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Abstract
In this article, we prove the existence and uniqueness of a solution for 2-dimensional
time-fractional differential equations with classical and integral boundary conditions.
We start by writing this problem in the operator form and we choose suitable spaces
and norms. Then we establish prior estimates from which we deduce the uniqueness
of the strong solution. For the existence of solution for the fractional problem, we
prove that the range of the operator generated by the considered problem is dense.
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1 Introduction
Many physical phenomena bring us back to the study of fractional partial differential equa-
tions. We mention, for example, viscoelasticity, signal processing, electro-chemistry, con-
trol theory, electrical networks, fluid flow, porous media, rheology, diffusive transport,
electromagnetic theory, diffusion phenomena, and a lot of other physical processes are
diverse applications of fractional differential equations. For more on this, see [1–6].

Fractional diffusion equations appear widely in natural phenomena; these are suggested
as mathematical models of physical problems in many fields, like the inhomogeneous frac-
tional diffusion equations of the form

∂
β
0tu = –Au + F(t), u(0) = f , (1.1)

where ∂
β
0t is the Caputo fractional derivative, A is a positive self-adjoin operator on a

Hilbert space H , f ∈ H , F ∈ C(R+; H), and 0 < β ≤ 1. The Caputo derivative is more suitable
and natural for physical models problems, because it enables us to deal with inhomoge-
neous initial data easily.

Several methods have been used to investigate the existence and uniqueness of solu-
tion for fractional-order initial boundary value problems, such as the Laplace transform
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method, iteration method, the series method, the Fourier transform technique, the oper-
ational calculus method, see for example [7–11], but in general, analytical solutions are
hard to obtain for most fractional differential equations especially with nonlocal condi-
tions (integral conditions), i.e. when the data cannot be measured on the boundary or on
a part of it. In the absence of a precise solution, we often resort to numerical methods
such as finite element methods or spectral methods or backward substitution methods
(see [12–15]), which strongly rely on the existence and uniqueness of the solution for a
variational problem. The study of existence and uniqueness of a solution for fractional
differential equations starts by constructing variational formulation and choosing suitable
spaces and norms. Then we choose fixed point theorem or the Lax–Milgram theorem to
prove existence results of the solution. For our problem (2.1)–(2.4), we believe that the
prior estimate method is the most powerful tool to prove the existence and uniqueness of
the solution for fractional differential equation, and is more appropriate with classical and
integral boundary conditions. A few papers use the means of the energy inequality method
for studying fractional partial differential equations, we cite for example: Alikhanov [16],
Akilandeeswari et al. [17], and Mesloub [18]. Our work can be considered as an expansion
and generalization of integer order problems such as [19].

We organize our article as follows: In Sect. 2, we give the statement of the problem and
the needed functions spaces and the different tools that can be used in other sections. In
Sect. 3, we prove an a priori estimate from which we deduce the uniqueness of a strong
solution of problem (2.1)–(2.4), and its dependence on the given data. In Sect. 4, we es-
tablish the existence of the solution of problem (2.1)–(2.4), by proving that the closure of
the range of the operator L generated by the considered problem is dense in the Hilbert
space Y.

2 Statement of the problem and associated function spaces
Let D = Ω × [0, T] be a bounded domain in R

3 with Ω = (0, c) × (0, d). We consider the
2-dimensional time-fractional partial differential equation (PDE)

∂
β+1
0t V –

1
x

∂

∂x

(
x
∂V
∂x

)
–

1
x

∂2V
∂y2 = F(x, y, t), (x, y, t) ∈ D, (2.1)

associated with the initial data

�1V = V (x, y, 0) = f (x, y), �2V = Vt(x, y, 0) = g(x, y). (2.2)

We have the Neumann and Dirichlet boundary conditions

V (c, y, t) = 0, Vy(x, d, t) = 0, (2.3)

and the integral conditions

∫ c

0
xV (x, y, t) dx = 0,

∫ d

0
V (x, y, t) dy = 0. (2.4)

Here F is a known function, where F ∈ C(D).
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∂
β+1
0t ; denotes the Caputo fractional derivative of order β + 1, defined by

∂
β+1
0t V (x, y, t) =

1
Γ (1 – β)

∫ t

0

Vττ (x, y, τ )
(t – τ )β

dτ , 0 < β < 1, (2.5)

Γ (.) is the Gamma function.
D–β

0t ; denotes the Riemann–Liouville integral of order β , defined by

D–β
0t V (x, y, t) =

1
Γ (β)

∫ t

0

V (x, y, τ )
(t – τ )β

dτ , 0 < β < 1. (2.6)

The supposed solution V ∈ C2,2,2(D), the space of functions together with their partial
derivatives of order 2 are continuous on D for their three variables (x, y, t).

