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Abstract
In this paper, the robust stabilization problem is studied for a class of delayed systems
with parameter uncertainties and unknown-but-bounded exogenous disturbances.
The robust input-to-state practical stability (RISpS) is introduced to characterize the
dynamics of the controlled system. An event-triggered strategy is employed to
effectively decrease the transmission consumption of the robust controller. The Zeno
behavior is also excluded by combining the information of delayed states with
parameter uncertainties. The gain matrix and the event-triggered parameters are
co-designed by resorting to the feasibility of several matrix inequalities. An example
and its simulations are given to illustrate the proposed approach.
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1 Introduction
The arising of time delays in control systems is inevitable due to the finite switching speed
of information storage processing, communication time and transmission of signals. As
is well known, the time delays can influence the dynamic of systems seriously and may
cause some unstable performances such as divergence, oscillation or chaotic. Over the
past few years, a great number of research papers have been published to focus on the
stability and stabilization of dynamical systems with time delays (see [1–6] and the refer-
ences cited therein). At the same time, it should be mentioned that under some exogenous
disturbances, the system states may evolve in a bounded domain rather than converge to
an equilibrium point, which indicates that the conventional stability cannot be realized.
Inspired by Sontag [7], the input-to-state stability (ISS) can effectively characterize the ro-
bustness of stability over exogenous disturbances. In recent years, the ISS properties for
delayed systems have gained the rapidly growing research interest from control commu-
nity [8–15].

Moreover, control systems usually encounter a variety of uncertainties resulting from
the inaccuracy of physical parameters, quantization errors, and unmolded factors. Dur-
ing the implementation, the parameter fluctuation and errors also lead to the poor perfor-
mance and instability of closed-loop systems. Hence the uncertain parameters of a system
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are only due to the deviations and perturbations of its parameters. Recently, significant
progress has been made in the study of robust stability and controller synthesis for delayed
systems with parameter uncertainties [16–27]. For example, in [17], the robust stability
has been studied for a class of linear networked control systems with dynamic quantiza-
tion, variable sampling intervals as well as communication delays. In [27], the passivity
analysis has been studied for uncertain BAM neural networks with leakage, discrete and
distributed delays with the help of novel summation inequality. By employing the L-K
functional method, authors have investigated the robust exponential stability problem for
a class of uncertain inertial type BAM neural networks with of mixed delays in [21]. It is
noted that most literature mentioned above has focused on the stability of delayed systems
with uncertainties. So far, very little attention has been paid to the ultimately bounded per-
formances for uncertain delayed systems under some exogenous disturbances. Hence, it
is also of significant importance to address the robust input-to-state stability (RISS) for
delayed systems with parameter uncertainties and exogenous disturbances, which is the
first motivation of this research.

In many computer- and network-based control systems, the control signals can only be
transmitted at discrete instants because of the implement of digital platforms. As such,
the event-triggered control mechanisms, in which the control signals are updated when a
certain event occurs, are often employed to avoid the unnecessary consumption of re-
sources while maintaining the expected control performance [28]. In last decade, the
event-triggered strategy has been extensively adopted for engineering applications includ-
ing asymptotical stability [29–33], ISS [34–36], state estimation [37–39], consensus analy-
sis [40, 41], and nonlinear control [42–46]. However, the corresponding researches on the
event-triggered RISS for uncertain delayed systems have been relatively scattered despite
their great significance in practical applications, and this constitutes the second motiva-
tion for us to carry out this paper.

Motivated by the above discussions, we aim to investigate the robust input-to-state prac-
tical stability (RISpS) and the corresponding event-triggered controller design for a kind
of uncertain delayed systems with unknown-but-bounded exogenous disturbances. The
main advantages of this paper are summarized by the following three aspects:

(1) The RISpS property is, for the first time, proposed to evaluate the dynamical
behaviors for a class of uncertain delayed systems with disturbances, which is quite
different from and more comprehensive than the ISS properties investigated in
[7–10, 12, 13, 15, 34–36] and the robust stability studied in [16–27].

(2) Several previous literature such as [1, 3, 6, 11, 23, 27] required that the control signal
updates continuously with time, which may lead to the unnecessary cost of network
resources. In this paper, the event-triggered scheme is introduced to generates a
sporadic control sequence while maintaining the desired ISpS dynamical
performance for all admissible uncertainties. Hence, this co-design control
framework can improve overall control system performance while reducing the
real-time system’s use of computational resources.

