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Abstract
In this paper, asymptotical stability of the exact solutions of nonlinear impulsive
ordinary differential equations is studied under Lipschitz conditions. Under these
conditions, asymptotical stability of Runge–Kutta methods is studied by the theory of
Padé approximation. And two simple examples are given to illustrate the conclusions.
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1 Introduction
The impulsive differential equations (IDEs) are widely applied in numerous fields of sci-
ence and technology: theoretical physics, mechanics, population dynamics, pharmacoki-
netics, industrial robotics, chemical technology, biotechnology, economics, etc. Recently,
the theory of IDEs has been an object of active research. Especially, stability of the exact
solutions of IDEs has been widely studied (see [1, 2, 9, 16, 18] and the references therein).
However, many IDEs cannot be solved analytically or their solving is more complicated.
Hence taking numerical methods is a good choice.

In recent years, the stability of numerical methods for IDEs has attracted more and more
attention (see [11, 12, 15, 17, 22, 29] etc.). Stability of Runge–Kutta methods with the con-
stant stepsize for scalar linear IDEs has been studied by [17]. Runge–Kutta methods with
variable stepsizes for multidimensional linear IDEs has been investigated in [12]. Colloca-
tion methods for linear nonautonomous IDEs has been considered in [29]. An improved
linear multistep method for linear IDEs has been investigated in [13]. Stability of the exact
and numerical solutions of nonlinear IDEs has been studied by the Lyapunov method in
[11]. Stability of Runge–Kutta methods for a special kind of nonlinear IDEs has been in-
vestigated by the properties of the differential equations without impulsive perturbations
in [15]. Stability and asymptotic stability of implicit Euler method for stiff IDEs in Banach
space has been studied by [22]. There is a lot of significant work on the numerical solu-
tion of impulsive differential equations, for example [6, 7, 10, 14, 23–27]. However, in this
work the authors did not investigate the stability of the numerical methods for non-stiff
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nonlinear IDEs under Lipschitz conditions. Consider the equation of the form

⎧
⎪⎨

⎪⎩

x′(t) = f (t, x(t)), t > t0, t �= τk , k = 1, 2, . . . ,
x(τ+

k ) = Ik(x(τk)), k = 1, 2, . . . ,
x(t+

0 ) = x0,
(1)

where x(t+) is the right limit of x(t), t0 = τ0 < τ1 < τ2 < · · · , limk→∞ τk = ∞, the function
f : [t0, +∞) × C

d → C
d is continuous in t and Lipschitz continuous with respect to the

second variable in the following sense: there is a positive real constant α such that

∥
∥f (t, x1) – f (t, x2)

∥
∥ ≤ α‖x1 – x2‖ (2)

for arbitrary t ∈ [t0,∞), x1, x2 ∈ C
d , where ‖ · ‖ is any convenient norm on C

d . And also
assume that each function Ik , k = 1, 2, . . . is Lipschitz continuous i.e. there is a positive
constant βk such that

∥
∥Ik(x) – Ik(y)

∥
∥ ≤ βk‖x – y‖, for ∀x, y ∈C

d. (3)

Definition 1.1 (See [1]) A function x : [t0,∞) →C
d is said to be a solution of (1), if

(i) limt→t+
0

x(t) = x0,
(ii) for t ∈ (t0, +∞), t �= τk , k = 1, 2, . . . , x(t) is differentiable and x′(t) = f (t, x(t)),
(iii) x(t) is left continuous in (t0, +∞) and x(τ+

k ) = Ik(x(τk)), k = 1, 2, . . . .

2 Asymptotical stability of the exact solution
In this section, we study the asymptotical stability of the exact solution of (1). In order to
investigate the asymptotical stability of x(t), consider Eq. (1) with another initial data:

⎧
⎪⎨

⎪⎩

y′(t) = f (t, y(t)), t > t0, t �= τk , k ∈ Z
+,

y(τ+
k ) = Ik(y(τk)), k ∈ Z

+,
y(t+

0 ) = y0,
(4)

where Z
+ = {1, 2, . . .}.