For more information on fractional differential equations, and applications of fractional
calculus in physics, see [1–9].

We often use the following two lemmas.

Lemma 2.1 ([16]) For any absolutely continuous function v(t) on the interval [0, T], the
following inequality holds:

v(t)∂β
0tv(t) ≥ 1

2
∂

β
0tv

2(t), 0 < β < 1. (2.7)

Lemma 2.2 ([16]) Let a nonnegative absolutely continuous function y(t) satisfy the in-
equality

∂
β
0ty(t) ≤ cy(t) + k(t), 0 < β < 1, (2.8)

for almost all t ∈ [0, T], where c is positive and k(t) is an integrable nonnegative function
on [0, T]. Then

y(t) ≤ y(0)Eβ

(
ctβ

)
+ Γ (β)Eβ ,β

(
ctβ

)
D–β

0t k(t), (2.9)

where

Eβ (x) =
∞∑

n=0

xn

Γ (βn + 1)
and Eβ ,α(x) =

∞∑
n=0

xn

Γ (βn + α)
, (2.10)

are the Mittag-Leffler functions.

The Cauchy ε-inequality:

AB ≤ ε

2
A2 +

1
2ε

B2, ε > 0, (2.11)

where A and B are positive numbers.
A Poincaré type inequalities: [20]

⎧⎨
⎩

(1)‖�y(V )‖2
L2

p(Ω) ≤ d2

2 ‖V‖2
L2

p(Ω);

(2)‖�2
y(V )‖2

L2
p(Ω) ≤ d2

2 ‖�y(V )‖2
L2

p(Ω),
(2.12)
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where

�y(V ) =
∫ y

0
V (x, ξ , t) dξ , �2

y(V ) =
∫ y

0

∫ ξ

0
V (x,η, t) dη dξ . (2.13)

We now introduce the appropriate function spaces needed in our posed problem. Let
L2

p(D) the weighted L2-space with finite norm

‖V‖2
L2

p(D) =
∫

D
xU2 dx dy dt, (2.14)

from the inner product

(U , V )L2
p(D) = (xU , V )L2(D) (2.15)

Let V 1,y
p (D),and V 1(D) be the weighted Sobolev spaces with finite norms

‖V‖2
V 1,y

p (D)
=

∥∥�y(V )
∥∥2

L2
p(D) +

∥∥�y(Vx)
∥∥2

L2
p(D), (2.16)

‖V‖2
V 1(D) = ‖V‖2

L2(D) + ‖Vx‖2
L2(D). (2.17)

Problem (2.1)–(2.4) can be formulated in operational form:

LV = W , ∀V ∈ D(L), (2.18)

where W = (F , f , g), and L = (L,�1,�2) is the operator L : X −→ Y with domain of definition

D(L) =

⎧⎪⎪⎨
⎪⎪⎩

V ∈ L2(D), ∂β+1
0t V , Vt , Vx, Vy, Vxx, Vyy ∈ L2(D),

V (c, y, t) = 0, Vy(x, d, t) = 0,∫ c
0 xV (x, y, t) dx = 0,

∫ d
0 V (x, y, t) dy = 0, t ∈ [0, T].

(2.19)

Here X is a Banach space of functions V obtained by enclosing D(L) with respect to the
finite norm

‖V‖2
X = sup

0≤t≤T

(
Dβ–1

0t
∥∥�y(Vt)

∥∥2
L2

p(Ω) + ‖V‖2
V 1,y

p (Ω)

)
, (2.20)

and Y is the Hilbert space associated with the finite norm

‖W‖2
Y = ‖F‖2

L2
p(D) + ‖f ‖2

V 1(Ω) + ‖g‖2
L2

p(Ω) (2.21)

L2
p(Ω), V 1,y

p (Ω) and V 1(Ω) the weighted Sobolev spaces on Ω are defined analogously to
that on D.

