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Abstract
The objective of this paper is to derive the bounds of fractional and conformable
integral operators for (s,m)-convex functions in a unified form. Further, the upper and
lower bounds of these operators are obtained in the form of a Hadamard inequality,
and their various fractional versions are presented. Some connections with already
known results are obtained.
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1 Introduction
Nobody can deny the importance of convex functions in the field of mathematical analysis,
mathematical statistics, and optimization theory. These functions motivate towards the
theory of convex analysis, see [17–19].

We start with the definition of convex function.

Definition 1 A function f : [a, b] →R is said to be convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y) (1.1)

holds for all x, y ∈ [a, b] and t ∈ [0, 1]. If inequality (1.1) is reversed, then the function f will
be the concave on [a, b].

Convex functions have been generalized theoretically extensively; these generalizations
include m-convex function, n-convex function, r-convex function, h-convex function,
(h – m)-convex function, (α, m)-convex function, s-convex function, and many others.
Here we are interested in the generalization of a convex function known as (s, m)-convex
function [3].

Definition 2 A function f : [0, b] → R, b > 0, is said to be (s, m)-convex, where (s, m) ∈
[0, 1]2 if

f
(
tx + m(1 – t)y

) ≤ tsf (x) + m(1 – t)sf (y) (1.2)

holds for all x, y ∈ [0, b] and t ∈ [0, 1].
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The following remark comprises the functions which can be obtained from the above
definition.

Remark 1
(i) If (s, m) = (1, m), then (1.2) produces the definition of m-convex function.

(ii) If (s, m) = (1, 1), then (1.2) produces the definition of convex function.
(iii) If (s, m) = (1, 0), then (1.2) produces the definition of star-shaped function.

The goal of this paper is to prove generalized integral inequalities for (s, m)-convex func-
tions by the help of generalized integral operator given in Definition 7. This operator has
interesting implications in fractional calculus operators. In the following we give defini-
tions associated with Definition 7.

Definition 3 Let f ∈ L1[a, b]. Then the left-sided and right-sided Riemann–Liouville frac-
tional integral operators of order μ ∈C (R(μ) > 0) are defined as follows:

μIa+ f (x) =
1

Γ (μ)

∫ x

a
(x – t)μ–1f (t) dt, x > a, (1.3)

μIb– f (x) =
1

Γ (μ)

∫ b

x
(t – x)μ–1f (t) dt, x < b. (1.4)

A k-fractional analogue of Riemann–Liouville fractional integral operator is given in [16].

Definition 4 Let f ∈ L1[a, b]. Then the k-fractional integral operators of f of order μ ∈C,
R(μ) > 0, k > 0 are defined as follows:

μIk
a+ f (x) =

1
kΓκ (μ)

∫ x

a
(x – t)

μ
k –1f (t) dt, x > a, (1.5)

μIk
b– f (x) =

1
kΓk(μ)

∫ b

x
(t – x)

μ
k –1f (t) dt, x < b. (1.6)

A more general definition of the Riemann–Liouville fractional integral operators is given
in [13].

Definition 5 Let f : [a, b] →R be an integrable function. Also, let g be an increasing and
positive function on (a, b], having a continuous derivative g ′ on (a, b). The left-sided and
right-sided fractional integrals of a function f with respect to another function g on [a, b]
of order μ ∈C (R(μ) > 0) are defined as follows:

μ
g Ia+ f (x) =

1
Γ (μ)

∫ x

a

(
g(x) – g(t)

)μ–1g ′(t)f (t) dt, x > a, (1.7)

μ
g Ib– f (x) =

1
Γ (μ)

∫ b

x

(
g(t) – g(x)

)μ–1g ′(t)f (t) dt, x < b, (1.8)

where Γ (·) is the gamma function.

