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Abstract
In this paper, we define the weighted Atangana–Baleanu fractional operators of
Caputo sense. We obtain the solution of a related linear fractional differential
equation in a closed form, and use the result to define the weighted
Atangana–Baleanu fractional integral. We then express the weighted
Atangana–Baleanu fractional derivative in a convergent series of Riemann–Liouville
fractional integrals, and establish commutative results of the weighted
Atangana–Baleanu fractional operators.

Keywords: Weighted fractional derivatives; Fractional derivatives with nonsingular
kernels; Fractional differential equations

1 Introduction
The qualitative study of fractional differential equations depends on the type of the imple-
mented fractional derivative. Mainly, there are two types of nonlocal fractional derivatives;
the classical ones with singular kernels such as the Riemann–Liouville and Caputo deriva-
tives, and the ones with nonsingular kernels, which have been introduced recently, such as
the Atangana–Baleanu and Caputo–Fabrizio derivatives [14, 22]. Even though that there
are no strong mathematical justifications of the new types of fractional derivatives, they
got the interests of many researchers because of their appearance in different applications;
see [7, 9, 10, 12, 13, 15–17, 19, 23, 24, 27–29, 35, 39]. For recent developments of fractional
derivatives with nonsingular kernels we refer the reader to [4, 5, 8, 20, 21, 36].

The complexity of applications advises researchers to extend the definitions of fractional
derivatives. Therefore, the weighted fractional derivatives have been introduced. The the-
ory and applications of the weighted Caputo and Riemann–Liouville derivatives were dis-
cussed in [2, 11, 30–34]. Also, several types of integral equations are solved in an elegant
way using the weighted fractional derivatives; see [2, 6]. Recently in [6], we introduced
the weighted Caputo–Fabrizio fractional operators and studied related linear and non-
linear fractional differential equations. In this paper, we aim to extend the study to the
Atangana–Baleanu fractional operators. We introduce the weighted Atangana–Baleanu
fractional operators and study their properties. In Sect. 2, we present the definition of the
weighted Atangana–Baleanu fractional derivative in Caputo sense and use the Laplace
transform to solve an associated linear fractional differential equation. We then use the
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result to define the weighted Atangana–Baleanu fractional integral. In Sect. 3, we present
the weighted Atangana–Baleanu operators in terms of the well-known Riemann–Liouville
fractional integral, and investigate several properties of them. Finally, we end with some
concluding remarks in Sect. 4.

2 Weighted Atangana–Baleanu operators
In the classical operators, the fractional integral is introduced and then used to define the
fractional derivative. While, in the new types of fractional operators with nonsingular ker-
nels, the fractional derivative is introduced and then implemented to define the fractional
integrals. We follow the new approach and start with the definition of the left Atangana–
Baleanu fractional derivative of a function f (t) with respect to the weight function w(t).
We have

Definition 2.1 For 0 < α < 1, the weighted Atangana–Baleanu fractional derivative of Ca-
puto sense of a function f (t) ∈ W 1(0, T] with respect to the weight function w(t) is defined
by

(
cDα

wf
)
(t) =

M(α)
1 – α

1
w(t)

∫ t

0
Eα

[
–μα(t – s)α

] d
ds

(wf )(s) ds, t > 0. (2.1)

Here w ∈ C1[0, T], w, w′ > 0 on [0, T], M(α) is a normalization function satisfying M(0) =
M(1) = 1, Eα(t) is the well-known Mittag-Lefler function, W 1(0, T] denotes the space of
functions f ∈ C1(0, T] such that f ′ ∈ L1[0, T], and

μα =
α

1 – α
. (2.2)

The above integral-differential operator can be written as

(
cDα

wf
)
(t) =

M(α)
1 – α

1
w(t)

(
Eα

[
–μαtα

] ∗ d
dt

(wf )(t)
)

, t > 0. (2.3)

Theorem 2.1 Let u ∈ W 1(0, T], if g(0) = 0, then the unique solution of the fractional dif-
ferential equation,

(
cDα

wu
)
(t) = g(t), t > 0, 0 < α < 1, (2.4)

is given by

u(t) =
(wu)(0)

w(t)
+

1 – α

M(α)
g(t) +

α

M(α)Γ (α)
1

w(t)

∫ t

0
(t – s)α–1w(s)g(s) ds.