3 Uniqueness of the solution
In this section, we prove a uniqueness result for problem (2.1)–(2.4), that is, we establish
an a priori estimate from which we deduce the uniqueness of the consequences of the
solution.
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Theorem 3.1 For any V ∈ D(L), there exists a positive constant M5 independent of V such
that

sup
0≤t≤T

(
Dβ–1

0t
∥∥�y(Vt)

∥∥2
L2

p(Ω) + ‖V‖2
V 1,y

p (Ω)

)

≤ M5

(∫ T

0
‖F‖2

L2
p(Ω) dt + ‖f ‖2

V 1(Ω) + ‖g‖2
L2

p(Ω)

)
, (3.1)

where

M1 = max

(
1,

d2

2

)
, (3.2)

M2 =
M1 max{1, cd2

2 , d2

2
T1–β

Γ (1–β) }
min{1, 2

cd2 } , (3.3)

M3 = Γ (β)Eβ ,β
(
M2Tβ

)
max

(
M2,

M2Tβ+1

(β + 1)Γ (β + 1)

)
, (3.4)

M4 = M2M3 + M2, (3.5)

M5 = M4

(
1 +

Tβ

Γ (β + 1)

)
. (3.6)

Proof Taking the inner product in L2
p(Ω) of Eq. (2.1) and the integro-differential operator

MV = –�2
y(Vt) = –

∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ . (3.7)

We have

(
∂

β+1
0t V –

1
x

∂

∂x

(
x
∂V
∂x

)
–

1
x

∂2V
∂y2 , –�2

y(Vt)
)

L2
p(Ω)

=
(
F , –�2

y(Vt)
)

L2
p(Ω). (3.8)

Using conditions (2.3)–(2.4), then standard integration by parts of each term of the left-
hand side in (3.8), leads to

–
(

∂
β+1
0t V ,

∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ

)
L2

p(Ω)

=
(

∂
β
0t

(∫ y

0
Vt(x, ξ , t) dξ

)
,
(∫ y

0
Vt(x, ξ , t) dξ

))
L2

p(Ω)
, (3.9)

(
1
x

∂

∂x

(
x
∂V
∂x

)
,
∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ

)
L2

p(Ω)

=
(∫ y

0
Vx(x, ξ , t) dξ ,

∫ y

0
Vxt(x, ξ , t) dξ

)
L2

p(Ω)
, (3.10)

(
1
x

∂2V
∂y2 ,

∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ

)
L2

p(Ω)
= (V , Vt)L2(Ω). (3.11)
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By substitution of (3.9)–(3.11) into (3.8) we obtain

2
(
∂

β
0t
(�y(Vt)

)
,�y(Vt)

)
L2

p(Ω) +
∂

∂t

∫
Ω

x
(�y(Vx)

)2 dx dy +
∂

∂t

∫
Ω

V 2 dx dy

= –2
(

F ,
∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ

)
L2

p(Ω)
. (3.12)

In the light of Lemma (2.1), the first term on the LHS of (3.12) is estimated as follows:

2
(
∂

β
0t
(�y(Vt)

)
,�y(Vt)

)
L2

p(Ω) ≥ ∂
β
0t
∥∥�y(Vt)

∥∥2
L2

p(Ω). (3.13)

Combination of inequality (3.13) and equality (3.12) gives

∂
β
0t
∥∥�y(Vt)

∥∥2
L2

p(Ω) +
∂

∂t
∥∥�y(Vx)

∥∥2
L2

p(Ω) +
∂

∂t
‖V‖2

L2(Ω)

≤ –2
(

F ,
∫ y

0

∫ ξ

0
Vt(x,η, t) dη dξ

)
L2

p(Ω)
. (3.14)

By using the Cauchy-ε inequality and Poincaré inequality 2), we infer from (3.14) that

∂
β
0t
∥∥�y(Vt)

∥∥2
L2

p(Ω) +
∂

∂t
∥∥�y(Vx)

∥∥2
L2

p(Ω) +
∂

∂t
‖V‖2

L2(Ω)

≤ M1
(‖F‖2

L2
p(Ω) +

∥∥�y(Vt)
∥∥2

L2
p(Ω)