Definition 6 ([14]) Let f : [a, b] →R be an integrable function. Also, let g be an increasing
and positive function on (a, b], having a continuous derivative g ′ on (a, b). The left-sided
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and right-sided k-fractional integral operators, k > 0, of a function f with respect to an-
other function g on [a, b] of order μ ∈ C, R(μ) > 0 are defined as follows:

μ
g Ik

a+ f (x) =
1

kΓk(μ)

∫ x

a

(
g(x) – g(t)

)μ
k –1g ′(t)f (t) dt, x > a, (1.9)

μ
g Ik

b– f (x) =
1

kΓk(μ)

∫ b

x

(
g(t) – g(x)

)μ
k –1g ′(t)f (t) dt, x < b, (1.10)

where Γk(·) is the k-gamma function.

The following generalized integral operator is given in [5].

Definition 7 Let f , g : [a, b] → R, 0 < a < b, be the functions such that f is positive and
f ∈ L1[a, b], and g be differentiable and strictly increasing. Also, let φ

x be an increasing
function on [a,∞). Then, for x ∈ [a, b], the left and right integral operators are defined as
follows:

(
Fφ,g

a+ f
)
(x) =

∫ x

a
Kg(x, t;φ)f (t)d

(
g(t)

)
, x > a, (1.11)

(
Fφ,g

b–
f
)
(x) =

∫ b

x
Kg(t, x;φ)f (t)d

(
g(t)

)
, x < b, (1.12)

where Kg(x, y;φ) = φ(g(x)–g(y))
g(x)–g(y) .

Integral operators defined in (1.11) and (1.12) produce several fractional and con-
formable integral operators defined in [1, 2, 8, 9, 11–13, 22, 25].

Remark 2 Integral operators given in (1.11) and (1.12) produce several known fractional
and conformable integral operators corresponding to different settings of φ and g .

(i) If we consider φ(t) = t
μ
k

kΓk (μ) , then (1.11) and (1.12) integral operators coincide with
(1.9) and (1.10) fractional integral operators.

(ii) If we consider φ(t) = tμ
Γ (μ) , μ > 0, then (1.11) and (1.12) integral operators coincide

with (1.7) and (1.8) fractional integral operators.

(iii) If we consider φ(t) = t
μ
k

kΓk (μ) and g as an identity function, then (1.11) and (1.12)
integral operators coincide with (1.5) and (1.6) fractional integral operators.

(iv) If we consider φ(t) = tμ
Γ (μ) , μ > 0, and g the identity function, then (1.11) and (1.12)

integral operators coincide with (1.3) and (1.4) fractional integral operators.
(v) If we consider φ(t) = tμ

Γ (μ) and g(x) = xρ

ρ
, ρ > 0, then (1.11) and (1.12) produce

Katugampola fractional integral operators defined by Chen et al. in [1].
(vi) If we consider φ(t) = tμ

Γ (μ) and g(x) = xτ+s

τ+s , s > 0, then (1.11) and (1.12) produce
generalized conformable integral operators defined by Khan et al. in [11].

(vii) If we consider φ(t) = t
μ
k

kΓk (μ) and g(x) = (x–a)s

s , s > 0, in (1.11) and φ(t) = t
μ
k

kΓk (μ) and
g(x) = – (b–x)s

s , s > 0, in (1.12) respectively, then conformable (k, s)-fractional
integrals are achieved as defined by Habib et al. in [8].

(viii) If we consider φ(t) = t
μ
k

kΓk (μ) and g(x) = x1+s

1+s , then (1.11) and (1.12) produce
conformable fractional integrals defined by Sarikaya et al. in [22].
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(ix) If we consider φ(t) = tμ
Γ (μ) and g(x) = (x–a)s

s , s > 0, in (1.11) and φ(t) = tμ
Γ (μ) and

g(x) = – (b–x)s

s , s > 0, in (1.12) respectively, then conformable fractional integrals are
achieved as defined by Jarad et al. in [9].

(x) If we consider φ(t) = t
λ
k Fσ

ρ,λ(w(t)ρ), then (1.11) and (1.12) produce generalized
k-fractional integral operators defined by Tunc et al. in [25].

