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Abstract
In this paper, we investigate the existence for a class of higher-order fractional
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we obtain the existence of two positive solutions by means of the Leray–Schauder
nonlinear alternative and cone expansion and cone compression fixed point theory.
The nonlinearity may take negative infinity, and there may appear a singular
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1 Introduction
The purpose of this paper is to obtain the existence of multiple positive solutions of the fol-
lowing singular fractional differential equations (FDEs for short) with p – q-order deriva-
tives:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + f (t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

Dp
0+ x(1) = λ

∫ η

0 h(t)Dq
0+ x(t) dt,

(1.1)

where Dα
0+ is the standard Riemann–Liouville derivative of order α, n – 1 < α ≤ n, n ≥ 3,

h ∈ L1[0, 1] is nonnegative and may be singular at t = 0 and t = 1, p, q ∈ R, 1 ≤ p ≤ n – 2,
0 ≤ q ≤ p, � = Γ (α)/Γ (α – p)(1 – λ

∫ η

0 h(t)tα–q–1 dt) > 0, f (t, x) permits sign-changing and
singularities at t = 0, 1 and/or x = 0.

Nowadays FDEs nonlocal problems are of great interest because of their abilities to mod-
eling complex phenomena in almost every field of science and technology. Many excellent
works about FDEs nonlocal problems can be found in the literature (see [1, 3, 9–11, 13,
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16, 17, 20, 22, 27, 31] for instance). The existence of positive solutions for FDEs integral
boundary problems (BVPs) with one or two parameters in boundary conditions is ob-
tained by means of fixed point theory [5, 14, 22, 28]. The existence of positive solutions
for integer-order differential equations with integral boundary conditions can be found in
the literature (see [8, 13, 15, 18, 24] for instance). As is well known, semipositone prob-
lems arise in bulking of mechanical systems, chemical reactions, astrophysics, combus-
tion, management of natural resources, etc. Details are available in the works [2, 6, 15, 21,
23, 24, 26, 29, 32, 34, 35, 37, 39]. Studying positive solutions for semipositone problems is
more difficult than that for positive problems. Many methods used to deal with semiposi-
tone problems are, for example, variational methods, fixed point theory, subsuper solution
methods, and degree theory.

Xu et al. [30] studied the existence and uniqueness of positive solutions for the fractional
boundary value problem

⎧
⎨

⎩

Dα
0+ x(t) + h(t)f (t, x(t)) = 0, t ∈ (0, 1), n – 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n – 2, [Dβ

0+ x]t=1 = 0, 1 ≤ β ≤ n – 2,

where n > 3, Dα
0+ is the standard Riemann–Liouville derivative, f ∈ C([0, 1]×[0,∞), [0,∞))

and h ∈ C(0, 1)∩L(0, 1) is nonnegative and may be singular at t = 0 and/or t = 1. In the case
that f is growing sublinearly, by means of fixed index theory and some spectral properties
of associated linear integral operators the existence and uniqueness of positive solutions
are obtained.

Salem [25] obtained the existence of pseudosolutions for the nonlinear multipoint
boundary value problem of fractional order

⎧
⎨

⎩

Dα
0+ x(t) + q(t)f (t, x(t)) = 0, a.e. on [0, 1],α ∈ (n – 1, n], n ≥ 2,

x(0) = x′(0) = x′′(0) = · · · = x(n–1)(0) = 0, x(1) =
∑m–2

i=1 ζix(ηi),

where 0 < η1 < η2 < · · · < ηm–2 < 1, and ζi > 0 with
∑m–2

i=1 ζiη
α–1
i < 1. It was assumed that q

is a real-valued continuous function and f is a nonlinear Pettis-integrable function. Other
relative papers on multipoint boundary value problem can be found in [4, 19, 33, 37].