(3) Those methods proposed in existing literature [29–32, 34] are invalid for analyzing
the Zeno behavior because of the presence of time delays and parameter
uncertainties. In this paper, with the help of delayed differential inequality and
impulsive jumping estimation techniques, the associated Zeno phenomenon is
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effectively excluded for the proposed event-triggered scheme by integrating the
information of current state, time delays, disturbances, and parameter uncertainties.

The rest of this paper is organized as follows. In Sect. 2, the mathematical model and
several preliminaries are presented. The problems of RISpS analysis and event-triggered
controller design are solved in Sect. 3. A numerical example is given in Sect. 4 to illustrate
the effectiveness of theoretical results. Finally, Sect. 5 concludes our research.

Notations. Let R+
0 be the set of nonnegative real numbers and Z

+
0 be the set of nonneg-

ative integers. Rn stands for the n-dimensional Euclidean space and R
n×m represents the

class of n×m real matrices. |x| and ‖A‖ denote the Euclidean vector norm of x and the in-
duced matrix norm, respectively. I is for the identity matrix with compatible dimension.
The symbol ∗ indicates a symmetric structure in matrix expressions. λmin(·) and λmax(·)
refer to the smallest and the largest eigenvalue of a symmetric matrix, respectively. De-
note by Ln∞ the class of measurable and essentially bounded functions v : R+

0 → R
n with

the infinity norm |v|∞ := ess supt∈R+
0
{|v(t)|} < ∞. A continuous function γ : R+

0 → R
+
0 is a

K-function if it is strictly increasing and γ (0) = 0; it is a K∞-function if it is a K-function
and satisfies γ (s) → ∞ as s → ∞. A function β : R+

0 × R
+
0 → R

+
0 is a KL-function if for

each fixed t ∈R
+
0 , β(·, t) is a K-function, and for each fixed s ∈ R

+
0 , β(s, ·) is decreasing and

β(s, t) → 0 as t → ∞. For τ > 0, C([–τ , 0];Rn) denotes the class of all continuous Rn-value
functions ϕ on [–τ , 0] with norm |ϕ|τ := sup{|ϕ(s)| : –τ ≤ s ≤ 0}. B(0, r) := {x ∈R

n : |x| ≤ r}
for r ≥ 0.

2 Model and preliminaries
Consider a class of uncertain delayed systems with unknown-but-bounded exogenous dis-
turbance as follows:

x′(t) = (A + �A)x(t) + (Ad + �Ad)xτ (t) + Bu(t) + Cv(t), t ≥ 0, (1)

where x(t) ∈ R
n, xτ (t) := x(t – τ (t)) with 0 ≤ τ (t) ≤ τ are the states, u(t) ∈ R

q is control
input, v(t) ∈ Ln∞ is exogenous disturbance. A, Ad , B, C are known constant matrices with
compatible dimensions. �A, �Ad are for parameter uncertainties satisfying

�A = E1F1(t)H1,�Ad = E2F2(t)H2 (2)

in which FT
i (t)Fi(t) ≤ I and Ei, Hi (i = 1, 2) are known constant matrices.

In this paper, we assume that the system state is sampled first based on an event-
triggered mechanism and then transmitted to the actuator in the zeroth-order hold (ZOH)
fashion. In other words,

u(t) = Kx(ti), t ∈ [ti, ti+1), i ∈ Z
+
0 . (3)

Here, {ti : i ∈ Z
+
0 } denotes the triggering instant sequence which is determined iteratively

by

ti+1 = inf
t

{
t > ti :

∣∣x(ti) – x(t)
∣∣2 ≥ ξ1

∣∣x(ti)
∣∣2 + ξ2

}
(4)

in which the positive constants ξ1, ξ2 denote the weight and threshold parameters, respec-
tively.
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Remark 1 For a control system operated on the digital platform, the periodic sampling and
transmission of data is advantageous from the design standpoint but may lead to higher
system costs. The event-triggered control, which means that the control task is only ex-
ecuted when the application’s error signal exceeds a specified threshold, will generate a
much lower updating frequency of sporadic control sequence. There has been experi-
mental evidence to support the assertion that event-triggered feedback improves overall
control system performance while reducing the real-time system’s use of computational
resources [31]. This co-design control framework has been widely used to address the
problem of scheduling stabilizing control tasks on embedded processors [33, 38], infor-
mation fusions [39], the average consensus of multi-agent systems [31, 40, 41].