(xi) If we consider φ(t) = exp (–At)
μ

, A = 1–μ

μ
, μ > 0, then the following generalized

fractional integral operators with exponential kernel are obtained [2]:

μ
g Ea+ f (x) =

1
μ

∫ x

a
exp

(
–

1 – μ

μ

(
g(x) – g(t)

)
)

f (t) dt, x > a, (1.13)

μ
g Eb– f (x) =

1
μ

∫ b

x
exp

(
–

1 – μ

μ

(
g(x) – g(t)

)
)

f (t) dt, x < b. (1.14)

(xii) If we consider φ(t) = tμ
Γ (μ) and g(t) = ln t, then Hadamard fractional integral

operators will be obtained [12, 13].
(xiii) If we consider φ(t) = tμ

Γ (μ) and g(t) = –t–1, then Harmonic fractional integral
operators defined in [13] will be obtained and given as follows:

μRa+ f (x) =
tμ

Γ (μ)

∫ x

a
(x – t)μ–1 f (t)

tμ+1 dt, x > a, (1.15)

μRb– f (x) =
tμ

Γ (μ)

∫ x

a
(t – x)μ–1 f (t)

tμ+1 dt, x < b. (1.16)

(xiv) If we consider φ(t) = tμ ln t, then left- and right-sided logarithmic fractional
integrals defined in [2] will be obtained and given as follows:

μ
g La+ f (x) =

∫ x

a

(
g(x) – g(t)

)μ–1
ln

(
g(x) – g(t)

)
g ′(t) dt, x > a, (1.17)

μ
g Lb– f (x) =

∫ x

a

(
g(t) – g(x)

)μ–1
ln

(
g(x) – g(t)

)
g ′(t) dt, x < b. (1.18)

In recent decades fractional and conformable integral operators have been used by many
researchers to obtain corresponding operator versions of well-known inequalities. For
some recent work, we refer the reader to [1, 2, 7, 8, 10, 20, 21, 24–26]. In the upcom-
ing section we derive the bounds of sum of the left- and right-sided integral operators
defined in (1.11) and (1.12) for (s, m)-convex functions. These bounds lead to producing
results for several kinds of well-known operators for convex function, m-convex function,
s-convex function, and star-shaped function. Further, in Sect. 3, bounds are presented in
the form of a Hadamard inequality, from which several fractional Hadamard inequalities
are deduced.

2 Bounds of integral operators and their consequences
Theorem 1 Let f : [a, b] → R be a positive (s, m)-convex function with m ∈ (0, 1], and let
g : [a, b] →R be a differentiable and strictly increasing function. Also, let φ

x be an increasing
function on [a, b]. Then, for x ∈ [a, b], the following inequality for integral operators (1.11)
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and (1.12) holds:

(
Fφ,g

a+ f
)
(x) +

(
Fφ,g

b– f
)
(x)

≤ Kg(x, a;φ)
(x – a)s

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))

+
Kg(b, x;φ)

(b – x)s

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
. (2.1)

Proof For the kernel of integral operator (1.11), we have

Kg(x, t;φ)g ′(t) ≤ Kg(x, a;φ)g ′(t), x ∈ (a, b] and t ∈ [a, x). (2.2)

An (s, m)-convex function satisfies the following inequality:

f (t) ≤
(

x – t
x – a

)s

f (a) + m
(

t – a
x – a

)s

f
(

x
m

)
, m ∈ (0, 1]. (2.3)

Inequalities (2.2) and (2.3) lead to the following integral inequality:
∫ x

a
Kg(x, t;φ)g ′(t)f (t) dt

≤ Kg(x, a;φ)
(

f (a)
∫ x

a

(
x – t
x – a

)s

g ′(t) dt + mf
(

x
m

)∫ x

a

(
t – a
x – a

)s

g ′(t) dt
)

, (2.4)

while (2.4) gives

(
Fφ,g

a+ f
)
(x) ≤ Kg(x, a;φ)

(x – a)s

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))
. (2.5)

Again, for the kernel of integral operator (1.12), we have

Kg(t, x;φ)g ′(t) ≤ Kg(b, x;φ)g ′(t), t ∈ (x, b] and x ∈ [a, b). (2.6)

An (s, m)-convex function satisfies the following inequality:

f (t) ≤
(

t – x
b – x

)s

f (b) + m
(

b – t
b – x

)s

f
(

x
m

)
, m ∈ (0, 1]. (2.7)

Inequalities (2.6) and (2.7) lead to the following integral inequality:

∫ b

x
Kg(t, x;φ)g ′(t)f (t) dt

≤ Kg(b, x;φ)
(

f (b)
∫ b

x

(
t – x
b – x

)s

g ′(t) dt + mf
(

x
m

)∫ b

x

(
b – t
b – x

)s

g ′(t) dt
)

, (2.8)
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while (2.8) further gives

(
Fφ,g

b– f
)
(x) ≤ Kg(b, x;φ)

(b – x)s

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
. (2.9)

By adding (2.5) and (2.9), (2.1) can be obtained. �

The following remark connects the above theorem with already known results.

