
Hang et al. Advances in Difference Equations         (2020) 2020:10 
https://doi.org/10.1186/s13662-019-2477-6

R E S E A R C H Open Access

A hybrid predator–prey model with general
functional responses under seasonal
succession alternating between Gompertz
and logistic growth
Lei Hang1, Long Zhang1* , Xiaowen Wang1, Hongli Li1 and Zhidong Teng1

*Correspondence:
longzhang_xj@sohu.com
1College of Mathematics and
System Sciences, Xinjiang
University, Urumqi, P.R. China

Abstract
In this paper, a hybrid predator–prey model with two general functional responses
under seasonal succession is proposed. The model is composed of two subsystems:
in the first one, the prey follows the Gompertz growth, and it turns to the logistic
growth in the second subsystem since seasonal succession. The two processes are
connected by impulsive perturbations. Some very general, weak criteria on the
ultimate boundedness, permanence, existence, uniqueness and global attractivity of
predator-free periodic solution are established. We find that the hybrid population
model with seasonal succession has more survival possibilities of natural species than
the usual population models. The theoretical results are illustrated by special
examples and numerical simulations.
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1 Introduction
The seasonal fluctuations of populations over time is due to the changes of environment
in external (e.g., seasonal alternation, etc.) and internal (e.g., breeding, mating, predation,
etc.). Theoretically, it has been shown that seasonality could influence both species growth
and community structures [1, 2]. Recently, many remarkable results with population mod-
els under seasonal succession have been obtained [3–10].

Generally, we choose hybrid models to describe global dynamics of species with sea-
sonal succession. However, these hybrid models in non-equilibrium are more difficult to
investigate mathematically than models in equilibrium for fewer analytical tools. Herb and
Stefan [3] studied a macrophyte growth model based on process to observe the light lim-
ited growth of individual macrophyte and competition between two species. They found
the significant effect of seasonal succession on biomass production. Levy et al. [4] studied
a class of predator–prey-subsidy model in non-equilibrium and found the role of season-
ality on predator–prey interactions. Klausmeier [5] obtained some important results on
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population model with seasonal variation. Jennifer et al. [6] found the significant impacts
of two different seasons on the dynamics of the herbivore–plant defence system. Com-
paring these results mentioned above, we found that the analytic approaches on these
ecological models with seasonal succession are limited.

Hsu and Zhao [7] studied the following single species model alternating between logistic
growth and negative growth under seasonal succession:

⎧
⎨

⎩

ẋ = –λx, mω ≤ t ≤ mω + (1 – φ)ω,

ẋ = rx[1 – x
k ], mω + (1 – φ)ω ≤ t ≤ (m + 1)ω,

(1)

where λ, r, k are positive constants, r and k denote the intrinsic growth rate of species
x and the environment capacity, respectively, m ∈ N , φ ∈ (0, 1]. The system periodically
alternates between two continuous seasons (season 1 and season 2), i.e., the temporal in-
terval [mω, mω + (1 – φ)ω] and [mω + (1 – φ)ω, (m + 1)ω] represent season 1 and season 2,
respectively. The system is in season 1 during [mω, mω + (1 – φ)ω] and turns to season 2
without loss at time mω + (1 – φ)ω,. If the environment changes again, it will turn back to
season 1 at time (m + 1)ω. A number of results on the global dynamics of system (1) were
obtained including the convergence of forward orbits, stability of semi-trivial and positive
fixed points, and nonexistence and uniqueness of positive fixed point for the discrete-time
dynamical system.

It is well known that the dynamics of population growth can be usually depicted by two
main kinds of equations. One is the logistic equation, various significant findings about
population models with logistic growth have been found (see, e.g., [11–13]). The other is
the Gompertz equation, which has been proven to be a simple method to produce asym-
metrical types of S-shaped curves [14]. Actually, the Gompertz and logistic curves are
both “S-shaped” and can be used to describe population dynamics processes. Compared
with them, we can find that they are vastly different in the site of inflection point and the
Gompertz curve reaches the maximum rate of growth earlier than the latter.

In general, ecosystems are affected by temporal and spatial variation, human activity.
Therefore, the system may experience a sudden interference tautologically. Several kinds
of real processes can be described by impulsive differential equation, such as prey impul-
sive diffusion [15, 16], birth pulses [17] and impulsively biological control [18].

Li and Zhang [10] studied the following single species model under seasonal succession
with impulsive perturbations alternating between Gompertz and logistic equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = r1x ln k1
x , mω < t ≤ mω + (1 – φ)ω,

x(t+) = α1x(t), t = mω + (1 – φ)ω,

ẋ = r2x[1 – x
k2

], mω + (1 – φ)ω < t ≤ (m + 1)ω,

x(t+) = α2x(t), t = (m + 1)ω,

(2)

where ri and ki represent the intrinsic growth rate and environment capacity of the pop-
ulation in season i (i = 1, 2), respectively. x(t+) = limt→t+ x(t) represents the population
density of species x at the time of impulsive point t = mω + (1 – φ)ω (or t = (m + 1)ω)
(m = 0, 1, 2, . . .). Biologically, αi > 0 (i = 1, 2), and particularly, while αi > 1 (αi < 1), the pop-
ulation density increases (or decreases) proportionally. Criteria on the permanence, exis-
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tence, uniqueness and global stability of positive ω-periodic solution of system (2) were
given.