In 2018, Zhang et al. [37] investigated the following singular differential equation with
fractional derivative:

⎧
⎨

⎩

Dα
0+ x(t) + f (t, x(t)) = 0, t ∈ (0, 1),

x(k)(0) = 0, 0 ≤ k ≤ n – 2, Dp
0+ x(1) =

∑m
i=1 aiD

q
0+ x(ξi),

where Dα
0+ is the standard Riemann–Liouville derivative of order α, n – 1 < α ≤ n, n ≥ 3,

ai ≥ 0, i = 1, 2, . . . , m (m ∈ N
+), 0 < ξ1 < ξ2 < · · · < ξm < 1, p, q ∈ R, 1 ≤ p ≤ n – 2, and

0 ≤ q ≤ p with � = Γ (α)/Γ (α – p)(1 –
∑m

i=1 aiξ
α–q–1
i ) > 0. The authors obtained the exis-

tence of triple positive solutions for fractional differential equations subject to multipoint
boundary conditions by virtue of height functions on some special bounded sets.
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Zhang and Han [36] investigated the higher-order nonlocal fractional differential equa-
tions

⎧
⎨

⎩

Dα
0+ x(t) + f (t, x(t)) = 0, t ∈ (0, 1), n – 1 < α ≤ n,

x(k)(0) = 0, 0 ≤ k ≤ n – 2, x(1) =
∫ 1

0 x(s) dA(s),

where α ≥ 2, Dα
0+ is the standard Riemann–Liouville derivative, A is a function of bounded

variation, and
∫ 1

0 x(s) dA(s) denotes the Riemann–Stieltjes integral. By applying the mono-
tone iterative technique the existence and uniqueness of positive solutions were obtained,
provided that f (t, x) satisfies some growth conditions.

Inspired by the achievements mentioned, we consider the existence of multiple posi-
tive solutions of FDEs (1.1). In comparison with known results, this paper has some new
features. Firstly, the nonlinearity f may take negative infinity and change its sign. Sec-
ondly, the function f (t, x) may be singular with respect to the time variable t and/or the
space variable x. Thirdly, the boundary conditions include an integral boundary condi-
tion involving p – q-order derivatives, quite different from those in [25, 30, 36]. Finally, the
method in this paper is different from that in [38]. We devote ourselves to obtaining two
existence results for BVP (1.1) by fixed point theory and the Leray–Schauder nonlinear
alternative. Integration of height functions on special bounded sets is utilized to obtain
the existence of positive solutions.

2 Basic definitions and preliminaries
This paper involves Banach spaces X = C[0, 1] and L1[0, 1], the spaces of continuous func-
tions and Lebesgue-integrable functions equipped with the norms ‖x‖ = max0≤t≤1 |x(t)|
and ‖x‖1 =

∫ 1
0 |x(t)|dt.

Lemma 2.1 ([38], p. 13) Assume that � 	= 0. Then for any z ∈ C[0, 1]∩L1[0, 1], the solution
of the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + z(t) = 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

Dp
0+ x(1) = λ

∫ η

0 h(t)Dq
0+ x(t) dt,

satisfies

x(t) =
∫ 1

0
G(t, s)z(s) ds, t ∈ (0, 1),

where

G(t, s) = G1(t, s) + G2(t, s)

with

G1(t, s) =

⎧
⎨

⎩

tα–1(1–s)α–p–1–(t–s)α–p–1

Γ (α) , 0 ≤ s ≤ t ≤ 1,
tα–1(1–s)α–p–1

Γ (α) , 0 ≤ t ≤ s ≤ 1,



Wang and Jiang Advances in Difference Equations          (2020) 2020:2 Page 4 of 13

G2(t, s) =
λtα–1

�

∫ η

0
h(t)H(t, s) dt,

H(t, s) =

⎧
⎨

⎩

tα–q–1(1–s)α–p–1–(t–s)α–p–1

Γ (α–q) , 0 ≤ s ≤ t ≤ 1,
tα–q–1(1–s)α–p–1

Γ (α–q) , 0 ≤ t ≤ s ≤ 1.

Definition 2.1 ([38], p. 13) A function ζ : K −→ [0, +∞) is called a concave positive func-
tional on a cone K if

ζ
(
tx + (1 – t)y

) ≥ tζ (x) + (1 – t)ζ (y), x, y ∈ K , 0 ≤ t ≤ 1.