Within the event-triggered controller, the closed-loop system is obtained as follows:

x′(t) =(A + �A)x(t) + (Ad + �Ad)xτ (t) + BKx(ti) + Cv(t) (5)

for t ∈ [ti, ti+1), i ∈ Z
+
0 . By denoting the measurement error (between the current state and

sampled state)

e(t) = x(ti) – x(t), (6)

we have

x′(t) =(A + �A + BK)x(t) + (Ad + �Ad)xτ (t) + BKe(t) + Cv(t). (7)

Remark 2 The control model (7) is more comprehensive than those studied in previous
literature [6, 9, 10, 13, 35, 36, 44] because of the simultaneous presence of parameter un-
certainties, time-varying delays, and the bounded disturbances.

The following definition and lemmas will be useful in later discussion.

Definition 1 The closed-loop system (7) is said to be robustly input-to-state practically
stable if there are functions βc ∈KL, γc ∈K and a scalar dc ∈R

+
0 such that

∣∣x(t)
∣∣ ≤ βc

(|ϕ|τ , t
)

+ γc
(|v|∞

)
+ dc

for any t ∈R
+
0 , ϕ ∈ C([–τ , 0];Rn), v ∈Ln∞ and all parameter uncertainties satisfying (2).

Remark 3 By taking into account both parameter uncertainties and exogenous distur-
bances, Definition 1 proposes a novel and more practical perspective to analyze the dy-
namics of system (7). When all uncertainties are removed, Definition 1 reduces to the
conventional ISS concept introduced in [11, 12, 34] and the term γc(|v|∞) + dc is used to
represent the bound of the domain where the state remains. When dc = 0 and v(t) ≡ 0,
Definition 1 reduces to the asymptotically robust stability considered in [20–22, 24–26]
and the KL-function βc indicates that the state will tend to zero as t → +∞ for all admis-
sible parameter uncertainties satisfying (2).
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Lemma 1 For any x, y ∈R
n,

xT y + yT x ≤ xT Qx + yT Q–1y,

where Q is a positive definite matrix with appropriate dimension.

Lemma 2 ([47]) Let P ∈R
n×n be a symmetric matrix and x ∈R

n be a vector. Then we have

λmin(P)xT x ≤ xT Px ≤ λmax(P)xT x.

Lemma 3 ([48]) Assume that A, D, G, F , W > 0 are matrices with appropriate dimensions
and FT F ≤ I . For any scalar ε1 > 0,

2xT DFGy ≤ ε–1
1 xT DDT x + ε1yT GT Gy.

If there is a scalar ε2 > 0 such that

W – ε2DDT > 0,

then

(A + DFG)T W –1(A + DFG) ≤ AT(
W – ε2DDT)–1A + ε–1

2 GGT .

3 Main results
In this section, a theoretical framework is established to analyze the RISpS for the uncer-
tain delayed system under consideration. Moreover, the Zeno behavior is discussed and
excluded for the proposed event-triggered strategy via integrating the information of cur-
rent and delayed states, parameter uncertainties, and the exogenous disturbances.

Theorem 1 Let K ∈ R
q×n and constants ξ1 ∈ (0, 1

2 ), ξ2 > 0 be given. If there exist positive
definite matrices P ∈R

n×n, Q ∈R
n×n and four positive scalars εi (i = 1, 2, 3, 4) such that

I – ε2E2ET
2 > 0, (8)

Π1 + ε3P < 0, (9)

Π2 – ε4P < 0, (10)

ε3 – ε4 –
2ξ1λmax(P2)

(1 – 2ξ1)λmin(P)
> 0, (11)

where Π1 = P(A + BK) + (A + BK)T P + PCQ–1CT P + P2 + ε1HT
1 H1 + ε–1

1 PE1ET
1 P +

PBKP–2KT BT P, Π2 = AT
d (I – ε2E2ET

2 )–1Ad + ε–1
2 HT

2 H2, then the closed-loop system (7) is
robustly input-to-state practically stable with respect to all parameter uncertainties satis-
fying (2).