Hsu and Zhao [7] further studied the following two-species Lotka–Volterra competition
model under seasonal succession:

⎧
⎪⎪⎨

⎪⎪⎩

ẋi(t) = –λixi(t), mω ≤ t ≤ mω + (1 – φ)ω, i = 1, 2,

ẋ1(t) = r1x1(t)[1 – x1
K1

] – αx1x2, mω + (1 – φ)ω ≤ t ≤ (m + 1)ω,

ẋ2(t) = r2x2(t)[1 – x2
K2

] – βx1x2, mω + (1 – φ)ω ≤ t ≤ (m + 1)ω.

(3)

Criteria on the whole global dynamics including the global extinction of both species, the
competitive exclusion, the competitive coexistence of two species, and the saddle-point
structure were obtained.

Based on above consideration, we propose a hybrid predator–prey model with general
functional responses under seasonal succession alternating between the Gompertz and
logistic growths of prey connected by impulsive perturbations as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = r1x ln k1
x – Φ1(x)y,

ẏ = y[–ã1 + c̃1Φ1(x) – b̃1y],

⎫
⎬

⎭
2kω < t ≤ (2k + 1)ω,

x(t+) = α1x(t),

y(t+) = y(t),

⎫
⎬

⎭
t = (2k + 1)ω,

ẋ = r2x[1 – x
k2

] – Φ2(x)y,

ẏ = y[–ã2 + c̃2Φ2(x) – b̃2y],

⎫
⎬

⎭
(2k + 1)ω < t ≤ (2k + 2)ω,

x(t+) = α2x(t),

y(t+) = y(t),

⎫
⎬

⎭
t = (2k + 2)ω, k = 0, 1, 2, . . . ,

(4)

where ãi and b̃i denote the parameters of death rate and density dependence of the preda-
tor species y. Here, Φi(x) (i = 1, 2) are the general functional responses of predation. The
system consists of two alternating seasons (season 1 and 2) switching periodically, i.e.,
the population x and y live in season 1 during (2kω, (2k + 1)ω], x(t+) = limt→t+ x(t) and
y(t+) = limt→t+ y(t) represent the prey and predator population at the time of impulsive
point t = (2k + 1)ω, respectively. After this point, population x and y turn to live in sea-
son 2 over ((2k + 1)ω, (2k + 2)ω], and x(t+) = limt→t+ x(t) and y(t+) = limt→t+ y(t) denote
the prey and predator population at the time of impulsive point t = (2k + 2)ω, respectively,
then the system completes one cycle. With the changes of environment again, it turns back
to season 1 at time (2k + 2)ω, then it repeats the above processes. In this paper, we assume
that r1, k1, r2, k2, ãi, b̃i and αi (i = 1, 2) are all positive constants.

In this paper, our main goal is to study the global dynamics of system (4). Criteria on
the permanence, existence, uniqueness and global attractivity of nonnegative periodic so-
lution of system (4) are established. From our results, we find that the hybrid population
model with seasonal succession has very significant impact on the dynamical properties
of natural species, it permits more survival possibilities of life in a real ecosystem than the
usual population models.

The outline of our work is as follows. In Sect. 2, we give some useful hypotheses, lemmas
with respect to the stability of ω-periodic solution. In Sect. 3, we investigate the ultimate
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boundedness, permanence, existence, uniqueness and global attractivity of nonnegative
periodic solutions for system (4). In Sect. 4, the main results are illustrated and discussed
by some special examples and numerical simulations.

2 Preliminaries
The solution of model (4) denoted by (x(t), y(t)) is piecewise-continuous on (2kω, 2(k +
1)ω] (k = 0, 1, 2, . . .), and x(t+) = limt→t+ x(t) exists, where t = (2k + 1)ω (or (2k + 2)ω).
Clearly, the existence and uniqueness of solution of model (4) can be guaranteed by the
smoothness properties of the right-hand side of model (4) ([19–22]). The proof of the posi-
tivity of any solution (x(t), y(t)) of model (4) with any initial value (x(0), y(0)) ∈ R2

+ = {(x, y) |
x > 0, y > 0} is so easy that we omit it.

First, we introduce the following hypothesis for model (4):
(H1): Φi(x) (i = 1, 2) is strictly increasing with x ∈ R+ = [0, +∞) and continuous differen-

tiable with x, Φi(0) = 0.

Remark 2.1 Obviously, Holling type I, II, III and IV functional responses are special cases
of the general functional response Φi(x) (i = 1, 2).