Lemma 2.2 ([37], p. 891) The Green function defined in Lemma 2.1 is a continuous func-
tion on [0, 1] × [0, 1] and satisfies the following conditions:

(i) G(t, s) ≤ J(s), t, s ∈ [0, 1] × [0, 1], where

J(s) = h1(s) +
λ

�

∫ η

0
h(t)H(t, s) dt, s ∈ [0, 1],

h1(s) = (1 – s)α–p–1(1 – (1 – s)p)/Γ (α), s ∈ [0, 1];

(ii) tα–1J(s) ≤ G(t, s) ≤ σ tα–1, where

σ = 1/Γ (α) + λ

∫ η

0
h(t)tα–q–1 dt/

(
�Γ (α – q)

)
, t, s ∈ [0, 1].

Lemma 2.3 Let w ∈ C[0, 1] be a solution of

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + φ(t) = 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

Dp
0+ x(1) = λ

∫ η

0 h(t)Dq
0+ x(t) dt,

where φ ∈ L1[0, 1], φ(t) > 0. Then w(t) ≤ σ‖φ‖1tα–1, 0 ≤ t ≤ 1.

Lemma 2.4 ([12], p. 94) Let Ω1 and Ω2 be two bounded open sets in a Banach space X such
θ ∈ Ω1 and Ω1 ⊂ Ω2, and let A : P ∩ (Ω2\Ω1) → P be a completely continuous operator,
where θ denotes the zero element of X, and P is a cone in X. Suppose that one of the two
conditions holds:

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1; ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2,
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1; ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2\Ω1).

Lemma 2.5 ([7], P3) If X is a Banach space, D ⊂ X is convex with θ ⊂ D, and A : D → D
is a completely continuous operator, then either

(i) the set B = {x ∈ D : x = λA(x), 0 < λ < 1} is unbounded, or
(ii) A has a fixed point.

3 Main results
Let K = {x ∈ X : x(t) ≥ tα–1‖x‖ for t ∈ [0, 1]}. Obviously, K is a cone in X, and (X, K) is a
partially ordered Banach space.

The following hypotheses will be used throughout this paper:
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(H1) f ∈ C((0, 1) × (0, +∞), (–∞, +∞)), and there exists a function φ ∈ L1[0, 1], φ(t) > 0,
such that f (t, x) ≥ –φ(t) for all t ∈ (0, 1) and x > 0;

(H2) f ∗(t, x) = f (t, x) + φ(t) and f ∗(t, x) ≤ q(t)[g(x) + h(x)] on (0, 1] × (0, +∞) with g > 0
continuous and nonincreasing on (0, +∞), h > 0 continuous on [0, +∞), h

g nonde-
creasing on (0, +∞), and q ∈ L1[0, 1] such that q > 0 on (0, 1);

(H3) There exists K0 > 0 such that g(ab) ≤ K0g(a)g(b) for a > 0, b > 0;
(H4) a0 =

∫ 1
0 q(s)g(sα–1) ds < +∞, and there exists r > σ‖φ‖1 such that

r
g(r – σ‖φ‖1){1 + h(r)

g(r) }
> σa0K0;

(H5) For each L > 0, there exists a positive function τL ∈ C[0, 1] such that f ∗(t, x) ≥ τL(t)
for (t, x) ∈ [0, 1] × (0, L) and τr(t) > φ(t), where r is as in (H4);

(H6) There exist R > r > σ‖φ‖1 such that

∫ 1

0
J(s)ϕ(s, r) ds < r (3.1)

and

∫ 1

0
J(s)ψ(s, R) ds > R, (3.2)

where

ϕ(t, r) = max
{

f ∗(t, x) :
(
r – σ‖φ‖1

)
tα–1 ≤ x ≤ r

}
,

ψ(t, R) = min
{

f ∗(t, x) :
(
R – σ‖φ‖1

)
tα–1 ≤ x ≤ R

}
.

To establish the existence of a positive solution for BVP (1.1), we will concentrate on the
following modified approximating BVP to overcome difficulties caused by singularities:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ x(t) + f ∗(t, x(t) – w(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = · · · = x(n–2)(0) = 0,

Dp
0+ x(1) = λ

∫ η

0 h(t)Dq
0+ x(t) dt.