Remark 3
1. For φ(t) = tμ

Γ (μ) , μ > 0, and (s, m) = (1, 1) in (2.1), [6, Theorem 1] can be achieved.
2. For φ(t) = tμ

Γ (μ) , μ > 0, g(x) = x, and (s, m) = (1, 1) in (2.1), [4, Theorem 1] can be
achieved.

3. For (s, m) = (1, 1) in (2.1), [15, Theorem 1] can be achieved.

The following results indicate upper bounds of several known fractional and con-
formable integral operators.

Proposition 1 Let φ(t) = tμ
Γ (μ) , μ > 0. Then (1.11) and (1.12) produce the fractional integral

operators (1.7) and (1.8) as follows:

(
F

tμ
Γ (μ) ,g

a+ f
)
(x) := μ

g Ia+ f (x),
(
F

tμ
Γ (μ) ,g

b– f
)
(x) := μ

g Ib– f (x). (2.10)

Further, they satisfy the following bound for μ ≥ 1:

(
μ
g Ia+ f

)
(x) +

(
μ
g Ib– f

)
(x)

≤ (g(x) – g(a))μ–1

(x – a)sΓ (μ)

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))

+
(g(b) – g(x))μ–1

(b – x)sΓ (μ)

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
.

Proposition 2 Let g(x) = I(x) = x. Then (1.11) and (1.12) produce integral operators de-
fined in [23] as follows:

(
Fφ,I

a+ f
)
(x) := (a+ Iφ f )(x) =

∫ x

a

φ(x – t)
(x – t)

f (t) dt, (2.11)

(
Fφ,I

b– f
)
(x) := (b– Iφ f )(x) =

∫ b

x

φ(t – x)
(t – x)

f (t) dt. (2.12)
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Further, they satisfy the following bound:

(a+ Iφ f )(x) + (b– Iφ f )(x)

≤ φ(x – a)
(x – a)s+1

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))

+
φ(b – x)
(b – x)s+1

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
.

Corollary 1 If we take φ(t) = t
μ
k

kΓk (μ) , then (1.11) and (1.12) produce the fractional integral
operators (1.9) and (1.10) as follows:

(
F

t
μ
k

kΓk (μ) ,g

a+ f
)
(x) := μ

g Ik
a+ f (x),

(
F

t
μ
k

kΓk (μ) ,g

b– f
)
(x) := μ

g Ik
b– f (x). (2.13)

Moreover, from (2.1) the following bound holds for μ ≥ k:

(
μ
g Ik

a+ f
)
(x) +

(
μ
g Ik

b– f
)
(x)

≤ (g(x) – g(a))
μ
k –1

(x – a)s(kΓk(μ))

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))

+
(g(b) – g(x))

μ
k –1

(b – x)s(kΓk(μ))

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
.

Corollary 2 If we take φ(t) = tμ
Γ (μ) , μ > 0, and g(x) = xρ

ρ
, ρ > 0, then (1.11) and (1.12) pro-

duce the fractional integral operators defined in [1] as follows:

(
F

tμ
Γ (μ) ,g

a+ f
)
(x) =

(
ρIμ

a+ f
)
(x) =

ρ1–μ

Γ (μ)

∫ x

a

(
xρ – tρ

)μ–1tρ–1f (t) dt, (2.14)

(
F

tμ
Γ (μ) ,g

b– f
)
(x) =

(
ρIμ

b– f
)
(x) =

ρ1–μ

Γ (μ)

∫ b

x

(
tρ – xρ

)μ–1tρ–1f (t) dt. (2.15)

Moreover, from (2.1) they satisfy the following bound:

(
ρIμ

a+ f
)
(x) +

(
ρIμ

b– f
)
(x)

≤ (xρ – aρ)μ–1

(x – a)s(Γ (μ))(ρμ–1)

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))
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+
(bρ – xρ)μ–1

(b – x)s(Γ (μ))(ρμ–1)

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
.