Next, for convenience of the discussion, we set a2 = r2, b2 = r2
k2

, we can rewrite model (2)
into

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = r1x ln k1
x , 2kω < t ≤ (2k + 1)ω

x(t+) = α1x(t), t = (2k + 1)ω

ẋ = x(a2 – b2x), (2k + 1)ω < t ≤ (2k + 2)ω

x(t+) = α2x(t), t = (2k + 2)ω, k = 0, 1, 2, . . . ,

(5)

we can further rewrite model (5) as follows:
⎧
⎨

⎩

ẋ = (–1)k+1
2 r1x ln k1

x + (–1)k+1+1
2 x(a2 – b2x), t ∈ (kω, (k + 1)ω]

x(t+) = (–1)k+1
2 α1x(t) + (–1)k+1+1

2 α2x(t), t = (k + 1)ω, k ∈ N .
(6)

Furthermore, we introduce the following assumption for model (5) (or (6)):
(H2):

( a2
b2

)1–a

k1–a
1 ba(b – 1)1–a < α1α

a
2 ≤ 1,

where 0 < a = e–r1ω < 1, b = ea2ω > 1.
For system (5) (or (6)), we have the following result.

Lemma 2.1 (See [7]) If (H2) hold, then system (5) (or (6)) has a unique positive 2ω-periodic
solution u∗

0(t), which is globally asymptotically stable.

Finally, we consider the following scalar impulsive differential equation:

⎧
⎨

⎩

dx(t)
dt = f (t, x(t)), t �= tk ,

x(t+
k ) = I(x(tk)), t = tk ,

(7)
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where t ∈ R+, 0 ≤ t1 < t2 < · · · < tk < tk+1 < · · · is impulsive time sequence, x ∈ R, f (x, x) :
R+ × R → R is continuous and I(x) : R → R is a non-decreasing function. We have the
following comparison theorem for Eq. (7).

Lemma 2.2 (See [19]) Let x(t) be a solution of system (7) defined on [t0, T] and the function
u(t) be defined on [t0, T] and satisfy

⎧
⎨

⎩

du(t)
dt ≤ (≥)f (t, u(t)), t �= tk ,

u(t+
k ) ≤ (≥)I(u(tk)), t = tk .

If u(t0) ≤ (≥)x(t0), then u(t) ≤ (≥)x(t) for all t ∈ [t0, T].

3 Main results
First, as regards the ultimately upper boundedness of model (4), we have the following.

Theorem 3.1 If (H1)–(H2) hold, then there exists a constant M > 0, such that, for any
positive solution (x(t), y(t)) of model (4), we have

lim
t→∞ sup x(t) ≤ M, lim

t→∞ sup y(t) ≤ M. (8)

Proof Let (x(t), y(t)) be any positive solution of model (4), we directly obtain for any t ≥ 0

⎧
⎨

⎩

ẋ ≤ (–1)k+1
2 r1x ln k1

x + (–1)k+1+1
2 x(a2 – b2x), t ∈ (kω, (k + 1)ω],

x(t+) = (–1)k+1
2 α1x(t) + (–1)k+1+1

2 α2x(t), t = kω, k ∈ N .
(9)

Consider the following auxiliary equation:

⎧
⎨

⎩

u̇ = (–1)k +1
2 r1u ln k1

u + (–1)k+1+1
2 u(a2 – b2u), t ∈ (kω, (k + 1)ω],

u(t+) = (–1)k+1
2 α1u(t) + (–1)k+1+1

2 α2u(t), t = kω, k ∈ N ,
(10)

from Lemma 2.2, we have x(t) ≤ u(t) for all t ≥ 0, where u(t) is the solution of system (10)
with initial value u(0) = x(0). By Lemma 2.1, system (10) has a unique globally asymptot-
ically stable positive 2ω-periodic solution u∗

0(t). Therefore, for any constant η1 > 0, there
exists a constant T1 > 0 such that u(t) < u∗(t) + η1, t ≥ T1. Hence,

x(t) ≤ u(t) < u∗(t) + η1 ≤ max
t∈[0,2ω]

u∗
0(t) + η1 � M1, (11)

for all t ≥ T1. Therefore, from system (4) and (H1), we can obtain

⎧
⎪⎪⎨

⎪⎪⎩

ẏ ≤ (–1)k +1
2 y[c̃1Φ1(maxt∈[0,2ω] u∗

0(t) + η1) – b̃1y]

+ (–1)k+1+1
2 y[c̃2Φ2(maxt∈[0,2ω] u∗

0(t) + η1) – b̃2y], t ∈ (kω, (k + 1)ω]

y(t+) = (–1)k+1
2 y(t) + (–1)k+1+1

2 y(t), t = kω, k ∈ N .