(3.3)

Define the operator T by

(Tx)(t) =
∫ 1

0
G(t, s)f ∗(s, x(s) – w(s)

)
ds, 0 ≤ t ≤ 1. (3.4)

Lemma 3.1 Suppose that (H1)–(H4) hold. Then for any σ‖φ‖1 < r < R, the operator T :
K ∩ (ΩR\Ωr) −→ K is completely continuous.

Proof For any 0 < t < 1 and σ‖φ‖1 < r < R, since x(t) – w(t) ≥ (r – σ‖φ‖1)tα–1 > 0, we have

(
r – σ‖φ‖1

)
tα–1 ≤ x(t) – w(t) ≤ R. (3.5)
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From this we get that

(Tx)t =
∫ 1

0
G(t, s)f ∗(s, x(s) – w(s)

)
ds

≤ σ tα–1
∫ 1

0
f ∗(s, x(s) – w(s)

)
ds

≤ σ

∫ 1

0
q(s)

[
g
(
x(s) – w(s)

)
+ h

(
x(s) – w(s)

)]
ds

≤ σ

∫ 1

0
q(s)g

((
r – σ‖φ‖1

)
sα–1)

{

1 +
h(R)
g(R)

}

ds

≤ σa0K0g
(
r – σ‖φ‖1

)
{

1 +
h(R)
g(R)

}

< +∞. (3.6)

Therefore the operator T : K ∩ (ΩR\Ωr) −→ X is well defined. At the same time, we have
the operator decomposition T = N1 ◦ N2, where

(N1x)(t) =
∫ 1

0
G(t, s)x(s) ds, t ∈ (0, 1), x ∈ L1[0, 1],

(N2x)(t) = f ∗(t, x(t) – w(t)
)
, ∀x ∈ K ∩ (ΩR\Ωr).

By Lemma 2.2 we have

(N1x)(t) =
∫ 1

0
G(t, s)x(s) ds ≥ tα–1

∫ 1

0
J(s)x(s) ds ≥ tα–1‖N1x‖.

This shows that N1 : L1[0, 1] → K . Furthermore, the operator N1 : L1[0, 1] −→ K is com-
pletely continuous by the Arzelà–Ascoli theorem. To prove that the operator T : K ∩
(ΩR\Ωr) −→ K is completely continuous, we only need to prove that N2 : K ∩ (ΩR\Ωr) →
L1[0, 1] is bounded and continuous. By assumptions (H2)–(H4) we have

∣
∣f ∗(t, x(t) – w(t)

)∣
∣ ≤ K0q(t)g

(
tα–1)g

(
r – σ‖φ‖1

)
{

1 +
h(R)
g(R)

}

, t ∈ [0, 1],

(
r – σ‖φ‖1

)
tα–1 ≤ x(t) – w(t) ≤ R.

This shows that for x ∈ K ∩ (ΩR\Ωr),

∫ 1

0
(N2x)(t) dt =

∫ 1

0
f ∗(t, x(t) – w(t)

)
dt

≤ a0K0g
(
r – σ‖φ‖1

)
{

1 +
h(R)
g(R)

}

< +∞. (3.7)

Consequently, N2(K ∩ (ΩR\Ωr)) ⊂ L1[0, 1] is bounded. Let

xm, x0 ∈ K ∩ (ΩR\Ωr), m = 1, 2, . . . ,

and ‖xm – x0‖ → 0. Then we have

xm(t) – x0(t) → 0, t ∈ [0, 1].
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By (H1) we get

f ∗(t, xm(t) – w(t)
)

– f ∗(t, x0(t) – w(t)
) −→ 0, a.e. t ∈ [0, 1].

By the Lebesgue dominated convergence theorem we have that N2 : K ∩ (ΩR\Ω1) →
L1[0, 1] is continuous. Thus T : K ∩ (ΩR\Ωr) −→ K is completely continuous. �

Theorem 3.1 Suppose that (H1)–(H6) hold. Then BVP (1.1) has at least two positive solu-
tions.