Definition 2.1 ([1, 18]) The exact solution x(t) of (1) is said to be
1 stable if, for an arbitrary ε > 0, there exists a positive number δ = δ(ε) such that, for

any other solution y(t) of (4), ‖x0 – y0‖ < δ implies

∥
∥x(t) – y(t)

∥
∥ < ε, ∀t > t0;

2 asymptotically stable, if it is stable and limt→∞ ‖x(t) – y(t)‖ = 0.

Theorem 2.2 Assume that there exists a positive constant γ such that τk –τk–1 ≤ γ , k ∈ Z
+.

The exact solution of (1) is asymptotically stable if there is a positive constant C such that

βkeα(τk –τk–1) ≤ C < 1 (5)

for arbitrary k ∈ Z
+.
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Proof For arbitrary t ∈ (τk , τk+1], k = 0, 1, 2, . . . , we obtain

∥
∥x(t) – y(t)

∥
∥ =

∥
∥
∥
∥x

(
τ+

k
)

– y
(
τ+

k
)

+
∫ t

τk

(
f
(
s, x(s)

)
– f

(
s, y(s)

))
ds

∥
∥
∥
∥

≤ ∥
∥x

(
τ+

k
)

– y
(
τ+

k
)∥
∥ +

∫ t

τk

∥
∥f

(
s, x(s)

)
– f

(
s, y(s)

)∥
∥ds

≤ ∥
∥x

(
τ+

k
)

– y
(
τ+

k
)∥
∥ + α

∫ t

τk

∥
∥x(s) – y(s)

∥
∥ds.

By the Gronwall theorem, for arbitrary t ∈ (τk , τk+1], k = 0, 1, 2, . . . , we have

∥
∥x(t) – y(t)

∥
∥ ≤ ∥

∥x
(
τ+

k
)

– y
(
τ+

k
)∥
∥eα(t–τk ),

which implies, by Definition 2.1(iii),

∥
∥x(τk+1) – y(τk+1)

∥
∥ = lim

t→τ–
k+1

∥
∥x(t) – y(t)

∥
∥ ≤ ∥

∥x
(
τ+

k
)

– y
(
τ+

k
)∥
∥eα(τk+1–τk ),

which also implies

∥
∥x

(
τ+

k+1
)

– y
(
τ+

k+1
)∥
∥

=
∥
∥Ik+1

(
x(τk+1)

)
– Ik+1

(
y(τk+1)

)∥
∥

≤ βk+1
∥
∥x(τk+1) – y(τk+1)

∥
∥

≤ ∥
∥x

(
τ+

k
)

– y
(
τ+

k
)∥
∥βk+1eα(τk+1–τk ).

Therefore, by the method of introduction and the conditions (3) and (5), for arbitrary
t ∈ (τk , τk+1], k = 0, 1, 2, . . . , we obtain

∥
∥x(t) – y(t)

∥
∥

≤ ‖x0 – y0‖
(
β1eα(τ1–τ0))(β2eα(τ2–τ1))(βkeα(τk –τk–1))eα(t–τk )

≤ Ck‖x0 – y0‖eα(t–τk )

≤ Ck‖x0 – y0‖eα(τk+1–τk )

≤ Ck‖x0 – y0‖eαγ ,

which implies ‖x(τk+1) – y(τk+1)‖ ≤ Ck‖x0 – y0‖eαγ and ‖x(τ+
k+1) – y(τ+

k+1)‖ ≤ ‖x0 – y0‖Ck+1.
Hence for an arbitrary ε > 0, there exists δ = e–αγ ε such that ‖x0 – y0‖ < δ implies

∥
∥x(t) – y(t)

∥
∥ ≤ Ck‖x0 – y0‖eαγ ≤ ‖x0 – y0‖eαγ < ε

for arbitrary t ∈ (τk , τk+1], k = 0, 1, 2, . . . , i.e.

∥
∥x(t) – y(t)

∥
∥ < ε, ∀t > t0.
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So the exact solution of (1) is stable. Obviously, for arbitrary t ∈ (τk , τk+1], k = 0, 1, 2, . . . ,

∥
∥x(t) – y(t)

∥
∥ ≤ Ck‖x0 – y0‖eαγ → 0, k → ∞.