(12)
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From Lemma 2.2, we have y(t) ≤ v(t), where v(t) is the solution of the following auxiliary
system with initial value v(0) = y(0):

⎧
⎨

⎩

v̇ = v(A – Bv), t ∈ (kω, (k + 1)ω]

v(t+) = v(t), t = kω, k ∈ N ,
(13)

where

A =
(–1)k + 1

2
[
c̃1Φ1(M1)

]
+

(–1)k+1 + 1
2

[
c̃2Φ2(M1)

]
> 0,

B =
(–1)k + 1

2
b̃1 +

(–1)k+1 + 1
2

b̃2 > 0.
(14)

Distinctly, system (13) has a unique globally asymptotically stable positive equilibrium
v∗ = A

B . Therefore, for any constant η2 > 0, there exists a constant T2 > T1 such that v(t) ≤
A
B + η2, t ≥ T2. Hence,

y(t) ≤ v(t) ≤ A
B

+ η2 � M2, (15)

for all t ≥ T2. Let M = max{M1, M2}, therefore, we have

lim
t→∞ sup x(t) ≤ M, lim

t→∞ sup y(t) ≤ M, (16)

for all t ≥ T2. This completes the proof of Theorem 3.1. �

From (H1) and the mean-value theorem, we see that there exist a ξ1 ∈ (0, x(t)) and a
ξ2 ∈ (0, x(t)) such that

Φ1
(
x(t)

)
= Φ1

(
x(t)

)
– Φ1(0) = Φ̇1(ξ1)x(t)

and

Φ2
(
x(t)

)
= Φ2

(
x(t)

)
– Φ2(0) = Φ̇2(ξ2)x(t).

Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = u(r1 ln k1
u – ξ ), t ∈ (2kω, (2k + 1)ω],

u(t+) = α1u(t), t = (2k + 1)ω

u̇ = u(a2 – b2u – ξ ), t ∈ ((2k + 1)ω, (2k + 2)ω],

u(t+) = α2u(t), t = (2k + 2)ω,

(17)

where ξ = max0<x≤M{Φ̇1(x)M, Φ̇2(x)M}, M is defined in Theorem 3.1.
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Let z(t) = exp
ξ
r1 u(t), we can rewrite model (17) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż = r1z ln k1
z , t ∈ (2kω, (2k + 1)ω],

z(t+) = α1z(t), t = (2k + 1)ω,

ż = z(ā – b̄z), t ∈ ((2k + 1)ω, (2k + 2)ω],

z(t+) = α2z(t), t = (2k + 2)ω.

(18)

Here ā = a2 –ξ , b̄ = b2e– ξ
r1 . For model (18), we further introduce the following assumption:

(H3):

( ā
b̄ )1–a

k1–a
1 b̃a(b̃ – 1)1–a

< α1α
a
2 ≤ 1,

where 0 < a = e–r1ω < 1, b̃ = eāω > 1.
As a consequence of Lemma 2.1, we have the following result.

Corollary 3.2 If (H3) hold, then system (17) has a unique positive 2ω-periodic solution
u∗

ξ (t), which is globally asymptotically stable, and

lim
ξ→0

u∗
ξ (t) = u∗

0(t),

where u∗
0(t) is the unique periodic solution of model (5).

Proof From Lemma 2.1, we have system (17) has a unique positive 2ω-periodic solution
u∗

ξ (t), which is globally asymptotically stable. Because the right-hand side of Eq. (18) satis-
fies the local Lipschitz condition with respect to z(t), according to the continuity with re-
spect to the parameters of solution of impulsive differential equations, we can find that any
solution z(t, t0, z0, ξ ) of Eq. (18) with initial condition z0 = x0, is continuous with (t0, z0, ξ )
(Theorems 2.9 and 2.10 given in Chap. 1 in [20]). Furthermore, we find that the unique
positive 2ω-periodic solution u∗

ξ (t) of model (17) is continuous with respect to the param-
eter ξ . Therefore, we finally have

lim
ξ→0

u∗
ξ (t) = u∗

0(t).

This completes the proof of Corollary 3.2. �

Next, we have the following result with respect to the permanence of model (4).

Theorem 3.3 If (H1)–(H3) hold, and

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt > 0, (19)

then model (4) is permanent, i.e., there exist constants M > m > 0 such that, for any positive
solution (x(t), y(t)) of model (4), we have

m ≤ lim
t→∞ inf x(t) ≤ lim

t→∞ sup x(t) ≤ M (20)
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and

m ≤ lim
t→∞ inf y(t) ≤ lim

t→∞ sup y(t) ≤ M. (21)

Proof From Theorem 3.1, we only need to prove that there exists a constant m > 0 such
that, for any positive solution (x(t), y(t)) of system (4), there is a positive constant T̄ > T2,
when t > T̄ , we have

x(t) > m, y(t) > m. (22)

Let (x(t), y(t)) be any positive solution of system (4), from Theorem 3.1, there is a constant
T2 > T1 such that

x(t) ≤ M, y(t) ≤ M, (23)

for all t ≥ T2. For all t ≥ T2, from the mean-value theorem, we see that there exist a ξ1 ∈
(0, x(t)) and a ξ2 ∈ (0, x(t)) such that

Φ1
(
x(t)

)
= Φ1

(
x(t)

)
– Φ1(0) = Φ̇1(ξ1)x(t)

and

Φ2
(
x(t)

)
= Φ2

(
x(t)

)
– Φ2(0) = Φ̇2(ξ2)x(t).