Proof For x ∈ K ∩ ∂Ωr , we have x(t) ≥ rtα–1, t ∈ [0, 1]. Thus we get

(
r – σ‖φ‖1

)
tα–1 ≤ x(t) – w(t) ≤ r, 0 < t < 1.

By (H6) and Lemma 2.2 we have

‖Tx‖ = max
0≤t≤1

∫ 1

0
G(t, s)f ∗(s, x(s) – w(s)

)
ds

≤
∫ 1

0
J(s)ϕ(s, r) ds < r. (3.8)

Obviously, ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ωr . For x ∈ K ∩ ∂ΩR, x(t) ≥ Rtα–1, t ∈ [0, 1]. Thus we
have

R ≥ x(t) – w(t) ≥ (
R – σ‖φ‖1

)
tα–1.

By (H6) and Lemma 2.2 we also obtain

‖Tx‖ = max
0≤t≤1

∫ 1

0
G(t, s)f ∗(s, x(s) – w(s)

)
ds

≥ max
0≤t≤1

∫ 1

0
J(s)f ∗(s, x(s) – w(s)

)
ds

≥
∫ 1

0
J(s)ψ(s, R) ds

> R, (3.9)

that is, ‖Tx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂ΩR. By Lemma 2.4 we have that T has one fixed point
x1 ∈ K ∩ (ΩR\Ωr). Therefore

x1(t) ≥ ‖x1‖tα–1 ≥ rtα–1 > σ‖φ‖1tα–1 ≥ w(t), t ∈ [0, 1].

x1(t) =
∫ 1

0
G(t, s)f ∗(s, x1(s) – w(s)

)
ds, 0 < t < 1.

Consider the family of equations

(Tnx)(t) =
∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds +

1
n

, 0 ≤ t ≤ 1, n ∈N, (3.10)
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where

f ∗
n (t, x) =

⎧
⎨

⎩

f ∗(t, x), x ≥ 1
n ,

f ∗(t, 1
n ), x < 1

n .
(3.11)

Similar to the proof of Lemma 3.1, we can show that the operator Tn : K ∩ Ωr −→ K is
completely continuous.

We consider

x = λTnx + (1 – λ)
1
n

,

that is,

x(t) = λ

∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds +

1
n

, t ∈ [0, 1], (3.12)

where λ ∈ [0, 1]. We claim that any fixed point of (3.12) for any λ ∈ [0, 1] must satisfy
‖x‖ 	= r. Otherwise, assume that x is a fixed point of (3.12) for some λ ∈ [0, 1] such that
‖x‖ = r. Note that

x(t) –
1
n

= λ

∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds

≤ λ

∫ 1

0
J(s)f ∗

n
(
s, x(s) – w(s)

)
ds.

Then we have
∥
∥
∥
∥x –

1
n

∥
∥
∥
∥ ≤ λ

∫ 1

0
J(s)f ∗

n
(
s, x(s) – w(s)

)
ds.

On the other hand, we get

x(t) –
1
n

= λ

∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds

≥ λtα–1
∫ 1

0
J(s)f ∗

n
(
s, x(s) – w(s)

)
ds

≥ tα–1
∥
∥
∥
∥x –

1
n

∥
∥
∥
∥.

By the choice of n0, 1
n ≤ 1

n0
< r – σ‖φ‖1. Hence we have

x(t) ≥ tα–1
∥
∥
∥
∥x –

1
n

∥
∥
∥
∥ +

1
n

≥ tα–1
(

‖x‖ –
1
n

)

+
1
n

≥ rtα–1 +
(
1 – tα–1) 1

n
.

Therefore

x(t) – w(t) ≥ rtα–1 +
(
1 – tα–1) 1

n
– σ‖φ‖1tα–1

≥
(

r – σ‖φ‖1 –
1
n

)

tα–1 +
1
n

>
1
n
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and

x(t) – w(t) ≥ rtα–1 +
(
1 – tα–1) 1

n
– σ‖φ‖1tα–1

≥ (
r – σ‖φ‖1

)
tα–1 +

(
1 – tα–1) 1

n

≥ (
r – σ‖φ‖1

)
tα–1.