Similarly, we also obtain

∥
∥x(τk+1) – y(τk+1)

∥
∥ ≤ Ck‖x0 – y0‖eαγ → 0, k → ∞,

and

∥
∥x

(
τ+

k+1
)

– y
(
τ+

k+1
)∥
∥ ≤ Ck+1‖x0 – y0‖ → 0, k → ∞.

Consequently, the exact solution of (1) is asymptotically stable. �

From the proof of Theorem 2.2, we can obtain the following result.

Remark 2.3 If the condition (5) of Theorem 2.2 is changed into the weaker condition

βkeα(τk –τk–1) ≤ 1, ∀k ∈ Z
+, (6)

then the exact solution of (1) is stable.

3 Runge–Kutta methods
In this section, Runge–Kutta methods for (1) can be constructed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xi
k,l = xk,l + hk

∑s
j=1 aijf (tj

k,l, Xj
k,l), k ∈N, i = 1, 2, . . . , s,

xk,l+1 = xk,l + hk
∑s

i=1 bif (ti
k,l, Xi

k,l), l = 0, 1, 2, . . . , m – 1,

xk+1,0 = Ik+1(xk,m),

x0,0 = x0,

(7)

where hk = τk+1–τk
m , tk,l = τk + lhk , ti

k,l = tk,l + cihk , xk,l is an approximation to the exact so-
lution x(tk,l) and Xi

k,l is an approximation to the exact solution x(ti
k,l), k ∈ N = {0, 1, 2, . . .},

l = 0, 1, . . . , m – 1, i = 1, 2, . . . , s, s is referred to as the number of stages. The weights bi, the
abscissae ci =

∑s
j=1 aij and the matrix A = [aij]s

i,j=1 will be denoted by (A, b, c). Similarly, the
Runge–Kutta methods for (4) can be constructed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Y i
k,l = yk,l + hk

∑s
j=1 aijf (tj

k,l, Y j
k,l), k ∈N, i = 1, 2, . . . , s,

yk,l+1 = yk,l + hk
∑s

i=1 bif (ti
k,l, Y i

k,l), l = 0, 1, 2, . . . , m – 1,

yk+1,0 = Ik+1(yk,m),

y0,0 = y0.

(8)

Definition 3.1 The Runge–Kutta method (7) for impulsive differential equation (1) is said
to be

1 stable, if ∃M > 0, m ≥ M, hk = τk+1–τk
m , k ∈ N,

(i) I – zA is invertible for all z = αhk ,
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(ii) for an arbitrary ε > 0, there exists such a positive number δ = δ(ε) that, for any
other numerical solutions of (8), ‖x0 – y0‖ < δ implies

∥
∥|Xk – Yk|

∥
∥ < ε, ∀k ∈ N,

where Xk = (xk,0, xk,1, . . . , xk,m)T , Yk = (yk,0, yk,1, . . . , yk,m)T and

∥
∥|Xk – Yk|

∥
∥ = max

0≤l≤m

{‖xk,l – yk,l‖
}

;

2 asymptotically stable, if it is stable and if ∃M1 > 0, for any m ≥ M1, hk = τk+1–τk
m , k ∈N,

the following holds:

lim
k→∞

∥
∥|Xk – Yk|

∥
∥ = 0.

Lemma 3.2 ([3, 5, 8, 21]) The (j, k)-Padé approximation to ez is given by

R(z) =
Pj(z)
Qk(z)

, (9)

where

Pj(z) = 1 +
j

j + k
· z +

j(j – 1)
(j + k)(j + k – 1)

· z2

2!
+ · · · +

j!k!
(j + k)!

· zj

j!
,

Qk(z) = 1 –
k

j + k
· z +

k(k – 1)
(j + k)(j + k – 1)

· z2

2!
+ · · · + (–1)k · k!j!

(j + k)!
· zk

k!
,

with error

ez – R(z) = (–1)k · j!k!
(j + k)!(j + k + 1)!

· zj+k+1 + O
(
zj+k+2).

It is the unique rational approximation to ez of order j + k, such that the degrees of numer-
ator and denominator are j and k, respectively.

Lemma 3.3 ([19, 20, 28]) Assume that R(z) is the (j, k)-Padé approximation to ez . Then
R(z) < ez for all z > 0 if and only if k is even, when z > 0.

Theorem 3.4 Assume that R(z) is the stability function of Runge–Kutta method (7) i.e.