From system (4), for any t ≥ T2, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ ≥ x(r1 ln k1
x – ξ ), t ∈ (2kω, (2k + 1)ω],

x(t+) = α1x(t), t = (2k + 1)ω,

ẋ ≥ x(a2 – b2x – ξ ), t ∈ ((2k + 1)ω, (2k + 2)ω],

x(t+) = α2x(t), t = (2k + 2)ω.

(24)

Here ξ = max0<x≤M{Φ̇1(x)M, Φ̇2(x)M}.
From Lemma 2.2, we have x(t) ≥ u(t), where u(t) is the solution of the following system

(22) with initial condition u(T+
2 ) = x(T+

2 ).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = u(r1 ln k1
u – ξ ), t ∈ (2kω, (2k + 1)ω],

u(t+) = α1u(t), t = (2k + 1)ω,

u̇ = u(a2 – b2u – ξ ), t ∈ ((2k + 1)ω, (2k + 2)ω],

u(t+) = α2u(t), t = (2k + 2)ω.

(25)

Let z(t) = exp
ξ
r1 u(t), we can obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ż = r1z ln k1
z , t ∈ (2kω, (2k + 1)ω],

z(t+) = α1z(t), t = (2k + 1)ω,

ż = z(ā – b̄z), t ∈ ((2k + 1)ω, (2k + 2)ω],

z(t+) = α2z(t), t = (2k + 2)ω.

(26)
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Here ā = a2 – ξ , b̄ = b2e– ξ
r1 . By Corollary 3.2, system (26) has a unique globally asymp-

totically stable positive 2ω-periodic solution z∗(t), i.e., system (25) has a unique globally
asymptotically stable positive 2ω-periodic solution u∗

ξ (t).
For η = 1

2 mint∈[0,2ω] u∗
ξ (t), there exists a T̄2 > T2 such that u(t) ≥ u∗

ξ (t) – η, for any t ≥ T̄2.
Hence,

x(t) ≥ u(t) ≥ u∗
ξ (t) – η ≥ 1

2
min

t∈[0,2ω]
u∗

ξ (t) � η = m1, (27)

for any t ≥ T̄2. This shows that x(t) is permanent.
Next we prove that y(t) is permanent. From condition (19), we can choose a small enough

constant ε0 > 0 such that

δ :=
∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
]

dv

+
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
]

dv

> 0. (28)

From Corollary 3.2, we also have

lim
ξ→0

u∗
ξ (t) = u∗

0(t) (29)

Therefore, for above constant ε0, there is a constant ξ0 > 0 such that

u∗
ξ0 (t) ≥ u∗

0(t) –
ε0

2
, (30)

for all t ≥ 0, where u∗
ξ0

(t) and u∗
0(t) are the unique positive periodic solutions of systems

(26) and (5) with ξ = ξ0, respectively. Because u∗
ξ0

(t) is the unique globally asymptotically
stable positive 2ω-periodic solution of system (22) with ξ = ξ0, for ε0, M and any initial
value (t0, u0) with t0 ≥ 0 and 0 < u0 < M, there is a constant T̃1 = T̃1(ε0, M, u0) > 0 such
that

∣
∣u(t) – u∗

ξ0 (t)
∣
∣ ≤ ε0

2
, (31)

for all t ≥ t0 + T̃1, where u(t) is the positive solution of system (22) with ξ = ξ0 and initial
condition u(t+

0 ) = u0. Hence, we furthermore have

u(t) ≥ u∗
ξ0 (t) –

ε0

2
, (32)

for all t ≥ t0 + T̃1.
Let ε1 = min{ ξ0

M̃ , ε0}, where M̃ = max{Φ̇1(M), Φ̇2(M)}, we now consider y(t). There exist
three cases as follows.
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Case 1, there is a constant T∗ ≥ T̃2 such that y(t) ≤ ε1 for all t ≥ T∗.
Case 2, there is a constant T∗ ≥ T̃2 such that y(t) ≥ ε1 for all t ≥ T∗.
Case 3, there is an interval sequence {[sn, tn]} with T2 ≤ s1 < t1 < s2 < t2 < · · · < sn < tn <

· · · and limn→∞ sn = ∞ such that y(t) ≤ ε1 for all t ∈ ⋃∞
n=1[sn, tn], y(sn) = y(tn) = ε1 and

y(t) ≥ ε1 for all t /∈ ⋃∞
n=1(sn, tn).

We firstly consider case 1, for any t ≥ T̃2, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ ≥ x(r1 ln k1
x – ξ0), t ∈ (2kω, (2k + 1)ω],

x(t+) = α1x(t), t = (2k + 1)ω,

ẋ ≥ x(a2 – b2x – ξ0), t ∈ ((2k + 1)ω, (2k + 2)ω],

x(t+) = α2x(t), t = (2k + 2)ω.