For all t ∈ [0, 1], from condition (H4) we have that

x(t) = λ

∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds +

1
n

= λ

∫ 1

0
G(t, s)f ∗(s, x(s) – w(s)

)
ds +

1
n

≤ σ tα–1
∫ 1

0
f ∗(s, x(s) – w(s)

)
ds +

1
n

≤ σa0K0g
(
r – σ‖φ‖1

)
{

1 +
h(r)
g(r)

}

+
1
n

.

Therefore

r = ‖x‖ ≤ σa0K0g
(
r – σ‖φ‖1

)
{

1 +
h(r)
g(r)

}

+
1
n

.

This is a contradiction to the choice of n0, and the claim is proved. Now the Leray–
Schauder alternative principle guarantees that

x(t) = λ

∫ 1

0
G(t, s)f ∗

n
(
s, x(s) – w(s)

)
ds +

1
n

has a fixed point x̄n in K ∩ Ωr .
Next, we claim that x̄n(t) – w(t) has a uniform positive lower bound: there exists a con-

stant δ > 0 such that

min
t∈[0,1]

{
x̄n(t) – w(t)

} ≥ δtα–1

for all n ∈ N. Since (H6) holds, there exists a continuous function τr(t) > 0 such that
f ∗(t, x) > τr(t) > φ(t) for all (t, x) ∈ [0, 1] × (0, r].

Since x̄n(t) – w(t) < r, we have

x̄n(t) – w(t) =
∫ 1

0
G(t, s)f ∗

n
(
s, x̄n(s) – w(s)

)
ds +

1
n

–
∫ 1

0
G(t, s)φ(s) ds

≥
∫ 1

0
G(t, s)

(
τr(s) – φ(s)

)
ds

≥ tα–1
∫ 1

0
J(s)

(
τr(s) – φ(s)

)
ds = δtα–1,

where δ =
∫ 1

0 J(s)(τr(s) – φ(s)) ds.
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By (H1) we have that x̄n are bounded and equicontinuous on [0, 1]. The Arzelà–Ascoli
theorem implies that there exist a subsequence N0 of N and a function x2 such that x̄n con-
verges to x2 uniformly on [0, 1] as n → ∞ through N0. Since mint∈[0,1]{x̄n(t) – w(t)} ≥ δtα–1

and ‖x̄n‖ < r, it follow that x2 satisfies δtα–1 ≤ x2(t) – w(t) < r for all t ∈ [0, 1]. Therefore x2

is a positive solution of (3.4). Letting n → ∞ on both sides, we have

xi(t) =
∫ 1

0
G(t, s)f ∗(s, xi(s) – w(s)

)
ds, i = 1, 2, t ∈ [0, 1]. (3.13)

Let x�
i (t) = xi(t) – w(t). Then from (3.13) it follows that x�

i (t) (i = 1, 2) are positive solutions
of BVP (1.1). �

Remark 3.1 Suppose that (H1)–(H5) and the following conditions are satisfied:

∫ 1

0
J(s)ϕ(s, ri) ds < ri,

∫ 1

0
J(s)ϕ(s, Ri) ds > Ri,

where Ri > ri > σ‖φ‖1 (i = 1, 2, . . . , m). Then BVP (1.1) has at least m + 1 positive solutions.

4 An example
Example 4.1 Consider the fractional differential equation

⎧
⎨

⎩

D
5
2
0+ x(t) + f (t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = 0, x′(1) = 1
3
∫ 1

3
0 t– 1

4 D
1
2
0+ x(t) dt,

(4.1)

where f (t, x) = 1
10 t10( 1√

u + u 7
2 ) – 1

30 t10. It is clear that α = 5
2 , n = 3, p = 1, q = 1

2 , λ = 1
3 , η = 1

3 ,

h(t) = t– 1
4 .

By a simple computation Γ (α) = 1.3294 and λ
∫ η

0 h(t)tα–q–1 dt = 0.0279 < 1.
Clearly, (H1) holds for φ(t) = 1

30 t10.
After direct calculation, we have σ = 0.7714, ‖φ‖1 = 0.0031, and σ‖φ‖1 = 0.0024. Let

q(t) = 1
10 t10, g(x) = 1√

x , h(x) = x 7
2 , K0 = 0.1. Then (H2) and (H3) are satisfied.