R(z) = 1 + zbT (I – zA)–1e =
Pj(z)
Qk(z)

.

Under the conditions of Theorem 2.2, Runge–Kutta method (7) with nonnegative coeffi-
cients (aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ s, 1 ≤ j ≤ s) for (1) is asymptotically stable for hk = τk+1–τk

m ,
k ∈ N, m ∈ Z

+ and m ≥ M, if k is even, where M = inf{m : I – zA is invertible and
(I – zA)–1e ≥ 0, z = αhk , k ∈ N, m ∈ Z

+}. (The last inequality should be interpreted entry-
wise.)
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Proof Because aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ s, 1 ≤ j ≤ s, we obtain

∥
∥Xi

k,l – Y i
k,l

∥
∥

=

∥
∥
∥
∥
∥

xk,l – yk,l + hk

s∑

j=1

aij
(
f
(
tj
k,l, Xj

k,l
)

– f
(
tj
k,l, Y j

k,l
))

∥
∥
∥
∥
∥

≤ ‖xk,l – yk,l‖ + hk

s∑

j=1

aij
∥
∥f

(
tj
k,l, Xj

k,l
)

– f
(
tj
k,l, Y j

k,l
)∥
∥

≤ ‖xk,l – yk,l‖ + αhk

s∑

j=1

aij
∥
∥Xj

k,l – Y j
k,l

∥
∥.

And when m ≥ M, (I – zA)–1e ≥ 0, z = αhk , k ∈ Z
+, so

[∥
∥Xi

k,l – Y i
k,l

∥
∥
] ≤ (I – αhkA)–1e‖xk,l – yk,l‖,

where [‖Xi
k,l – Y i

k,l‖] = (‖X1
k,l – Y 1

k,l‖,‖X2
k,l – Y 2

k,l‖, . . . ,‖Xs
k,l – Y s

k,l‖)T . By Lemma 3.2 and
Lemma 3.3, we can obtain

‖xk,l+1 – yk,l+1‖

=

∥
∥
∥
∥
∥

xk,l – yk,l + hk

s∑

j=1

bj
(
f
(
tj
k,l, Xj

k,l
)

– f
(
tj
k,l, Y j

k,l
))

∥
∥
∥
∥
∥

≤ ‖xk,l – yk,l‖ + hk

s∑

j=1

bj
∥
∥f

(
tj
k,l, Xj

k,l
)

– f
(
tj
k,l, Y j

k,l
)∥
∥

≤ ‖xk,l – yk,l‖ + αhk

s∑

j=1

bj
∥
∥Xj

k,l – Y j
k,l

∥
∥

= ‖xk,l – yk,l‖ + αhkbT[∥
∥Xi

k,l – Y i
k,l

∥
∥
]

≤ (
1 + αhkbT (I – αhkA)–1e

)‖xk,l – yk,l‖
= R(αhk)‖xk,l – yk,l‖
≤ eαhk ‖xk,l – yk,l‖.

Hence for arbitrary k = 0, 1, 2, . . . and l = 0, 1, . . . , m, we have

‖xk,l – yk,l‖ ≤ ‖xk,0 – yk,0‖eαlhk .

Therefore, by the method of the introduction and the condition (5), we obtain

‖xk,l – yk,l‖
≤ ‖x0 – y0‖

(
β1eα(τ1–τ0))(β2eα(τ2–τ1))(βkeα(τk –τk–1))eαlhk

≤ ‖x0 – y0‖Ckeαγ ,
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which implies that Runge–Kutta method for (1) is asymptotically stable for hk = τk+1–τk
m ,

k ∈N, m ∈ Z
+ and m ≥ M. �

Remark 3.5
(1) For z sufficiently close to zero, the matrix I – zA is invertible and (I – zA)–1e ≥ 0.

Therefore, taking stepsizes hk = τk+1–τk
m , k ∈N, m ∈ Z

+ and m ≥ M and
M = inf{m : I – zA is invertible, (I – zA)–1e ≥ 0, z = αhk , k ∈N, m ∈ Z

+} in
Theorem 3.4 is reasonable.