(33)

From (27), (30) and (32), we can obtain, when t ≥ T̃2 + T̃1,

x(t) ≥ u(t) ≥ u∗
ξ0 (t) –

ε0

2
≥ u∗

0(t) – ε0. (34)

When t ≥ T̃2 + T̃1, we furthermore have

ẏ(t) ≥ y(t)
[

(–1)k + 1
2

(
–ã1 + c̃1Φ1

(
u∗

0(t) – ε0
)

– b̃1ε0
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(t) – ε0
)

– b̃2ε0
)
]

. (35)

For any integer k ≥ 0, we take t ∈ [T3 + 2kω, T3 + (2k + 1)ω), where T3 = T̃2 + T̃1, integrating
(35) from T3 to t, by (28), we can obtain

y(t) ≥ y(T3) exp

{∫ T3+ω

T3

[
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
]

dv

+
∫ T3+2ω

T3+ω

[
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
]

dv

+ · · ·+

+
∫ T3+(2k–1)ω

T3+(2k–2)ω

[
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
]

dv

+
∫ T3+2kω

T3+(2k–1)ω

[
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
]

dv

+
∫ t

T3+2kω

[
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
]

dv
}

≥ y(T3) exp(kδ – βω). (36)

Here, β = maxt∈[T3+2kω,T3+(2k+1)ω]{ã1 + c̃1Φ1(u∗
0(t) – ε0) + b̃1ε0}. From this, we further obtain

y(t) → +∞ as k → ∞, which leads to a contradiction. Therefore, case 1 cannot hold.
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Now we consider case 3. For any t ≥ T2, when t ∈ ⋃∞
n=1[sn, tn], then t ∈ [sn, tn] for some

n. If tn – sn ≤ T̃1, then because ε1 ≤ ε0 and y(t) ≤ ε1, for t ∈ [sn, tn], we have

ẏ(t) ≥ y(t)
[

(–1)k + 1
2

(–ã1 – b̃1ε0) +
(–1)k+1 + 1

2
(–ã2 – b̃2ε0)

]

, (37)

for any t ∈ [sn, tn], we have

y(t) ≥ y(sn) exp

{∫ t

sn

[
(–1)k + 1

2
(–ã1 – b̃1ε0) +

(–1)k+1 + 1
2

(–ã2 – b̃2ε0)
]

dv
}

≥ ε1 exp

{

T̃1

[
(–1)k + 1

2
(–ã1 – b̃1ε0) +

(–1)k+1 + 1
2

(–ã2 – b̃2ε0)
]}

� m∗
2. (38)

If tn – sn > T̃1, then, for any t ∈ [sn, tn], if t ≤ sn + T̃1, then according to the above discussion
in the case of tn – sn ≤ T̃1, we also have inequality (38). Particularly, we obtain y(sn + T̃1) ≥
m∗

2. Therefore, if y(t) ≤ ε1 for all t ∈ [sn, tn], from system (4), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ ≥ x(r1 ln k1
x – ξ0), t ∈ (2kω, (2k + 1)ω],

x(t+) = α1x(t), t = (2k + 1)ω,

ẋ ≥ x(a2 – b2x – ξ0), t ∈ ((2k + 1)ω, (2k + 2)ω],

x(t+) = α2x(t), t = (2k + 2)ω.

(39)

From (34), we can obtain

x(t) > u∗
0(t) – ε0, (40)

for all t ∈ [sn + T̃1, tn]. Therefore, from system (4), we furthermore have

ẏ(t) ≥ y(t)
[

(–1)k + 1
2

(
–ã1 + c̃1Φ1

(
u∗

0(t) – ε0
)

– b̃1ε0
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(t) – ε0
)

– b̃2ε0
)
]

(41)

for all t ∈ [sn, tn]. For any t ∈ [sn + T̃1, tn], we firstly choose an integer p ≥ 0 such that
t ∈ [sn + T̃1 + 2pω, sn + T̃1 + (2p + 2)ω). Integrating inequality (41) from sn + T̃1 to t, from
(38), we can obtain

y(t) ≥ y(sn + T̃1) exp

{∫ t

sn+T̃1

[
(–1)p + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
)

+
(–1)p+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
)
]

dv
}

≥ m∗
2 exp

{∫ sn+T̃1+2pω

sn+T̃1

[
(–1)p + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
)

+
(–1)p+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
)
]

dv
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+
∫ t

sn+T̃1+2pω

[
(–1)p + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
)

+
(–1)p+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
)
]

dv
}

≥ m∗
2 exp

{∫ t

sn+T̃1+2pω

[
(–1)p + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) – ε0
)

– b̃1ε0
)

+
(–1)p+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) – ε0
)

– b̃2ε0
)
]

dv
}

≥ m∗
2 exp

{

–2ω

[
(–1)p + 1

2
(ã1 + b̃1ε0) +

(–1)p+1 + 1
2

(ã2 + b̃2ε0)
]}

= ε1 exp

{

–(T̃1 + 2ω)
[

(–1)p + 1
2

(ã1 + b̃1ε0) +
(–1)p+1 + 1

2
(ã2 + b̃2ε0)

]}

.

