iω0, respectively, and

h2 = –
iω0 + d
iω0 + a

,

h3 =
(iω0 + a + ρ – βx∗e–iω0τ0 )h2 – (βy∗ + αv∗)e–iω0τ0

αx∗e–iω0τ0
,

q∗
2 =

(iω0 – u)(–ρ + βx∗eiω0τ0 ) – kαx∗eiω0τ0

(iω0 – u)[iω0 – (a + ρ) + βx∗eiω0τ0 ] + kαx∗eiω0τ0
,
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h∗
3 =

αx∗eiω0τ0 – αx∗eiω0τ0 h∗
2

iω0 – u
,

and

〈
h∗(s), h(θ )

〉
= 1,

〈
h∗(s), h̄(θ )

〉
= 0,

where

D =
{

1 + h2h̄∗
2 + h3h̄∗

3 + τ0A
}–1,

H = –
(
βy∗ + αv∗)e–iω0τ0 – βx∗e–iω0τ0 h2 – αx∗e–iω0τ0 h3 + h̄∗

2
((

βy∗ + αv∗)e–iω0τ0

+ βx∗e–iω0τ0 h2 + αx∗e–iω0τ0 h3
)
.

Using the same notations as in [47], we can obtain

g20 = 2D
(
1, h̄∗

2, h̄∗
3
)

⎛

⎜
⎝

–(βh2 + αh3)e–2iω0τ0

(βh2 + αh3)e–2iω0τ0

0

⎞

⎟
⎠

= 2D
[
–(βh2 + αh3)e–2iω0τ0 + h̄∗

2(βh2 + αh3)e–2iω0τ0
]
,

g11 = D
(
1, h̄∗

2, h̄∗
3
)

⎛

⎜
⎝

–β(h̄2 + h2) – α(h̄3 + h3)
β(h̄2 + h2) + α(h̄3 + h3)

0

⎞

⎟
⎠

= D
[
β(h̄2 + h2) + α(h̄3 + h3)

](
h̄∗

2 – 1
)
,

g02 = 2D
(
1, h̄∗

2, h̄∗
3
)

⎛

⎜
⎝

–(βh̄2 + αh̄3)e2iω0τ0

(βh̄2 + αh̄3)e2iω0τ0

0

⎞

⎟
⎠

= 2D(βh̄2 + αh̄3)e2iω0τ0
(
h̄∗

2 – 1
)
,

g21 = 2D
(
1, h̄∗

2, h̄∗
3
)

⎛

⎜
⎝

B
C
0

⎞

⎟
⎠ ,

where

B = –β

[

w(2)
11 (–τ0)e–iω0τ0 +

1
2

w(2)
20 (–τ0)e–iω0τ0 +

1
2

w(1)
20 (–τ0)h̄2e–iω0τ0

+ w(1)
11 (–τ0)h2e–iω0τ0

]

– α

[

w(3)
11 (–τ0)e–iω0τ0 +

1
2

w(3)
20 (–τ0)e–iω0τ0 +

1
2

w(1)
20 (–τ0)h̄3e–iω0τ0

+ w(1)
11 (–τ0)h3e–iω0τ0

]

,
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Figure 1 Time series for x(t) with the initial value
(19, 40, 30581), where R = 0.514971 < 1

C = β

[

w(2)
11 (–τ0)e–iω0τ0 +

1
2

w(2)
20 (–τ0)e–iω0τ0 +

1
2

w(1)
20 (–τ0)h̄2e–iω0τ0 + w(1)

11 (–τ0)h2e–iω0τ0

]

+ α

[

w(3)
11 (–τ0)e–iω0τ0 +

1
2

w(3)
20 (–τ0)e–iω0τ0 +

1
2

w(1)
20 (–τ0)h̄3e–iω0τ0

+ w(1)
11 (–τ0)h3e–iω0τ0

]

,

w20(θ ) =
ig20

ω0
h(0)eiω0θ +

i ¯g20

3ω0
h̄(0)e–iω0θ + E1e2iω0θ ,

w11(θ ) =
–ig11

ω0
h(0)eiω0θ +

i ¯g11

ω0
h̄(0)e–iω0θ + E2,

with

E1 =

⎛

⎜
⎝

2iω0 + d + (βy∗ + αv∗)e–2iω0τ0 βx∗e–2iω0τ0 – ρ dx∗e–2iω0τ0

–(βy∗ + αv∗)e–2iω0τ0 2iω0 + a + ρ – βx∗e–2iω0τ0 αx∗e–2iω0τ0

0 –k 2iω0 + u

⎞

⎟
⎠

–1

×
⎛

⎜
⎝

–(βh2 + αh3)e–2iω0τ0

(βh2 + αh3)e–2iω0τ0

0

⎞

⎟
⎠ ,

and

E2 =

⎛

⎜
⎝

–d – (βy∗ + αv∗) ρ – βx∗ –αx∗

βy∗ + αv∗ βx∗ – (a + ρ) αx∗

0 k –u

⎞

⎟
⎠

–1 ⎛

⎜
⎝

β(h̄2 + h2) + α(h̄3 + h3)
–β(h̄2 + h2) – α(h̄3 + h3)

0

⎞

⎟
⎠ .