(2) Under the conditions of Remark 2.3, Runge–Kutta method (7) with nonnegative
coefficients (aij ≥ 0 and bi ≥ 0, 1 ≤ i ≤ s, 1 ≤ j ≤ s) for (1) is stable for hk = τk+1–τk

m ,
k ∈N, m ∈ Z

+ and m ≥ M, if k is even, where M = inf{m : I – zA is invertible and
(I – zA)–1e ≥ 0, z = αhk , k ∈N, m ∈ Z

+}.

By Theorem 3.4 as k = 0, we can obtain the following corollary.

Corollary 3.6 Under the conditions of Theorem 2.2, the following p-stage pth order explicit
Runge–Kutta methods with nonnegative coefficients (aij ≥ 0 and bi ≥ 0, 1 ≤ j < i, 1 ≤ i ≤ p)
for (1) are asymptotically stable for hk = τk+1–τk

m , k ∈N, m ∈ Z+, when p ≤ 4.
(1) Explicit Euler method;
(2) 2-stage second order explicit Runge–Kutta methods

0 0 0
1
2

1
2 0

0 1

0 0 0
1 1 0

1
2

1
2

0 0 0
3
4

3
4 0
1
3

2
3

Modified Euler method Heun’s method, order 2 Ralston’s method

(3) 3-stage third order explicit Runge–Kutta methods

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

0 0 0 0
2
3

2
3 0 0

2
3

1
3

1
3 0

1
4 0 3

4

Heun’s method, order 3 Runge–Kutta method, order 3

(4) The classical 4-stage fourth order explicit Runge–Kutta method

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Unfortunately, we cannot obtain the p-stage explicit Runge–Kutta methods of order p
for p ≥ 5, because of the Butcher barriers (see [4, Theorem 370B, pp. 259] or [8, Theo-
rem 5.1 pp. 173]).
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In the following of this section, we will consider the θ -method for (1):

⎧
⎪⎨

⎪⎩

xk,l+1 = xk,l + hk(1 – θ )f (tk,l, xk,l) + hkθ f (tk,l+1, xk,l+1),
xk+1,0 = Ik+1(xk,m),
x0,0 = x0,

(10)

where hk = τk+1–τk
m , m ≥ 1, m is an integer, k = 0, 1, 2, . . . .

Lemma 3.7 (See [19]) For m > sup{ατk – τk–1} and zk = hkα, h = τk –τk–1
m , m, k ∈ Z

+, then

(

1 +
zk

1 – zkθ

)m

≤ ehkα

if and only if 0 ≤ θ ≤ ϕ(1), where ϕ(x) = 1
x – 1

ex–1 .

Theorem 3.8 Under the conditions of Theorem 2.2, if 0 ≤ θ ≤ ϕ(1), there is a positive M
such that θ method for (1) is asymptotically stable for hk = τk+1–τk

m , k ∈ N, m ∈ Z
+ and

m ≥ M .

Proof Obviously, we can obtain

‖xk,l+1 – yk,l+1‖
≤ ∥

∥xk,l – yk,l + (1 – θ )hk
(
f (tk,l, xk,l) – f (tk,l, yk,l)

)∥
∥

+ θhk
∥
∥f (tk,l+1, xk,l+1) – f (tk,l+1, yk,l+1)

∥
∥

≤ (
1 + (1 – θ )αhk

)‖xk,l – yk,l‖ + θαhk‖xk,l+1 – yk,l+1‖,

which implies

‖xk,l+1 – yk,l+1‖ ≤ 1 + (1 – θ )αhk

1 – θαhk
· ‖xk,l – yk,l‖.

Therefore, by Lemma 3.7 and the method of introduction, we obtain

‖xk,l+1 – yk,l+1‖ ≤ eαhk ‖xk,l – yk,l‖.