Let m2 = ε1 exp{–(T̃1 +2ω)[ (–1)p+1
2 (ã1 + b̃1ε0)+ (–1)p+1+1

2 (ã2 + b̃2ε0)]}. Then, from the above
discussion, we obtain

y(t) ≥ m2, (42)

for all t ∈ ⋃∞
n=1[sn, tn].

Therefore, for case 3, we finally have

y(t) ≥ m2, (43)

for all t ≥ T̃2. Lastly, we consider case 2. From y(t) ≥ ε1 for all t ≥ T∗, we directly obtain

y(t) ≥ m2, (44)

for all t ≥ T∗, where T∗ ≥ T̃2 + T̃1. Thus, we finally obtain

lim
t→∞ inf y(t) ≥ m2, (45)

for any positive solution y(t) of system (4).
This shows that y(t) is permanent. This completes the proof of Theorem 3.3. �

From the existence of impulsive periodic solution of Theorem 1 in [23], i.e., if an im-
pulsive periodic system is permanent, then it has at least a periodic solution. We have the
following result.

Corollary 3.4 If all assumptions of Theorem 3.3 hold, then there exists at least a 2ω-
periodic solution (x∗(t), y∗(t)) of model (4).

Furthermore, we have the following result regarding the global attractivity of predator-
free periodic solution (u∗

0(t), 0) of model (4).

Theorem 3.5 If (H1) and (H2) hold, and

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt ≤ 0, (46)
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then the predator-free periodic solution (u∗
0(t), 0) of model (4) is globally attractive, i.e., for

any positive solution (x(t), y(t)) of model (4), we have

lim
t→∞ x(t) = u∗

0(t), lim
t→∞ y(t) = 0,

where u∗
0(t) is the unique periodic solution of model (5).

Proof From (46), we find that there is a constant ε1 > 0, such that

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)

– b̃1ε1
]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)

– b̃2ε1
]

dt

≤ –(b̃1 + b̃2)ε1ω < 0. (47)

Furthermore, from the continuity of Φ1(s) and Φ2(s), there exists a small enough constant
ε0 with ε0 < ε1 such that

δ :=
∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t) + ε0
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t) + ε0
)]

dt ≤ 0. (48)

From system (4), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ ≤ r1x ln k1
x , t ∈ (2kω, (2k + 1)ω],

x(t+) = α1x(t), t = (2k + 1)ω,

ẋ ≤ x(a2 – b2x), t ∈ ((2k + 1)ω, (2k + 2)ω],

x(t+) = α2x(t), t = (2k + 2)ω.

(49)

From Lemma 2.2, we have

x(t) ≤ u(t), (50)

for all t ≥ 0, where u(t) is the solution of the following system with initial condition u(0) =
x(0):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ = r1u ln k1
u , t ∈ (2kω, (2k + 1)ω],

u(t+) = α1u(t), t = (2k + 1)ω,

u̇ = u(a2 – b2u), t ∈ ((2k + 1)ω, (2k + 2)ω],

u(t+) = α2u(t), t = (2k + 2)ω.

(51)

By Lemma 2.1, we have

lim
t→∞ u(t) = u∗

0(t). (52)

Therefore, for any constant ε > 0 with ε < ε0, there exists a constant T3 > T2 such that, for
all t ≥ T3,

x(t) < u∗
0(t) + ε. (53)
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Furthermore, from (H1) and (53), we have, for all t ≥ T3,

ẏ(t) ≤ y(t)
{

(–1)k + 1
2

[
–ã1 + c̃1Φ1

(
u∗

0(t) + ε0
)

– b̃1y(t)
]

+
(–1)k+1 + 1

2
[
–ã2 + c̃2Φ2

(
u∗

0(t) + ε0
)

– b̃2y(t)
]
}

. (54)

If y(t) ≥ ε1 for all t ≥ T3, we have

ẏ(t) ≤ y(t)
{

(–1)k + 1
2

[
–ã1 + c̃1Φ1

(
u∗

0(t) + ε0
)

– b̃1ε1
]

+
(–1)k+1 + 1

2
[
–ã2 + c̃2Φ2

(
u∗

0(t) + ε0
)

– b̃2ε1
]
}

. (55)

For any t ≥ T3, we choose an integer nt ≥ 0 such that t ∈ (2ntω + T3, 2(nt + 1)ω + T3], then
integrating (55) from T3 to t, we can obtain

y(t) ≤ y(T3) exp

{∫ t

T3

[
(–1)k + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) + ε0
)

– b̃2ε1
)
]

dv
}

= y(T3) exp

{∫ T3+2ntω

T3

[
(–1)k + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) + ε0
)

– b̃2ε1
)
]

dv

+
∫ t

T3+2ntω

[
(–1)k + 1

2
(
–ã1 + c̃1Φ1

(
u∗

0(v) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

0(v) + ε0
)

– b̃2ε1
)
]

dv
}

≤ y(T3) exp
{

ntδ + 2M∗
1ω

}
, (56)

where M∗
1 = max0≤t≤2ω{–ã1 + c̃1Φ1(u∗

1(t) + ε0) – b̃1ε1, –ã2 + c̃2Φ2(u∗
1(t) + ε0) – b̃2ε1}.