Corollary 3 If we take φ(t) = tμ
Γ (μ) , μ > 0, and g(x) = xn+1

n+1 , n > 0, then (1.11) and (1.12)
produce the fractional integral operators defined as follows:

(
F

tμ
Γ (μ) ,g

a+ f
)
(x) =

(nIμ

a+ f
)
(x) =

(n + 1)1–μ

Γ (μ)

∫ x

a

(
xn+1 – tn+1)μ–1tnf (t) dt, (2.16)

(
F

tμ
Γ (μ) ,g

b– f
)
(x) =

(nIμ

b– f
)
(x) =

(n + 1)1–μ

Γ (μ)

∫ b

x

(
tn+1 – xn+1)μ–1tnf (t) dt. (2.17)

Moreover, from (2.1) they satisfy the following bound:

(nIμ

a+ f
)
(x) +

(nIμ

b– f
)
(x)

≤ (xn+1 – an+1)μ–1

(x – a)s(Γ (μ))(n + 1)μ–1

(
(x – a)s

(
mf

(
x
m

)
g(x) – f (a)g(a)

)

– Γ (s + 1)
(

mf
(

x
m

)
sIx– g(a) – f (a)sIa+ g(x)

))

+
(bn+1 – xn+1)μ–1

(b – x)s(Γ (μ))(n + 1)μ–1

(
(b – x)s

(
f (b)g(b) – mf

(
x
m

)
g(x)

)

– Γ (s + 1)
(

f (b)sIb– g(x) – mf
(

x
m

)
sIx+ g(b)

))
.

Remark 4 The bounds of Riemann–Liouville fractional and k-fractional integrals can be

computed by setting φ(t) = tμ
Γ (μ) , g(t) = t and φ(t) = t

μ
k

kΓk (μ) , g(t) = t respectively in (2.1), we
leave it for the reader.

For the function f which is differentiable and |f ′| is (s, m)-convex, the following result
holds.

Theorem 2 Let f : I →R be a differentiable function if |f ′| is (s, m)-convex with m ∈ (0, 1],
and let g : I → R be a differentiable and strictly increasing function. Also, let φ

x be an in-
creasing function on I , then for a, b ∈ I , a < b the following inequalities for integral operators
hold:

∣
∣Fφ,g

a+ (f ∗ g)(x)
∣
∣ ≤ Kg(x, a;φ)

(x – a)s

(
(x – a)s

(
m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣g(x) –

∣
∣f ′(a)

∣
∣g(a)

)

– Γ (s + 1)
(

m
∣∣
∣∣f

′
(

x
m

)∣∣
∣∣
sIx– g(a) –

∣
∣f ′(a)

∣
∣sIa+ g(x)

))
, (2.18)

∣
∣Fφ,g

b– (f ∗ g)(x)
∣
∣ ≤ Kg(b, x;φ)

(b – x)s

(
(b – x)s

(∣
∣f ′(b)

∣
∣g(b) – m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣g(x)

)

– Γ (s + 1)
(∣∣f ′(b)

∣∣sIb– g(x) – m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣
sIx+ g(b)

))
, (2.19)



Chel Kwun et al. Advances in Difference Equations          (2020) 2020:5 Page 9 of 14

where

Fφ,g
a+ (f ∗ g)(x) =

∫ x

a
Kg(x, t;φ)g ′(t)f ′(t) dt, Fφ,g

b– (f ∗ g)(x) =
∫ b

x
Kg(t, x;φ)g ′(t)f ′(t) dt.