Proof We choose a Lyapunov function as follows:

V (t) := V
(
x(t)

)
= xT (t)Px(t). (12)
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By calculating the derivative of V (t) along system (7), one has

V ′(t) = 2xT (t)P(A + �A + BK)x(t) + 2xT (t)PBKe(t)

+ 2xT (t)P(Ad + �Ad)xτ (t) + 2xT (t)PCv(t). (13)

It follows from Lemma 1 and Lemma 3 that

2xT (t)P(A + �A + BK)x(t) ≤ xT (t)
[
P(A + BK) + (A + BK)T P

+ ε–1
1 PE1ET

1 P + ε1HT
1 H1

]
x(t) (14)

and

2xT (t)P(Ad + �Ad)xτ (t) ≤ xT (t)P2x(t) + xT
τ (t)

[
ε–1

2 HT
2 H2

]
xτ (t)

+ xT
τ (t)AT

d
(
I – ε2E2ET

2
)–1Adxτ (t). (15)

According to Lemma 1 and Lemma 2, we have

2xT (t)PCv(t) ≤ xT (t)PCQ–1CT Px(t) + vT (t)Qv(t)

≤ xT (t)PCQ–1CT Px(t) + λmax(Q)
∣∣v(t)

∣∣2 (16)

and

2xT (t)PBKe(t) ≤ xT (t)PBK
(
PT P

)–1KT BT Px(t) + eT (t)
(
PT P

)
e(t)

≤ xT (t)PBKP–2KT BT Px(t) + λmax
(
P2)∣∣e(t)

∣∣2. (17)

Substituting (14)–(17) into (13) gives

V ′(t) ≤ xT (t)Π1x(t) + xT
τ (t)Π2xτ (t) + λmax(Q)

∣
∣v(t)

∣
∣2 + λmax

(
P2)∣∣e(t)

∣∣2 (18)

which, together with (9) and (10), implies that

V ′(t) ≤ –ε3xT (t)Px(t) + ε4xT
τ (t)Pxτ (t)

+ λmax
(
P2)∣∣e(t)

∣∣2 + λmax(Q)
∣∣v(t)

∣∣2. (19)

It is worth noting that the measurement error e(t) is subjected to the constraint of the
event-triggered rule (4). Thus, one derives

∣∣e(t)
∣∣2 ≤ 2ξ1

(∣∣e(t)
∣∣2 +

∣∣x(t)
∣∣2) + ξ2

which further leads to

∣∣e(t)
∣∣2 ≤ 2ξ1

1 – 2ξ1

∣∣x(t)
∣∣2 +

ξ2

1 – 2ξ1
. (20)
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Bearing in mind that V (t) ≥ λmin(P)|x(t)|2, we get

∣∣e(t)
∣∣2 ≤ 2ξ1

(1 – 2ξ1)λmin(P)
V (t) +

ξ2

1 – 2ξ1
. (21)

By combining (21) with (19), one obtains

V ′(t) ≤ – ε̄3V (t) + ε4V
(
t – τ (t)

)
+ d + λmax(Q)

∣∣v(t)
∣∣2, t ≥ 0, (22)

where ε̄3 = ε3 – 2λmax(P2)ξ1
(1–2ξ1)λmin(P) , d = λmax(P2)ξ2

1–2ξ1
.

We consider the function h(t) = t – ε̄3 + ε4eτ t for t ≥ 0. It is easy to calculate that h′(t) =
1 + ε4τeτ t > 0, which indicates that h(t) is a monotonically increasing function. From (11),
one gets h(0) = –ε̄3 +ε4 < 0 and limt→+∞ h(t) = +∞. Hence, there is a unique positive scalar
�∗ such that

�∗ – ε̄3 + ε4e�∗τ = 0.

For any given � ∈ (0,�∗] and non-zero initial function ϕ ∈ C([–τ , 0];Rn), we construct
the following functions:

U∗(t) = e�tV (t), t ∈ [–τ , +∞), (23)

and

U(t) =

⎧
⎨

⎩
λmax(P)|ϕ|2τ , t ∈ [–τ , 0),

λmax(P)|ϕ|2τ +
∫ t

0 e�s(d + λmax(Q)|v(s)|2) ds, t ≥ 0.
(24)

In what follows, we will verify

U∗(t) ≤ U(t), t ≥ 0. (25)

For t ∈ [–τ , 0), it is readily concluded that

U∗(t) = e�tV (t) < V (t) ≤ λmax(P)
∣∣ϕ(t)

∣∣2 ≤ U(t).