)
, (3.15)

where

M1 = max

(
1,

d2

2

)
. (3.16)

Note that

∫ t

0
∂

β
0t
∥∥�y(Vt)

∥∥2
L2

p(Ω) dτ = Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω) –

t1–β

Γ (1 – β)
∥∥�y

(
Vt(x, y, 0)

)∥∥2
L2

p(Ω). (3.17)

By changing t by τ , and integrating both sides of (3.15) with respect to τ on [0; t] we find

Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω) +

∥∥�y(Vx)
∥∥2

L2
p(Ω) + ‖V‖2

L2(Ω)

≤ M1

(∫ t

0
‖F‖2

L2
p(Ω) dτ +

∫ t

0

∥∥�y
(
Vτ (x, y, τ )

)∥∥2
L2

p(Ω) dτ

+
T1–β

Γ (1 – β)
∥∥�y(g)

∥∥2
L2

p(Ω) +
∥∥�y(fx)

∥∥2
L2

p(Ω) + ‖f ‖2
L2(Ω)

)
. (3.18)

We consider the following two elementary inequalities:

∥∥�y(V )
∥∥2

L2
p(Ω) ≤ d2

2
‖V‖2

L2
p(Ω) ≤ cd2

2
‖V‖2

L2(Ω), (3.19)

∥∥�y(fx)
∥∥2

L2
p(Ω) ≤ d2

2
‖fx‖2

L2
p(Ω) ≤ cd2

2
‖fx‖2

L2(Ω). (3.20)
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Inequality (3.18) takes the form

Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω) +

∥∥�y(Vx)
∥∥2

L2
p(Ω) +

∥∥�y(V )
∥∥2

L2
p(Ω)

≤ M2

(∫ t

0
‖F‖2

L2
p(Ω) dτ +

∫ t

0

∥∥�y
(
Vτ (x, y, τ )

)∥∥2
L2

p(Ω) dτ

+ ‖f ‖2
V 1(Ω) + ‖g‖2

L2
p(Ω)

)
, (3.21)

where

M2 =
M1 max{1, cd2

2 , d2

2
T1–β

Γ (1–β) }
min{1, 2

cd2 } . (3.22)

Now by omitting the last two terms on the left-hand side of (3.21) we get

Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω)

≤ M2

(∫ t

0
‖F‖2

L2
p(Ω) dτ +

∫ t

0

∥∥�y
(
Vτ (x, y, τ )

)∥∥2
L2

p(Ω) dτ

+ ‖f ‖2
V 1(Ω) + ‖g‖2

L2
p(Ω)

)
. (3.23)

We apply Lemma (2.2) as follows:

y(t) =
∫ t

0

∥∥�y
(
Vτ (x, y, τ )

)∥∥2
L2

p(Ω) dτ , y(0) = 0, (3.24)

∂
β
0ty(t) = Dβ–1

0t
∥∥�y(Vt)

∥∥2
L2

p(Ω). (3.25)

Thence (3.23) becomes

∫ t

0

∥∥�y
(
Vτ (x, y, τ )

)∥∥2
L2

p(Ω) dτ ≤ M3
(
D–β–1

0t ‖F‖2
L2

p(Ω) + ‖f ‖2
V 1(Ω) + ‖g‖2

L2
p(Ω)

)
, (3.26)

where

M3 = Γ (β)Eβ ,β
(
M2Tβ

)
max

(
M2,

M2Tβ+1

(β + 1)Γ (β + 1)

)
. (3.27)

Combination of inequalities (3.21) and (3.26) leads to

Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω) + ‖V‖2

V 1,y
p (Ω)

≤ M4

(
D–β–1

0t ‖F‖2
L2

p(Ω) +
∫ t

0
‖F‖2

L2
p(Ω) dτ + ‖f ‖2

V 1(Ω) + ‖g‖2
L2

p(Ω)

)
, (3.28)

where

M4 = M2M3 + M2. (3.29)
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We make use of the inequality

D–β–1
0t ‖F‖2

L2
p(Ω) ≤ Tβ

Γ (β + 1)

∫ t

0
‖F‖2

L2
p(Ω) dτ . (3.30)

Inequality (3.28) becomes

Dβ–1
0t

∥∥�y(Vt)
∥∥2

L2
p(Ω) + ‖V‖2

V 1,y
p (Ω)