Proof Because f ∈ W 1(0, T], we have

lim
t→0+

∫ t

0
Eα

[
–μα(t – s)α

] d
ds

(wu)(s) ds = 0,

and (cDα
wu)(0+) = 0. Thus, a necessary condition for the existence of a solution to the prob-

lem (2.4) is that g(0) = 0. We have

M(α)
1 – α

1
w(t)

(
Eα

[
–μαtα

] ∗ d
dt

(wu)(t)
)

= g(t),
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or

Eα

[
–μαtα

] ∗ d
dt

(wu)(t) =
1 – α

M(α)
w(t)g(t).

Applying the Laplace transform to the above equation and using the convolution result,
we have

L
(
Eα

[
–μαtα

])
L
(

d
dt

(wu)(t)
)

=
1 – α

M(α)
L
(
w(t)g(t)

)
.

Since

L
(
Eα

[
–μαtα

])
=

sα–1

sα + μα

,
∣∣
∣∣
μα

sα

∣∣
∣∣ < 1,

we have

sα–1

sα + μα

(
sL(wu)(t) – (wu)(0)

)
=

1 – α

M(α)
L
(
w(t)g(t)

)
.

The above equation yields

L(wu)(t) = (wu)(0)
1
s

+
1 – α

M(α)

[
L(wg)(t) +

μα

sα
L(wg)(t)

]

= (wu)(0)
1
s

+
1 – α

M(α)

[
L(wg)(t) +

μα

Γ (α)
L
(
tα–1)L(wg)(t)

]
.

Applying the inverse Laplace operator we have

(wu)(t) = (wu)(0) +
1 – α

M(α)
(wg)(t) +

1 – α

M(α)
μα

Γ (α)
(
tα–1 ∗ (wg)(t)

)

= (wu)(0) +
1 – α

M(α)
(wg)(t) +

α

M(α)Γ (α)

∫ t

0
(t – s)α–1w(s)g(s) ds,

which completes the proof. �

The result in Theorem 2.1 suggests to define the fractional integral operator (cIα
wf )(t) as

follows.

Definition 2.2 For 0 < α < 1, the weighted Atangana–Baleanu fractional integral of order
α, of f ∈ L1(0, T) with respect to the weight function w is defined by

(
cIα

wf
)
(t) =

1 – α

M(α)
f (t) +

α

M(α)Γ (α)
1

w(t)

∫ t

0
(t – s)α–1w(s)f (s) ds. (2.5)

Remark 2.1 For w(t) = 1, the weighted Atangana–Baleanu fractional integral, coincides
with the regular Atangana–Baleanu fractional integral; see [1, 3, 14].

The following result will be used throughout the text.
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Proposition 2.1 For 0 < α < 1, the following holds true.
1.

L
(

d
dt

(
Eα

(
atα

)))
=

a
sα – a

,
∣
∣∣∣

a
sα

∣
∣∣∣ < 1. (2.6)

2. For arbitrary c1, c2 ∈ R, and f , g ∈ W 1(0, T],

c1
(
f ′ ∗ g

)
(t) + c2

(
f ∗ g ′)(t) = (c1 + c2)

(
f ′ ∗ g

)
(t) + c2

(
f (0)g(t) – f (t)g(0)

)
. (2.7)

Proof
1. We have

L
(

d
dt

(
Eα

(
atα

)))
= L

(
d
dt

∞∑

n=0

antnα

Γ (αn + 1)

)

= L

( ∞∑

n=1

antαn–1

Γ (αn)

)

=
∞∑

n=1

an

Γ (αn)
L
(
tαn–1)

=
∞∑

n=1

an

Γ (αn)
Γ (αn)

sαn

=
∞∑

n=1

an

sαn

=
∞∑

n=1

(
a
sα

)n

=
a
sα

1 – a
sα

=
a

sα – a
,

∣∣
∣∣

a
sα

∣∣
∣∣ < 1,

which completes the proof.
2. The proof is straightforward using integration by parts.

�

Theorem 2.2 Let u, g ∈ W 1(0, T], if λu(0) + g(0) = 0, then the unique solution of the linear
fractional differential equation,

(
cDα

wu
)
(t) = λu(t) + g(t), t > 0, 0 < α < 1, (2.8)

is given by

w(t)u(t) =
M(α)(wu)(0)

δα

Eα

(
λαtα

δα

)
+

1 – α

δα

(wg)(t)

+
M(α)
λδα

d
dt

Eα

(
λαtα

δα

)
∗ (wg)(t), (2.9)

where δα = M(α) – λ(1 – α) �= 0, λ �= 0.
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Proof We have

λ(wu)(t) + (wg)(t) = w(t)
(

cDα
wu

)
(t) =

M(α)
1 – α

Eα

(
–μαtα

) ∗ (wu)′(t).