If (25) does not hold, then there exists some t > 0 such that U∗(t) > U(t). By denoting
t∗ := inft{t > 0 : U∗(t) > U(t)}, it is derived from the continuity of U∗(t) and U(t) that

U∗(t) < U(t), t ∈ [
–τ , t∗), (26)

U∗(t∗) = U
(
t∗) (27)

and there is a sufficiently small positive scalar �t′ such that

U∗(t) > U(t), t ∈ (
t∗, t∗ + �t′). (28)
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Calculating the upper right-hand Dini derivative of U∗(t) at t∗ yields

D+U∗(t∗) := lim sup
h→0+

U∗(t∗ + h) – U∗(t∗)
h

≥ lim sup
h→0+

U(t∗ + h) – U(t∗)
h

= e�t∗(d + λmax(Q)
∣∣v

(
t∗)∣∣2). (29)

On the other hand, it is readily concluded from (22) and (23) that

D+U∗(t∗) = �e�t∗V
(
t∗) + e�t∗D+V

(
t∗)

≤ (� – ε̄3)e�t∗V
(
t∗) + ε4e�t∗V

(
t∗ – τ

(
t∗))

+ de�t∗ + λmax(Q)e�t∗ ∣∣v
(
t∗)∣∣2. (30)

Noting that U(t) is a monotone nondecreasing function on [–τ , +∞), we derive

U∗(t∗ – τ
(
t∗)) < U

(
t∗ – τ

(
t∗)) < U

(
t∗) = U∗(t∗),

which further implies

V
(
t∗ – τ

(
t∗)) < e�τ V

(
t∗). (31)

It should be observed that � – ε̄3 + ε4e�τ ≤ 0. By substituting (31) into (30), we obtain

D+U∗(t∗) <
(
� – ε̄3 + ε4e�τ

)
e�t∗V

(
t∗) + de�t∗ + λmax(Q)e�t∗ ∣∣v

(
t∗)∣∣2

≤ e�t∗(d + λmax(Q)
∣∣v

(
t∗)∣∣2).

This conclusion contradicts (29), which indicates (25) is true.
For the purpose of RISpS property of system (7), we deduce from (25) that

V (t) ≤ λmax(P)|ϕ|2τ e–�t +
∫ t

0
e–�(t–s)(d + λmax(Q)

∣∣v(s)
∣∣2)ds

≤ λmax(P)|ϕ|2τ e–�t +
∫ t

0
e–�(t–s)(d + λmax(Q)|v|2∞

)
ds

≤ λmax(P)|ϕ|2τ e–�t +
d + λmax(Q)|v|2∞

�
. (32)

According to Lemma 2, one derives

∣∣x(t)
∣∣2 ≤ λmax(P)

λmin(P)
|ϕ|2τ e–�t +

d + λmax(Q)|v|2∞
λmin(P)�

, (33)

which gives

∣∣x(t)
∣∣ ≤

√
λmax(P)
λmin(P)

|ϕ|τ e– �
2 t +

√
λmax(Q)
λmin(P)�

|v|∞ +

√
d

λmin(P)�
. (34)



Du and Li Advances in Difference Equations         (2020) 2020:82 Page 9 of 16

By denoting βc(s, t) =
√

λmax(P)
λmin(P) se– �

2 t , γc(s) =
√

λmax(Q)
λmin(P)� s, and dc =

√
λmax(PT P)ξ2

�(1–2ξ1)λmin(P) , it is easily
concluded that

∣∣x(t)
∣∣ ≤ βc

(|ϕ|τ , t
)

+ γc
(|v|∞

)
+ dc, (35)

which means the system (7) is RISpS. The proof is complete. �

Remark 4 It follows from (34) that the states of closed-loop system will eventually en-
ter the set B(0,γc(|v|∞) + dc) bounded by the threshold parameter ξ2 and the exogenous
disturbance |v|∞. When ξ2 = 0, the states x(t) converge to the zero with the exponential
convergence rate � determined by � – ε̄3 + ε4e�τ ≤ 0 if the exogenous disturbance decays
to zero. If the exogenous disturbance v(t) = 0, then the boundary of B(0,γc(|v|∞) + dc) can
be arbitrarily small if the threshold parameter ξ2 is designed appropriately.

Remark 5 Theorem 1 provides an effective method to investigate the RISpS property of
the closed-loop system (7) accounting for all admissible parameter uncertainties, which
can be considered as an extension of Theorem 1 in [34]. The RISpS property means that
state of the closed-loop system (7) will eventually enter the set B(0,γc(|v|∞) + dc) bounded
by the threshold parameter ξ2 and the exogenous disturbance |v|∞. This dynamical per-
formance is quite different from and more general than the asymptotical stability [6, 14],
robust stability [16–27], and the conventional ISS [10, 12, 13]. Furthermore, from the point
of view of technique analysis, we adopt the Lyapunov function method for the dynamics
of state x(t) while the impulsive jumping estimation method for the control input u(tk) at
event-triggering instants, which shows some hybrid characteristics and is quite different
from the common L-K functional approach used in [16–18, 21–27, 48].