Proof An (s, m)-convex function |f ′| satisfies the following inequality:

∣
∣f ′(t)

∣
∣ ≤

(
x – t
x – a

)s∣
∣f ′(a)

∣
∣ + m

(
t – a
x – a

)s∣∣
∣∣f

′
(

x
m

)∣∣
∣∣, m ∈ (0, 1], (2.20)

from which we can write

f ′(t) ≤
(

x – t
x – a

)s∣∣f ′(a)
∣∣ + m

(
t – a
x – a

)s∣∣∣∣f
′
(

x
m

)∣
∣∣∣. (2.21)

Inequalities (2.2) and (2.21) lead to the following integral inequality:

∫ x

a
Kg(x, t;φ)g ′(t)f ′(t) dt

≤ Kg(x, a;φ)
(∣∣f ′(a)

∣∣
∫ x

a

(
x – t
x – a

)s

g ′(t) dt

+ m
∣∣
∣∣f

′
(

x
m

)∣∣
∣∣

∫ x

a

(
t – a
x – a

)s

g ′(t) dt
)

, (2.22)

while (2.22) further gives

Fφ,g
a+ (f ∗ g)(x) ≤ Kg(x, a;φ)

(x – a)s

(
(x – a)s

(
m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣g(x) –

∣
∣f ′(a)

∣
∣g(a)

)

– Γ (s + 1)
(

m
∣∣
∣∣f

′
(

x
m

)∣∣
∣∣
sIx– g(a) –

∣
∣f ′(a)

∣
∣sIa+ g(x)

))
. (2.23)

From (2.20) we can write

f ′(t) ≥ –
((

x – t
x – a

)s∣∣f ′(a)
∣∣ + m

(
t – a
x – a

)s∣∣∣
∣f

′
(

x
m

)∣
∣∣
∣

)
. (2.24)

Adopting the same method as we did for (2.21), the following integral inequality holds:

Fφ,g
a+ (f ∗ g)(x) ≥ –

Kg(x, a;φ)
(x – a)s

(
(x – a)s

(
m

∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣g(x) –

∣∣f ′(a)
∣∣g(a)

)

– Γ (s + 1)
(

m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣
sIx– g(a) –

∣∣f ′(a)
∣∣sIa+ g(x)

))
. (2.25)

From (2.23) and (2.25), (2.18) can be obtained.
An (s, m)-convex function |f ′| satisfies the following inequality:

∣
∣f ′(t)

∣
∣ ≤

(
t – x
b – x

)s∣
∣f ′(b)

∣
∣ + m

(
b – t
b – x

)s∣∣
∣∣f

′
(

x
m

)∣∣
∣∣, m ∈ (0, 1], (2.26)
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from which we can write

f ′(t) ≤
(

t – x
b – x

)s∣
∣f ′(b)

∣
∣ + m

(
b – t
b – x

)s∣∣
∣∣f

′
(

x
m

)∣∣
∣∣. (2.27)

Inequalities (2.6) and (2.27) lead to the following integral inequality:

∫ b

x
Kg(t, x;φ)g ′(t)f ′(t) dt

≤ Kg(b, x;φ)
(∣

∣f ′(b)
∣
∣
∫ b

x

(
x – t
b – x

)s

g ′(t) dt

+ m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣

∫ b

x

(
b – t
b – x

)s

g ′(t) dt
)

, (2.28)

while (2.28) further gives

Fφ,g
b– (f ∗ g)(x) ≤ Kg(b, x;φ)

(b – x)s

(
(b – x)s

(∣∣f ′(b)
∣∣g(b) – m

∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣g(x)

)

– Γ (s + 1)
(∣∣f ′(b)

∣∣sIb– g(x) – m
∣
∣∣
∣f

′
(

x
m

)∣
∣∣
∣
sIx+ g(b)

))
. (2.29)

From (2.26) we can write

f ′(t) ≥ –
((

t – x
b – x

)s∣
∣f ′(b)

∣
∣ + m

(
b – t
b – x

)s∣∣
∣∣f

′
(

x
m

)∣∣
∣∣

)
. (2.30)

Adopting the same method as we did for (2.27), the following inequality holds:

Fφ,g
b– (f ∗ g)(x) ≥ –

Kg(b, x;φ)
(b – x)s

(
(b – x)s

(∣
∣f ′(b)

∣
∣g(b) – m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣g(x)

)