So θ -method for (1) is asymptotically stable for hk = τk+1–τk
m , k ∈ N, m ∈ Z

+ and m >
sup{α(τk+1 – τk)}, if 0 ≤ θ ≤ ϕ(1). �

4 Numerical experiments
In this section, two simple numerical examples in real space are given.

Example 4.1 Consider the following scalar impulsive differential equation:

⎧
⎪⎨

⎪⎩

x′(t) = sin(x(t)), t > 0, t �= τk , τk = k + 2–k , k = 1, 2, . . . ,
x(τ+

k ) = x(τk )
3 , k = 1, 2, . . . ,

x(0+) = x0.
(11)
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Figure 1 Explicit Euler method for (11)

Figure 2 The classical 4-stage fourth order Runge–Kutta method for (11)

Obviously, for arbitrary x, y ∈ R, we obtain

∣
∣sin(x) – sin(y)

∣
∣ =

∣
∣
∣
∣2 cos

(
x + y

2

)

sin

(
x – y

2

)∣
∣
∣
∣ ≤ 2

∣
∣
∣
∣
x – y

2

∣
∣
∣
∣ = |x – y|,

which implies the Lipschitz coefficient α = 1. Hence, for k ≥ 2,

βkeα(τk –τk–1) =
ek+2–k –(k–1)–2–(k–1)

3
<

e
3

< 1.

Therefore, by Theorem 2.2, the exact solution of (11) is asymptotically stable.
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Figure 3 Explicit Euler method for (12) as h = 1
10

Figure 4 The classical 4-stage fourth order Runge–Kutta method for (12) as h = 1
10

By Corollary 3.6, the explicit Euler method (see Fig. 1) and classical 4-stage fourth order
explicit Runge–Kutta method (see Fig. 2) for (11) are asymptotically stable for h0 = 3

2m and
hk = 1+2–(k+1)–2–k

m , k ∈ Z
+, m ∈ Z

+ and m ≥ 2.

Example 4.2 Consider the following scalar nonlinear impulsive differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) =
√

1+x2(t)
2 , t ≥ 0, t �= k, k = 1, 2, . . . ,

x(t+) = sin(x(t))
2 , t = k, k = 1, 2, . . . ,

x(0+) = x0.
(12)
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Table 1 The errors Runge–Kutta methods for (11)

m Explicit Euler method Ralston’s method Classical fourth-order method
AE RE AE RE AE RE

10 0.02781 0.01871 7.58538e-04 5.10274e-04 5.35551e-07 3.60269e-07
20 0.01375 0.00925 1.94278e-04 1.30692e-04 3.36904e-08 2.26638e-08
40 0.00683 0.00460 4.91483e-05 3.30624e-05 2.11236e-09 1.42100e-09
80 0.00341 0.00229 1.23593e-05 8.31421e-06 1.32228e-10 8.89510e-11
160 0.00170 0.00114 3.09886e-06 2.08462e-06 8.26939e-12 5.56287e-12

Ratio 2.01119 2.01119 3.95556 3.95556 15.95266 15.95266

Table 2 The errors Runge–Kutta methods for (12)

m Explicit Euler method Ralston’s method Classical fourth-order method
AE RE AE RE AE RE

10 0.00710 0.00635 3.89245e-05 3.48363e-05 3.99870e-09 3.57871e-09
20 0.00356 0.00319 9.81334e-06 8.78265e-06 2.61135e-10 2.33708e-10
40 0.00178 0.00160 2.46328e-06 2.20456e-06 1.66902e-11 1.49372e-11
80 8.92885e-04 7.99105e-04 6.17041e-07 5.52233e-07 1.05427e-12 9.43538e-13
160 4.46619e-04 3.99711e-04 1.54411e-07 1.38194e-07 6.55032e-14 5.86234e-14

Ratio 1.99666 1.99666 3.98463 3.98463 15.72119 15.72119

Obviously, for arbitrary x, y ∈R, we have

∣
∣
∣
∣

√
1 + x2

2
–

√
1 + y2

2

∣
∣
∣
∣ ≤ 1

2
|x – y|,

which implies the Lipschitz constant α = 1
2 . So

βkeα(τk –τk–1) =
(

1
2

)

e
1
2 (k–(k–1)) =

√
e

2
< 1.

Therefore, by Theorem 2.2, the exact solution of (12) is asymptotically stable.
By Corollary 3.6, the explicit Euler method (see Fig. 3) and classical 4-stage fourth order

explicit Runge–Kutta methods (see Fig. 4) for (12) are asymptotically stable for hk = 1
m ,

k ∈N, m is an arbitrary positive integer.
From Tables 1 and 2, we can see that the Runge–Kutta methods conserve their orders

of convergence.
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