Applying the Laplace transform to the above equation yields

L
(
λ(wu)(t) + (wg)(t)

)
=

M(α)
1 – α

L
(
Eα

(
–μαtα

))
L
(
(wu)′(t)

)

=
M(α)
1 – α

sα–1

sα + μα

(
sL

(
(wu)(t)

)
– (wu)(0)

)
,

∣∣
∣∣
μα

sα

∣∣
∣∣ < 1.

Direct calculations lead to

L
(
(wu)(t)

)
=

(1 – α)sα + α

(M(α) – λ(1 – α))sα – λα
L
(
(wg)(t)

)

+ M(α)(wu)(0)
sα–1

(M(α) – λ(1 – α))sα – λα

=
(1 – α)sα + α

δαsα – λα
L
(
(wg)(t)

)
+ M(α)(wu)(0)

sα–1

δαsα – λα

=
1 – α

δα

sα–1

sα – λα
δα

sL
(
(wg)(t)

)
+

α

δα

1
sα – λα

δα

L
(
(wg)(t)

)

+
M(α)(wu)(0)

δα

sα–1

sα – λα
δα

=
1 – α

δα

L
(

Eα

(
λαtα

δα

))(
L
(
(wg)′(t)

)
+ (wg)(0)

)

+
1
λ

L
(

d
dt

Eα

(
λαtα

δα

))
L
(
(wg)(t)

)

+
M(α)(wu)(0)

δα

L
(

Eα

(
λαtα

δα

))
,

hence,

(wu)(t) =
M(α)(wu)(0)

δα

Eα

(
λαtα

δα

)

+
1
λ

d
dt

Eα

(
λαtα

δα

)
∗ (wg)(t) +

1 – α

δα

Eα

(
λαtα

δα

)
∗ (wg)′(t). (2.10)

Using the result in Eq. (2.7) we have

1
λ

d
dt

Eα

(
λαtα

δα

)
∗ (wg)(t) +

1 – α

δα

Eα

(
λαtα

δα

)
∗ (wg)′(t)

=
M(α)
λδα

d
dt

Eα

(
λαtα

δα

)
∗ (wg)(t) +

1 – α

δα

(
(wg)(t) – (wg)(0)Eα

(
λαtα

δα

))
, (2.11)

and hence the result is proved by substituting Eq. (2.11) in Eq. (2.10). �
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3 Infinite series representation and properties of the weighted
Atangana–Baleanu operators

The infinite series representation of the Atangana–Baleanu fractional derivative was intro-
duced in [18] and has been used to establish several properties of the Atangana–Baleanu
fractional operators. Given the Riemann–Liouville fractional integral

(
Iα

0 f
)
(t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds,

and the infinite series representation of the Mittag-Leffler function

Eα(x) =
∞∑

n=0

xn

Γ (αn + 1)
,

we have

(
cIα

wf
)
(t) =

1 – α

M(α)
f (t) +

α

M(α)
1

w(t)
(
Iα

0 wf
)
(t) (3.1)

and

(
cDα

wf
)
(t) =

M(α)
1 – α

1
w(t)

∫ t

0
Eα

[
–μα(t – s)α

] d
ds

(wf )(s) ds (3.2)

=
M(α)
1 – α

1
w(t)

∫ t

0

∞∑

n=0

(–1)nμn
α

Γ (αn + 1)
(t – s)αn d

ds
(wf )(s) ds

=
M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

Γ (αn + 1)

∫ t

0
(t – s)αn d

ds
(wf )(s) ds

=
M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0
d
dt

(wf )
)

(t). (3.3)

Since Eα([–μα(t –s)α] is continuous, w ∈ C1[0, T] and f ∈ W 1(0, T], the integral in Eq. (3.2)
converges for a finite interval [0, T], and hence the infinite series in Eq. (3.3) is convergent
for all t ∈ [0, T].