By substituting E1 and E2 into W20(θ ) and W11(θ ), respectively, g21 can be expressed by
the parameters. Then each gij can be determined by the parameters. Therefore we get the
following expression:

C1(0) =
i

2ω0

(

g20g11 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2
, μ2 = –

Re{C1(0)}
Reλ′(τ0)

,

T2 = –
Im{C1(0)} + μ2 Imλ′(τ0)

ω0
, β2 = 2 Re

{
C1(0)

}
.

Thus, we have from [47] the following theorem.
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Figure 2 Time series for y(t) with the initial value
(19, 40, 30581), where R = 0.514971 < 1

Figure 3 Time series for v(t) with the initial value
(19, 40, 30581), where R = 0.514971 < 1

Figure 4 3D phase for x(t), y(t), and v(t) with the
initial value (19, 40, 30581), where R = 0.514971 < 1

Theorem 4.1
(i) μ2 determines the direction of Hopf bifurcation. If μ2 > 0 (< 0), then Hopf

bifurcation is supercritical (subcritical).
(ii) β2 determines the stability of the bifurcated periodic solutions. If β2 < 0 (> 0), then

the bifurcated periodic solutions are orbitally stable (unstable).
(iii) T2 determines the period of the bifurcated periodic solutions. If T2 > 0 (< 0), then the

period increases (decreases).

5 Conclusion and numerical simulations
In this paper, we have mainly considered the effect of time delay on the dynamics of a virus
model with two different transmission methods and treatments. Our results show that the
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Figure 5 Time series for x(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1

Figure 6 Time series for y(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1

Figure 7 Time series for v(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1

introduction of time delay has a significant effect on the dynamics of the system. However,
it can be seen from [1] that when there is no time delay in system (3), the positive equilib-
rium E∗ of system (3) is asymptotically stable if it exists. The appearance of the time delay
causes the positive equilibrium of the model (4) to be inverted from stable to unstable,
and a periodic solution of small amplitude is generated near the positive equilibrium E∗.
Biologically, the number of healthy, infected, and free viruses exhibits periodic changes.

Next, we take some numerical simulations to validate our main results. We set the basic
parameters as follows [48]: d = 0.2, β = 0.000024, α = 0.000024, ρ = 0.2, a = 0.15, k = 150,
u = 0.2. Firstly, we set π = 2, direct calculations with Maple 14 show that R = 0.514971 < 1
and E0 = (10, 0, 0). By Theorem 3.1 the virus-free equilibrium E0 of the system is stable
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Figure 8 3D phase for x(t), y(t), and v(t) with the
initial value (19, 40, 30581), where R = 2.574857 > 1

Figure 9 Time series for x(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1, τ =
3.8 < τ 0

2

Figure 10 Time series for y(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1, τ =
3.8 < τ 0

2

(see Figs. 1–4). Next, we change π to 10, direct calculations show that R = 2.574857 > 1,
then system (4) has two equilibria, i.e., the virus-free equilibrium E0 = (50, 0, 0) and the
virus equilibrium E∗ = (19.4186, 40.7753, 30581.4470). It is easy to see that

b0 = 0.0140,

c0 = 0.008048,

G(0) = d0 = b2
0 – c2

0 = 0.000131 > 0,

� = 0.148921 > 0,

z∗
1 = 0.240948,
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Figure 11 Time series for v(t) with the initial value
(19, 40, 30581), where R = 2.574857 > 1, τ =
3.8 < τ 0

2

Figure 12 3D phase for x(t), y(t), and v(t) with the
initial value (19, 40, 30581), where R = 2.574857 > 1,
τ = 3.8 < τ 0

2

Figure 13 Time series for x(t) with the initial value
(30, 75, 29000), where R = 2.574857 > 1, τ =
3.9 > τ 0

2

G
(
z∗

1
)

= –0.008284 < 0,

then equation (12) has two positive roots z1 = 0.0089 and z2 = 0.3680, and equation (11)
has two positive roots 
1 = 0.09441603258 and 
2 = 0.6066529567. Therefore we have
the Hopf bifurcation value τ 0

2 = 3.828340005.
If we set τ = 3.8 < 3.828340005, by Theorem 3.2, the virus equilibrium E∗ is asymptot-

ically stable (see Figs. 5–8). If we set τ = 3.9 > 3.828340005, by Theorem 3.2, the virus
equilibrium E∗ is unstable and periodic oscillations occur (see Figs. 9–16 with different
initial values).
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Figure 14 Time series for y(t) with the initial value
(30, 75, 29000), where R = 2.574857 > 1, τ =
3.9 > τ 0

2

Figure 15 Time series for v(t) with the initial value
(30, 75, 29000), where R = 2.574857 > 1, τ =
3.9 > τ 0

2

Figure 16 3D phase for x(t), y(t), and v(t) with the
initial value (30, 75, 29000), where R = 2.574857 > 1,
τ = 3.9 > τ 0

2
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