(3.31)

≤ M5

(∫ t

0
‖F‖2

L2
p(Ω) dτ + ‖f ‖2

V 1(Ω) + ‖g‖2
L2

p(Ω)

)
(3.32)

≤ M5

(∫ T

0
‖F‖2

L2
p(Ω) dt + ‖f ‖2

V 1(Ω) + ‖g‖2
L2

p(Ω)

)
. (3.33)

Then we take the supremum of LHS in (3.31) with respect to t over [0; T], we get the
desired estimate (3.1) with

M5 = M4

(
1 +

Tβ

Γ (β + 1)

)
. (3.34)

�

Proposition 3.2 The operator L : X −→ Y is closable.

Proof The proof is analogous to that in [21]. �

Definition A solution of the operator equation

LV = W = (F , f , g) (3.35)

is called a strong solution of problem (2.1)–(2.4) where L is the closure of the operator L
and D(L) its domain of definition.

The points of the graph of L are limits of sequences of points of the graph of L, by passing
to the limit, the estimate (3.1) can be extended to

‖V‖X ≤ √
M5‖LV‖Y , ∀V ∈ D(L). (3.36)

From this we deduce the following results.

Corollary 3.3 If a strong solution of problem (2.1)–(2.4) exists, it is unique and depends
continuously on elements W = (F , f , g) ∈ Y .

Corollary 3.4 The range of R(L) of L is closed in Y , and R(L) = R(L).

4 Existence of the solution
To prove the existence of a strong solution V = L–1W = L–1W of the problem (2.1)–(2.4)
∀W = (F , f , g) ∈ Y , it suffices to prove that R(L) = Y , the density of the range R(L) in Y
is equivalent to the orthogonality of a vector W = (F , f , g) ∈ Y to the set R(L). For this
purpose, we begin by the following theorem (the proof of the density in a special case).
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Theorem 4.1 For some function G ∈ L2
p(D), and for all U ∈ D0(L) = {U/U ∈ D(L),�1U =

0,�2U = 0}, we have

(LU , G)L2
p(D) = 0. (4.1)

Then G = 0 almost everywhere in the domain D.

Proof Equation (4.1) can be written

(
∂

β+1
0t U –

1
x

∂

∂x

(
x
∂U
∂x

)
–

1
x

∂2U
∂y2 , G

)
L2

p(D)
= 0. (4.2)

Let h(x, y, t) be a function that satisfies the boundary conditions (2.2)–(2.4) and

h, hx, hy,
∫ t

0
h(x, y, s) ds, x

∫ t

0
hx(x, y, s) ds, x

∫ t

0
hy(x, y, s) ds, ∂β+1

0t h ∈ L2(D). (4.3)

Then we suppose

U(x, y, t) =
∫ t

0

∫ s

0
h(x, y, z) dz ds. (4.4)

By replacing U(x, y, t) in (4.2) we have

(
∂

β+1
0t

(
x
∫ t

0

∫ s

0
h(x, y, z) dz ds

)
–

∂

∂x

(
x
∫ t

0

∫ s

0
hx(x, y, z) dz ds

)

–
∂

∂y

(∫ t

0

∫ s

0
hy(x, y, z) dz ds

)
, G

)
L2(D)

= 0. (4.5)

Now, we assume the function

G(x, y, t) = –
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ . (4.6)

Then Eq. (4.5) becomes

–
(

∂
β+1
0t

(∫ t

0

∫ s

0
h(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2

p(D)

+
(

∂

∂x

(
x
∫ t

0

∫ s

0
hx(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2(D)

+
(

∂

∂y

(∫ t

0

∫ s

0
hy(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2(D)

= 0. (4.7)

Taking into account that the function h verifies the conditions (2.2)–(2.4), then integrating
by parts each term of (4.7) we have

–
(

∂
β+1
0t

(∫ t

0

∫ s

0
h(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2

p(Ω)
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=
(

∂
β
0t

(∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
,
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
L2

p(Ω)
, (4.8)

(
∂

∂x

(
x
∫ t

0

∫ s

0
hx(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2(Ω)

=
(∫ y

0

∫ t

0

∫ s

0
hx(x, ξ , z) dz ds dξ ,

∫ y

0

∫ t

0
hx(x, ξ , s) ds dξ

)
L2

p(Ω)