It should be pointed out that the Zeno behavior, which means the controller is triggered
infinitely in a limited time interval, will seriously impact the operation of sampling devices
and must therefore be excluded.

Theorem 2 If all conditions of Theorem 1 hold, then the Zeno behavior does not exist for
the closed-loop system (7).

Proof Recalling e(t) = x(ti) – x(t), we calculate the upper right-hand Dini derivative of
|e(t)|2 for t ∈ [ti, ti+1) as follows:

D+∣∣e(t)
∣∣2 = –2eT (t)

[
(A + �A + BK)x(t) + (Ad + �Ad)xτ (t) + BKe(t) + Cv(t)

]

= –2eT (t)
[
(A + �A + BK)

(
x(ti) – e(t)

)
+ (Ad + �Ad)xτ (t) + BKe(t) + Cv(t)

]

= 2eT (t)(A + �A)e(t) – 2eT (t)Cv(t) – 2eT (t)(A + �A + BK)x(ti)

– 2eT (t)(Ad + �Ad)xτ (t). (36)

It follows from the inequality 2aT Jb ≤ ‖J‖(|a|2 + |b|2) that

D+∣∣e(t)
∣∣2 ≤ (

2‖A + �A‖ + ‖Ad + �Ad‖
+ ‖A + �A + BK‖ + ‖C‖)∣∣e(t)

∣∣2
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+ ‖A + �A + BK‖∣∣x(ti)
∣∣2

+ ‖Ad + �Ad‖
∣∣xτ (t)

∣∣2 + ‖C‖∣∣v(t)
∣∣2

≤ a1
∣∣e(t)

∣∣2 + a2
∣∣x(ti)

∣∣2 + a3
∣∣xτ (t)

∣∣2 +
∣∣‖C‖v(t)

∣∣2 (37)

in which a1 = 3‖A‖ + 3‖E1‖‖H1‖ + ‖Ad‖ + ‖E2‖‖H2‖ + ‖B‖‖K‖ + ‖C‖, a2 = ‖A‖ +
‖E1‖‖H1‖ + ‖B‖‖K‖, and a3 = ‖Ad‖ + ‖E2‖‖H2‖.

According to (33), we derive that

∣∣x(ti)
∣∣2 ≤ λmax(P)

λmin(P)
|ϕ|2τ e–�ti +

d + λmax(Q)|v|2∞
λmin(P)�

≤ λmax(P)
λmin(P)

|ϕ|2τ +
d + λmax(Q)|v|2∞

λmin(P)�
:= M1 (38)

and

∣∣xτ (t)
∣∣2 ≤ λmax(P)

λmin(P)
|ϕ|2τ e–�(t–τ (t)) +

d + λmax(Q)|v|2∞
λmin(P)�

≤ λmax(P)
λmin(P)

|ϕ|2τ e�τ +
d + λmax(Q)|v|2∞

λmin(P)�
:= M2. (39)

Substituting (38) and (39) into (37), one has

D+∣∣e(t)
∣∣2 ≤ a1

∣∣e(t)
∣∣2 + a2M1 + a3M2 + ‖C‖|v|2. (40)

Letting M̄ = a2M1 + a3M2 + ‖C‖|v|2 and multiplying both sides of (40) by e–a1(t–ti) leads to

e–a1(t–ti)D+∣∣e(t)
∣∣2 ≤ a1e–a1(t–ti)

∣∣e(t)
∣∣2 + M̄e–a1(t–ti),

which implies that

D+(
e–a1(t–ti)

∣∣e(t)
∣∣2) ≤ M̄e–a1(t–ti). (41)

Noting that e(ti) = 0, it is readily deduced that

∣∣e(t)
∣∣2 ≤

∫ t

ti

M̄ea1(t–s) ds =
M̄
a1

(
ea1(t–ti) – 1

)
. (42)

Bearing in mind that the event-triggered strategy (4) indicates the control updating will
not occur until |e(t)|2 = ξ1|x(ti)|2 + ξ2, we deduce that the next triggering instant ti+1 satis-
fies

ξ1
∣∣x(ti)

∣∣2 + ξ2 ≤ M̄
a1

(
ea1(ti+1–ti) – 1

)
. (43)

That is to say

ti+1 – ti ≥ 1
a1

ln

(
1 +

a1(ξ1|x(ti)|2 + ξ2)
M̄

)
. (44)