– Γ (s + 1)
(∣

∣f ′(b)
∣
∣sIb– g(x) – m

∣∣
∣∣f

′
(

x
m

)∣∣
∣∣
sIx+ g(b)

))
. (2.31)

From (2.29) and (2.31), (2.19) can be obtained. �

3 Hadamard type inequalities for (s, m)-convex function
In order to prove our next result, we need the following lemma.

Lemma 1 Let f : [0,∞] → R be an (s, m)-convex function with m ∈ (0, 1]. If 0 ≤ a < b and
f (x) = f ( a+b–x

m ), then the following inequality holds:

f
(

a + b
2

)
≤ 1

2s (1 + m)f (x), x ∈ [a, b]. (3.1)

Proof Since f is (s, m)-convex, the following inequality is valid:

f
(

a + b
2

)
≤ 1

2s f
(

x – a
b – a

b +
b – x
b – a

)
+ m

(
1 –

1
2

)s

f
( x–a

b–a a + b–x
b–a b

m

)
,

f
(

a + b
2

)
≤ 1

2s

(
f (x) + mf

(
a + b – x

m

))
.

By using f (x) = f ( a+b–x
m ) in the above inequality, we get (3.1). �
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By applying Lemma 1, we prove the following Hadamard type inequality.

Theorem 3 Let f : [a, b] → R be a positive (s, m)-convex function with m ∈ (0, 1], f (x) =
f ( a+b–x

m ) and g : [a, b] → R be a differentiable and strictly increasing function. Also, let φ

x
be an increasing function on [a, b]. Then, for (α, m) ∈ [0, 1]2, the following inequality holds:

2sf ( a+b
2 )

(m + 1)
((

Fφ,g
b– 1

)
(a) +

(
Fφ,g

a+ 1
)
(b)

)

≤ (
Fφ,g

b– f
)
(a) +

(
Fφ,g

a+ f
)
(b)

≤ 2Kg(b, a;φ)
(

f (b)g(b) – mf
(

a
m

)
g(a)

–
Γ (s + 1)
(b – a)s

(
f (b)sIb– g(a) – mf

(
a
m

)
sIa+ g(b)

))
. (3.2)

Proof For the kernel of integral operator (1.11), we have

Kg(x, a;φ)g ′(x) ≤ Kg(b, a;φ)g ′(x), x ∈ (a, b]. (3.3)

An (s, m)-convex function satisfies the following inequality:

f (x) ≤
(

x – a
b – a

)s

f (b) + m
(

b – x
b – a

)s

f
(

a
m

)
, m ∈ (0, 1]. (3.4)

Inequalities (3.3) and (3.4) lead to the following integral inequality:

∫ b

a
Kg(x, a;φ)g ′(x)f (x) dx

≤ Kg(b, a;φ)
(

f (b)
∫ b

a

(
x – a
b – a

)s

g ′(x) dx + mf
(

a
m

)∫ b

a

(
b – x
b – a

)s

g ′(x) dx
)

, (3.5)

while (3.5) further gives

(
Fφ,g

b– f
)
(a) ≤ Kg(b, a;φ)

(b – a)s

((
f (b)g(b) – mf

(
a
m

)
g(a)

)
(b – a)s

– Γ (s + 1)
(

f (b)sIb– g(a) – mf
(

a
m

)
sIa+ g(b)

))
. (3.6)

On the other hand, for the kernel of integral operator (1.12), we have

Kg(b, x;φ)g ′(x) ≤ Kg(b, a;φ)g ′(x). (3.7)

Inequalities (3.4) and (3.7) lead to the following integral inequality:

∫ b

a
Kg(b, x;φ)g ′(x)f (x) dx

≤ Kg(b, a;φ)
(

f (b)
∫ b

a

(
x – a
b – a

)s

g ′(x) dx + mf
(

a
m

)∫ b

a

(
b – x
b – a

)s

g ′(x) dx
)

,
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while the above inequality gives

(
Fφ,g

a+ f
)
(b) ≤ Kg(b, a;φ)

(b – a)s

((
f (b)g(b) – mf

(
a
m

)
g(a)

)
(b – a)s

– Γ (s + 1)
(

f (b)sIb– g(a) – mf
(

a
m

)
sIa+ g(b)