Theorem 3.1 If f ∈ W 1(0, T], then, for 0 < α < 1,
1. (cIα

wcDα
wf )(t) = f (t) – w(0)f (0)

w(t) , and
2. (cDα

wcIα
wf )(t) = f (t) – w(0)f (0)

w(t) .

Proof
1. We have

(
cIα

wcDα
wf

)
(t) =

1 – α

M(α)
(

cDα
wf

)
(t) +

α

M(α)
1

w(t)
(
Iα

0
(
wcDα

wf
))

(t)

=
1 – α

M(α)

[
M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
(t)

]

+
α

M(α)
1

w(t)

[

Iα
0

(
M(α)
1 – α

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
)

(t)

]
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=
1

w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
(t)

+
μα

w(t)

∞∑

n=0

(–1)nμn
α

(
Iα(n+1)+1

0 (wf )′
)
(t)

=
1

w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
(t)

+
μα

w(t)

∞∑

n=1

(–1)n–1μn–1
α

(
Iαn+1

0 (wf )′
)
(t)

=
1

w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
(t)

–
1

w(t)

∞∑

n=1

(–1)nμn
α

(
Iαn+1

0 (wf )′
)
(t)

=
1

w(t)
(
I1

0 (wf )′
)
(t) =

1
w(t)

(
w(t)f (t) – w(0)f (0)

)
,

which completes the proof.
2. We have

(
cDα

wcIα
wf

)
(t) =

M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0
(
wcIα

wf
)′)(t)

=
M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

[
Iαn+1

0 (
(

1 – α

M(α)
(wf )′

+
α

M(α)
(
Iα

0 (wf )
)′
)

(t)
]

=
1

1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

[
(1 – α)

((
Iαn

0 (wf )
)
(t) – (wf )(0)

(
Iαn

0 1
)
(t)

)

+ α
((

Iαn
0

(
Iα

0 (wf )
))

(t) –
(
Iα

0 (wf )
)
(0)

(
Iαn

0 1
)
(t)

)]

=
1

w(t)

∞∑

n=0

(–1)nμn
α

[(
Iαn

0 (wf )
)
(t) – (wf )(0)

(
Iαn

0 1
)
(t)

+ μα

((
Iαn+α

0 (wf )
)
(t) – (wf )(0)

(
Iαn+α

0 1
)
(t)

)]

=
1

w(t)

∞∑

n=0

(–1)nμn
α

[(
Iαn

0 (wf )
)
(t) – (wf )(0)

(
Iαn

0 1
)
(t)

]

+
1

w(t)

∞∑

n=0

(–1)nμα(n+1)
α

[(
Iα(n+1)

0 (wf )
)
(t) – (wf )(0)

(
Iα(n+1)

0 1
)
(t)

]

=
1

w(t)

∞∑

n=0

(–1)nμn
α

[(
Iαn

0 (wf )
)
(t) – (wf )(0)

(
Iαn

0 1
)
(t)

]

–
1

w(t)

∞∑

n=1

(–1)nμαn
α

[(
Iαn

0 (wf )
)
(t) – (wf )(0)

(
Iαn

0 1
)
(t)

]
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=
1

w(t)
((

I0
0 (wf )

)
(t) – (wf )(0)

(
I0

0 1
)
(t)

)

=
1

w(t)
(
(wf )(t) – (wf )(0)

)
, (3.4)

which completes the proof. �

As a direct result of Theorem 3.1 we have the following.

Corollary 3.1 If f ∈ W 1(0, T], and f (0) = 0, then, for 0 < α < 1,
1. (cIα

wcDα
wf )(t) = f (t), and

2. (cDα
wcIα

wf )(t) = f (t).

Theorem 3.2 If f ∈ W 1(0, T], then, for α,β ∈ (0, 1),
1. cDα

w(cDβ
wf )(t) = cDβ

w(cDα
wf )(t), and

2. cIα
w(cIβ

wf )(t) = cIβ
w(cIα

wf )(t).
That is, the weighted Atangana–Baleanu fractional operators in the Caputo sense are com-
mutative operators.

Proof
1. We have

cDα
w
(

cDβ
wf

)
(t) =

M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

0
(
wcDβ

wf
)′)(t) (3.5)

and

(
wcDβ

wf
)
(t) =

M(β)
1 – β

∞∑

k=0

(–1)kμk
β

(
Iβk+1

0 (wf )′
)
(t).