Therefore, we exclude the Zeno behavior. �
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Remark 6 In [32, 33, 40, 41], the ratio |e(t)|
|x(t)| is estimated to exclude the Zeno behavior

caused by the event-triggered control for continuous-time systems. It should be noted
that this technique will be invalid for event-triggered scheme (4) because of the presence
of time delays, parameter uncertainties as well as exogenous disturbances. To this end,
a hybrid analysis method is employed to overcome this difficulty. To be specific, we first
obtain the upper bounds for the delayed state and the jump state at event-triggering time.
Then the evolution of the measurement error e(t) is derived with the help of a differen-
tial comparison system with a nonnegative bound. Finally, the Zeno behavior is excluded
for the proposed event-triggered scheme while the RISpS property is maintained for the
closed-loop system (7).

Now, we are ready to design the feedback gain matrix K and the event-triggered param-
eters ξ1, ξ2 for the controller.

Theorem 3 If there exist two positive definite matrices P̃ ∈ R
n×n, Q̃ ∈ R

n×n, a constant
matrix Y ∈R

q×n, and four positive scalars ε1, ε2 and ε̃3 > ε̃4 such that

I – ε2E2ET
2 > 0, (45)

⎛

⎜
⎝

Π̃∗
11 Π̃∗

12 Π̃∗
13

∗ –W 0
∗ ∗ –ε2I

⎞

⎟
⎠ < 0, (46)

and

⎛

⎜⎜⎜
⎝

Π̃11 Π̃12 Π̃13 Π̃14

∗ –I 0 0
∗ ∗ –Q̃ 0
∗ ∗ ∗ –ε1I

⎞

⎟⎟⎟
⎠

< 0, (47)

where Π̃∗
11 = –ε̃4P̃, Π̃∗

12 = P̃AT
d , Π̃∗

13 = P̃HT
2 , W = I – ε2E2ET

2 , Π̃11 = AP̃ + P̃AT + ε̃3P̃ + BY +
Y T BT + I + ε1E1ET

1 , Π̃12 = BY , Π̃13 = C, Π̃14 = P̃HT
1 , then the closed-loop system (7) is ro-

bustly input-to-state practically stable and the event-triggered controller is designed with
the gain matrix satisfying

K = Y P̃–1 (48)

and the event-triggered parameters ξ1 and ξ2 satisfying

0 < ξ1 <
(ε̃3 – ε̃4)λmin(P̃–1)

2(λmax(P̃–2) + (ε̃3 – ε̃4)λmin(P̃–1))
, ξ2 > 0. (49)

Proof Pre- and post-multiplying (46) and (47) by diag{P̃–1, I, I} and diag{P̃–1, I, I, I}, respec-
tively, we obtain

⎛

⎜
⎝

–ε̃4P̃–1 AT
d HT

2

∗ –W 0
∗ ∗ –ε2I

⎞

⎟
⎠ < 0
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and

⎛

⎜⎜⎜
⎝

P̃–1Π̃11P̃–1 P̃–1BY P̃–1C HT
1

∗ –I 0 0
∗ ∗ –Q̃ 0
∗ ∗ ∗ –ε–1

1 I

⎞

⎟⎟⎟
⎠

< 0.

By using the Schur complement formula, we conclude that

AT
d
(
I – ε2E2ET

2
)–1Ad + ε–1

2 HT
2 H2 – ε̃4P̃–1 < 0

and

P̃–1A + AT P̃–1 + P̃–1BK + KT BT P̃–1 + P̃–1CQ̃–1CT P̃–1 + P̃–1P̃–1

+ P̃–1BKP̃2KT BT P̃–1 + ε1HT
1 H1 + ε–1

1 P̃–1E1ET
1 P̃–1 + ε̃3P̃–1 < 0.

Letting ε̃3 = ε3, ε̃4 = ε4, P̃–1 = P and Q̃ = Q, one derives (9) and (10). In addition, it is
readily deduced from (45) and (49) that (8) and (11) hold, respectively. The proof is com-
plete. �

Remark 7 Theorem 3 provides a design method for the event-triggered feedback con-
troller which is employed to ensure the RISpS for the closed-loop system (7). According
to the feasibility of (45)–(49), the gain matrix K , the weight parameter ξ1, and the threshold
parameter ξ2 are co-designed. The proposed controller is more practical than those with
pre-fixed triggered parameters. Furthermore, the event-triggered feedback controller in
Theorem 3 is delicately designed to explain some robustness with regard to the time delays
and parameter uncertainties, whose effects have already been included in the inequalities
(45)–(47).