We take r = 1 > 0.0024 = σ‖φ‖1, and by direct calculation we have

a0 =
∫ 1

0
q(s)g

(
sα–1)ds = 0.9978 < +∞

and

r
g(r – σ‖φ‖1){1 + h(r)

g(r) }
= 0.4994 > 0.0769 = σa0K0.

Thus (H4) is verified. Then by Lemma 2.2 we get

∫ 1

0
J(s)ϕ(s, 1) ds ≤ 1

10

∫ 1

0

[
(1 – s)α–p–1(1 – (1 – s)p)

Γ (α)

+
λ(1 – s)α–p–1 ∫ η

0 h(t)tα–q–1 dt
�Γ (α – p)

]
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· s10 max

{(
1√
x

+ x
7
2

)

: 0.9766sα–1 ≤ x ≤ 1
}

ds

=
1

10

∫ 1

0

[
(1 – s) 1

2 (1 – (1 – s)1)
Γ ( 5

2 )
+

1
3 (1 – s) 1

2
∫ 1

3
0 t 3

4 dt
�Γ ( 3

2 )

]

· s10 max

{(
1√
x

+ x
7
2

)

: 0.9766s
3
2 ≤ x ≤ 1

}

ds

≤ 1
10

∫ 1

0

[
0.7523(1 – s)

1
2 – 0.7523(1 – s)

3
2 + 0.215(1 – s)

1
2
]

· s10
(

1√
0.9766

s– 3
4 + 1

)

ds

≤ 1
10

× (0.5016 – 0.3009 + 0.1434)
(

1√
0.9766

+ 1
)

≤ 1
10

× 0.3441 × 1.9883

= 0.0685 < 1,

which means that
∫ 1

0 J(s)ϕ(s, 1) ds < 1. Then by taking τr(t) = 1
15 t10 (H5) is verified.

Since Γ ( 5
4 ) = 0.9064 and Γ ( 3

4 ) = 1.2255, taking R = 50, we have

∫ 1

0
J(s)ψ(s, R) ds ≥ 1

10

∫ 1

0

[
(1 – s)α–p–1(1 – (1 – s)p)

Γ (α)

+
λ

∫ η

0 h(t)[tα–q–1(1 – s)α–p–1 – (t – s)α–p–1] dt
�Γ (α – p)

]

· s10 min

{(
1√
x

+ x
7
2

)

: 49.9976sα–1 ≤ x ≤ 50
}

ds

≥ 1
10

∫ 1

0

(1 – s)α–p–1(1 – (1 – s)p)
Γ (α)

· s10 min

{(
1√
x

+ x
7
2

)

: 49.9976sα–1 ≤ x ≤ 50
}

ds

=
1

10

∫ 1

0

(1 – s) 1
2 (1 – (1 – s)1)
Γ ( 5

2 )

· s10 min

{(
1√
x

+ x
7
2

)

: 49.9976s
3
2 ≤ x ≤ 50

}

ds

≥ 1
10

∫ 1

0

(1 – s) 1
2

Γ ( 5
2 )

· s11
(

1√
50

+ (49.9976)
7
2 s

21
4

)

ds

≥ (49.9976) 7
2

10Γ ( 5
2 )

∫ 1

0
(1 – s)

1
2 s

65
4 ds

≥ (49.9976) 7
2

10Γ ( 5
2 )

× Γ ( 69
4 )Γ ( 3

2 )
Γ ( 75

4 )

≥ 0.0001 × (49.9976)
7
2 = 88.8734 > 50.

Hence (H6) is checked. Therefore all conditions of Theorem 3.1 are satisfied, and by
Theorem 3.1 the BVP (4.1) has at least two solutions.
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5 Conclusion
In this paper, we obtained several sufficient conditions for the existence of positive solu-
tions for nonlinear fractional differential equation involving integral boundary conditions.
Our results will be a useful contribution to the existing literature on fractional-order non-
local differential equations.
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