Thus,

d
dt

(
wcDβ

wf
)
(t) =

M(β)
1 – β

∞∑

k=0

(–1)kμk
β

(
Iβk

0 (wf )′
)
(t). (3.6)

By substituting Eq. (3.6) in Eq. (3.5) we have

cDα
w
(

cDβ
wf

)
(t) =

M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(

Iαn+1
0

M(β)
1 – β

∞∑

k=0

(–1)kμk
β

(
Iβk

0 (wf )′
)
)

(t)

=
1

w(t)
M(α)M(β)

(1 – α)(1 – β)
∑

n,k=0

(–μα)n(–μβ )k(Iαn+βk+1
0 (wf )′

)
(t), (3.7)

and the result is proved since the last expression is symmetric in α and β .
2. We have

cIα
w
(

cIβ
wf

)
(t) =

1 – α

M(α)
(

cIβ
wf

)
(t) +

α

M(α)
1

w(t)
Iα

0
(
wcIβ

wf
)
(t)

=
1 – α

M(α)

(
1 – β

M(β)
f (t) +

β

M(β)
1

w(t)
Iβ

0 (wf )(t)
)
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+
α

M(α)
1

w(t)
Iα

0

(
1 – β

M(β)
(wf )(t) +

β

M(β)
Iβ

0 (wf )(t)
)

=
(1 – α)(1 – β)

M(α)M(β)
f (t) +

β(1 – α)
M(α)M(β)

1
w(t)

Iβ
0 (wf )(t)

+
α(1 – β)

M(α)M(β)
1

w(t)
Iα

0 (wf )(t)

+
αβ

M(α)M(β)
1

w(t)
Iα+β

0 (wf )(t),

which proves the result as the last expression is symmetric in α and β . �

The weighted Atangana–Baleanu fractional operators are defined for t > a and arbitrary
a ∈R

+ as listed below. However, we started with t > 0, in order to apply the Laplace trans-
form to define the weighted Atangana–Baleanu fractional integral.

Definition 3.1 For 0 < α < 1, the weighted Atangana–Baleanu fractional derivative of Ca-
puto sense of a function f (t) ∈ W 1(a, T], a ∈ R

+ with respect to the weight function w(t)
is defined by

(
cDα

a,wf
)
(t) =

M(α)
1 – α

1
w(t)

∫ t

a
Eα

[
–μα(t – s)α

] d
ds

(wf )(s) ds, t > a. (3.8)

Definition 3.2 For 0 < α < 1, the weighted Atangana–Baleanu fractional integral of order
α, of f ∈ L1(a, T), a ∈R

+ with respect to the weight function w is defined by

(
cIα

a,wf
)
(t) =

1 – α

M(α)
f (t) +

α

M(α)Γ (α)
1

w(t)

∫ t

a
(t – s)α–1w(s)f (s) ds. (3.9)

By applying analogous steps in the previous section one can easily verify the following:

(
cIα

a,wf
)
(t) =

1 – α

M(α)
f (t) +

α

M(α)
1

w(t)
(
Iα

a wf
)
(t)

and

(
cDα

a,wf
)
(t) =

M(α)
1 – α

1
w(t)

∞∑

n=0

(–1)nμn
α

(
Iαn+1

a
d
dt

(wf )
)

(t).

The properties obtained in Theorems 3.1 and 3.2 will be valid for the (cIα
a,wf )(t) and

(cDα
a,wf )(t) operators.

4 Concluding remarks
We have introduced the weighted Atangana–Baleanu fractional operators, and studied
their properties. By means of the Laplace transform, we have obtained the solutions of
related linear equations in closed forms. The weighted Atangana–Baleanu fractional in-
tegral is written in terms of the Riemann–Liouville integral, and the weighted Atangana–
Baleanu fractional derivative is written in terms of an infinite series of Riemann–Liouville
integrals. By means of these representations, we have established several properties of the
weighted Atangana–Baleanu fractional operators. Because of the type of the kernel, it is
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well known that dealing with the Atangana–Baleanu fractional operators is more difficult
than dealing with the Caputo–Fabrizio operators. Therefore, the problem of introducing
and studying the weighted Atangana–Baleanu fractional operators with respect to another
function z(t) and weight function w(t) with their properties is still open. Also, the question
whether the new models in the paper can be solved by the available numerical techniques
in the literature [25, 26, 37, 38] is a valid question, and this issue has to considered in a
future research.
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