Remark 8 The parameters of controller are directly calculated according to the feasible
solutions of (45)–(49) which can be easily solved with the help of Matlab LMI toolbox.
That means our result is feasible and computable. In addition, it is readily observed that the
linear matrix inequalities (LMIs) (45)–(49) have smaller dimensions and fewer variables
than those given in [16–27], which leads to a lower computation complexity.

4 A numerical example
In this section, a numerical example is provided to show the effectiveness of proposed
results. Consider the following system parameters:

A =

(
–1.7 –0.7
–0.4 –1.95

)

, Ad =

(
0.3 0.5

–0.2 0.3

)

, B =

(
–1.2
1.3

)

,

C =

(
1.6 2.1

–2.2 1.3

)

, E1 =

(
1.8
1.6

)

, H1 =
(

0.1 0.3
)

,

E2 =

(
1.0
0.9

)

, H2 =
(

0.8 1.4
)

.
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Figure 1 The state of uncertain delayed system
without exogenous disturbances

It is worth noting that the open-loop system with above parameters is unstable even
though the exogenous disturbance is absent. The simulation result is illustrated in Fig. 1.

Let ε̃3 = 1.98 and ε̃4 = 1.21. By employing the Matlab toolbox to solve inequalities (45)–
(47), we obtain a set of feasible solutions as follows:

P̃ =

(
2.5030 –0.8972

–0.8972 0.4759

)

, Q̃ = 106 ×
(

9.7138 0.0338
0.0338 9.6605

)

,

Y =
(

–0.0748 –0.8384
)

.

The upper bound of event-triggered weight parameter is calculated to be

(ε̃3 – ε̃4)λmin(P̃–1)
2(λmax(P̃–2) + (ε̃3 – ε̃4)λmin(P̃–1))

= 0.0025,

which means 0 < ξ1 < 0.0025 and ξ2 > 0. According to Theorem 3, we select the event-
triggered parameters ξ1 = 0.002, ξ2 = 0.1, and the feedback gain matrix

K = Y P̃–1 =
(

–2.0398 –5.6070
)

to design the controller for ensuring the desired dynamical performance.
For the aim of simulation, we choose the time interval [0, 50s] and the step 0.001s.

Moreover, the unknown-but-bounded exogenous disturbance v(t) is chosen to be v1(t) =
v0 sin(t) and v2(t) = v0 cos(t) where v0 is a set of randomly generated numbers in the in-
terval (–0.1, 0.1). The initial value is selected to be 1. The simulation results for control
performance are shown in Fig. 2 and Fig. 3. To be specific, the state evolution of closed-
loop system is shown in Fig. 2 from which we see that the state x(t) enters a bounded set
under the event-triggered control input. Figure 3(a) presents the response of control sig-
nals and the curve shows that u(t) keeps as a constant between two consecutively triggered
instants. Figure 3(b) depicts the event-triggered instants and the control signal releasing
intervals, which implies the frequency of control updating is greatly reduced.

Therefore, it is confirmed from the simulation results that the closed-loop system with
the proposed event-triggered feedback controller is robustly input-to-state practically sta-
ble.
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Figure 2 The state evolution of the closed-loop
system

Figure 3 (a) The response of control input u(t).
(b) The event-triggered instants

Remark 9 In [16–27], some interesting results have been derived (in the form of LMIs)
to address the robust stability for neural networks with both delays and parameter uncer-
tainties. However, these results are invalid to our Example due mainly to the present of the
bounded exogenous disturbances and the sporadic event-based control input. Moreover,
it is obviously seen that the approaches given in [29–33, 36] cannot be used to investigate
the dynamical behavior and analyze the Zeno phenomenon for Example 1 because of the
coupled effects from time delays, parameter uncertainties as well as hybrid event-triggered
scheme.

5 Conclusions
In this paper, the RISpS problem for a class of uncertain delayed systems with exogenous
disturbances has been investigated. An event-triggered strategy has been introduced to
effectively reduce the updating frequency for the robust controller. Several criteria have
been established to address the RISpS property for the closed-loop system and the con-
troller design. In particular, the Zeno behavior has been analyzed and excluded by utiliz-
ing the information of current and delayed states, parameter uncertainties, and exogenous
disturbances. Finally, a numerical example has been given to illustrate the effectiveness of
our results.
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