=
1
2

∂

∂t

∥∥∥∥
∫ y

0

∫ t

0

∫ s

0
hx(x, ξ , z) dz ds dξ

∥∥∥∥
2

L2
p(Ω)

, (4.9)

(
∂

∂y

(∫ t

0

∫ s

0
hy(x, y, z) dz ds

)
,
∫ y

0

∫ ξ

0

∫ t

0
h(x,η, s) ds dη dξ

)
L2(Ω)

=
(∫ t

0

∫ s

0
h(x, y, z) dz ds,

∫ t

0
h(x, y, s) ds

)
L2(Ω)

=
1
2

∂

∂t

∥∥∥∥
∫ t

0

∫ s

0
h(x, y, z) dz ds

∥∥∥∥
2

L2(Ω)
. (4.10)

Substituting (4.8), (4.9), and (4.10) into (4.7) we get

2
(

∂
β
0t

(∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
,
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
L2

p(Ω)

+
∂

∂t

∥∥∥∥
∫ y

0

∫ t

0

∫ s

0
hx(x, ξ , z) dz ds dξ

∥∥∥∥
2

L2
p(Ω)

+
∂

∂t

∥∥∥∥
∫ t

0

∫ s

0
h(x, y, z) dz ds

∥∥∥∥
2

L2(Ω)
= 0. (4.11)

According to Lemma (2.1) the first term on the LHS of (4.11) can be estimated as follows:

2
(

∂
β
0t

(∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
,
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

)
L2

p(Ω)

≥ ∂
β
0t

∥∥∥∥
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

∥∥∥∥
2

L2
p(Ω)

. (4.12)

Equation (4.11) can be written

∂
β
0t

∥∥∥∥
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

∥∥∥∥
2

L2
p(Ω)

+
∂

∂t

∥∥∥∥
∫ y

0

∫ t

0

∫ s

0
hx(x, ξ , z) dz ds dξ

∥∥∥∥
2

L2
p(Ω)

+
∂

∂t

∥∥∥∥
∫ t

0

∫ s

0
h(x, y, z) dz ds

∥∥∥∥
2

L2(Ω)
≤ 0. (4.13)

By replacing t by τ and integrating of (4.13) with respect to τ over [0; t] gives

Dβ–1
0t

∥∥∥∥
∫ y

0

∫ t

0
h(x, ξ , s) ds dξ

∥∥∥∥
2

L2
p(Ω)

+
∥∥∥∥
∫ y

0

∫ t

0

∫ s

0
hx(x, ξ , z) dz ds dξ

∥∥∥∥
2

L2
p(Ω)
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+
∥∥∥∥
∫ t

0

∫ s

0
h(x, y, z) dz ds

∥∥∥∥
2

L2(Ω)
≤ 0. (4.14)

We find from inequality (4.14) that G ≡ 0 almost everywhere in D. �

Theorem 4.2 The range R(L) of the operator L, coincides with the whole space Y .

Proof Let W = (ϕ, g1, g2) ∈ R(L)⊥ such that

(Lu,ϕ)L2
p(D) + (�1u, g1)V 1(Ω) + (�2u, g2)L2

p(Ω) = 0. (4.15)

If we put u ∈ D0(L) into (4.15) we get

(Lu,ϕ)L2
p(D) = 0, ∀u ∈ D0(L). (4.16)

By virtue of Theorem 4.1 we deduce that ϕ ≡ 0, thus (4.15) becomes

(�1u, g1)V 1(Ω) + (�2u, g2)L2
p(Ω) = 0, ∀u ∈ D(L). (4.17)

The trace operators �1 and �2 are independent, and R(�1) and R(�2) are everywhere dense
in the spaces V 1(Ω) and L2

p(Ω), respectively. Then g1 = 0, g2 = 0. Consequently W = 0.
Hence R(L)⊥ = 0 i.e. R(L) = Y . �

5 Conclusion
The well posedness of 2-D time-fractional differential equations with boundary inte-
gral conditions is proved. The functional analysis method was successfully applied to a
fractional-order initial boundary value problem.

Our results develop the traditional functional analysis method which relies on some a
priori estimates and some density arguments for a fractional hyperbolic equation with
fractional Caputo derivative.
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