))
. (3.8)

From (3.6) and (3.8), the following inequality can be obtained:

(
Fφ,g

a+ f
)
(b) +

(
Fφ,g

b– f
)
(a) ≤ 2

Kg(b, a;φ)
(b – a)s

((
f (b)g(b) – mf

(
a
m

)
g(a)

)
(b – a)s

– Γ (s + 1)
(

f (b)sIb– g(a) – mf
(

a
m

)
sIa+ g(b)

))
. (3.9)

Now, using Lemma 1 and multiplying (3.1) with Kg(x, a;φ)g ′(x), then integrating over
[a, b], we have

∫ b

a
Kg(x, a;φ)f

(
a + b

2

)
g ′(x) dx ≤ 1

2s (1 + m)
∫ b

a
Kg(x, a;φ)g ′(x)f (x) dx, (3.10)

from which we get

f
(

a + b
2

)
(Fφ,g

b– 1)(a) ≤ 1
2s (1 + m)

(
Fφ,g

b– f
)
(a). (3.11)

Again using Lemma 1 and multiplying (3.1) with Kg(b, x;φ)g ′(x), then integrating over
[a, b], we have

∫ b

a
Kg(b, x;φ)f

(
a + b

2

)
g ′(x) dx ≤ 1

2s (1 + m)
∫ b

a
Kg(b, x;φ)g ′(x)f (x) dx,

from which we get

f
(

a + b
2

)
(Fφ,g

a+ 1)(b) ≤ 1
2s (1 + m)

(
Fφ,g

a+ f
)
(b). (3.12)

From (3.11) and (3.12), the following inequality can be achieved:

f
(

a + b
2

)(
(Fφ,g

b– 1)(a) +
(
Fφ,g

a+ 1)(b)
)

≤ 1
2s (1 + m)

((
Fφ,g

b– f
)
(a) +

(
Fφ,g

a+ f
)
(b)

)
. (3.13)

From (3.9) and (3.13), (3.2) can be obtained. �

Remark 5 For (s, m) = (1, 1), in (3.2), [15, Theorem 3] can be obtained.

Corollary 4 If we put φ(t) = t
μ
k

kΓk (μ) , then inequality (3.2) produces the following Hadamard
inequality:

2sf ( a+b
2 )

(m + 1)
(
μ
g Ik

b– (1)(a) + μ
g Ik

a+ (1)(b)
)

≤ μ
g Ik

b– f (a) + μ
g Ik

a+ f (b)
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≤ 2(g(b) – g(a))
μ
k –1

kΓk(μ)

(
f (b)g(b) – mf

(
a
m

)
g(a)

–
Γ (s + 1)
(b – a)s

(
f (b)sIb– g(a) – mf

(
a
m

)
sIa+ g(b)

))
. (3.14)

Corollary 5 If we put φ(t) = tμ
Γ (μ) , then inequality (3.2) produces the following Hadamard

inequality:

2sf ( a+b
2 )

(m + 1)
(
μ
g Ib– (1)(a) + μ

g Ia+ (1)(b)
)

≤ μ
g Ib– f (a) + μ

g Ia+ f (b)

≤ 2(g(b) – g(a))μ–1

Γ (μ)

(
f (b)g(b) – mf

(
a
m

)
g(a)

–
Γ (s + 1)
(b – a)s

(
f (b)sIb– g(a) – mf

(
a
m

)
sIa+ g(b)

))
. (3.15)

Remark 6 The Hadamard inequality for Riemann–Liouville fractional and k-fractional

integrals can be computed by setting φ(t) = tμ
Γ (μ) , g(t) = t and φ(t) = t

μ
k

kΓk (μ) , g(t) = t respec-
tively in (3.2), we leave it for the reader.

4 Concluding remarks
This work produces some generalized integral operator inequalities via (s, m)-convex
function. From these inequalities the bounds of all integral operators defined in Remark 2
can be established for convex function, m-convex function, s-convex function, and star-
shaped function. The reader can produce a plenty of Hadamard type inequalities for frac-
tional and conformable integral operators deduced in Remark 2 by applying Theorem 3.
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