Because nt → ∞ as t → ∞, from (48) and (56), we easily obtain limt→∞ y(t) = 0, which
leads to a contradiction with y(t) ≥ ε1. Therefore, there exists a t1 > T3 such that y(t1) < ε1.
Because y(t) is continuous for all t ≥ 0, if further there exists a t3 > t1 such that y(t3) >
ε1 exp{2ωM∗

1}, then there exists a t2 ∈ (t1, t3] such that y(t2) = ε1, and y(t) ≥ ε1 for all t ∈
[t2, t3]. When t ∈ [t2, t3], we have

ẏ(t) ≤ y(t)
{

(–1)k + 1
2

(
–ã1 + c̃1Φ1

(
u∗

1(t) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

1(t) + ε0
)

– b̃2ε1
)
}

. (57)
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Choose an integer n ≥ 0 such that t3 ∈ [t2 + 2nω, t2 + 2(n + 1)ω). Integrating (55) on [t2, t3),
we have

y(t3) ≤ y(t2) exp

{∫ t3

t2

[
(–1)k + 1

2
(
–ã1 + c̃1Φ1

(
u∗

1(t) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

1(t) + ε0
)

– b̃2ε1
)
]

dv
}

= y(t2) exp

{∫ t2+2nω

t2

[
(–1)k + 1

2
(
–ã1 + c̃1Φ1

(
u∗

1(t) + ε0
)

– b̃1ε1
)

+
(–1)k+1 + 1

2
(
–ã2 + c̃2Φ2

(
u∗

1(t) + ε0
)

– b̃2ε1
)
]

dv

+
∫ t3

t2+2nω

(
–ã2 + c̃2Φ2

(
u∗

1(t) + ε0
)

– b̃2ε1
)

dv
}

≤ ε1 exp
{

2ωM∗
1
}

, (58)

which leads to a contradiction. Therefore, we have finally

y(t) ≤ ε1 exp
{

2ωM∗
1
}

, (59)

for all t ≥ t1. Because M∗
1 is bounded with ε0 and ε1 is small enough, from (59), we finally

obtain

lim
t→∞ y(t) = 0. (60)

Now, we prove limt→∞ x(t) = u∗
0(t). For any constant ε > 0, there exists a constant ξ0 > 0

such that, for all t ∈ [0,∞),

u∗
ξ0 (t) > u∗

0(t) –
ε

2
, (61)

where u∗(t) is the unique positive periodic solution of system (25) with ξ = ξ0. From (60),
there exists a constant T4 > T3 such that

y(t) <
ξ0

M∗
2

, (62)

for all t ≥ T4, where M∗
2 = maxs∈[0,M]{Φ̇1(s), Φ̇2(s)}. For any t ≥ T4, from mean-value theo-

rem and (H1), we see that there exist a ξ1 ∈ (0, x(t)) and a ξ2 ∈ (0, x(t)) such that

Φ1
(
x(t)

)
= Φ1

(
x(t)

)
– Φ1(0) = Φ̇1(ξ1)x(t) (63)

and

Φ2
(
x(t)

)
= Φ2

(
x(t)

)
– Φ2(0) = Φ̇2(ξ2)x(t). (64)
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Therefore, from (4), (62)–(64), we can obtain for any t ≥ T4

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ = r1x(ln k1
x – Φ̇1(ξ1)y) ≥ r1x(ln k1

x – ξ0), t ∈ (2kω, (2k + 1)ω],

x(t+) = α1x(t), t = (2k + 1)ω,

ẋ = x(a2 – b2x – Φ̇2(ξ2)y) ≥ x(a2 – b2x – ξ0), t ∈ ((2k + 1)ω, (2k + 2)ω],

x(t+) = α2x(t), t = (2k + 2)ω.

(65)

From Lemma 2.2, we have

x(t) ≥ u(t), (66)

for all t ≥ T4, where u(t) is the solution of system (25) and initial condition u(T+
4 ) = x(T+

4 ).
Since limt→∞ u(t) = u∗

ξ0
(t), for any constant ε > 0, there exists a constant T5 > T4 such that

u(t) > u∗
ξ0 (t) –

ε

2
, (67)

for all t ≥ T5. Therefore, from (61), (66), and (67), we obtain

x(t) ≥ u∗
0(t) – ε, (68)

for all t ≥ T5. From (53) and (68), we finally have

∣
∣x(t) – u∗

0(t)
∣
∣ < ε, (69)

for all t ≥ T5.
This shows that limt→∞ x(t) = u∗

0(t). This completes the proof of Theorem 3.5. �

Remark 3.1 From Theorems 3.3 and 3.5, we can see that the whole dynamics of sys-
tem (4) is decided by two parts, i.e., the season 1 (t ∈ (2kω, (2k + 1)ω]) and season 2
(t ∈ ((2k + 1)ω, (2k + 2)ω]). From Theorems 3.3 and 3.5, we can also see that the survivor
of populations x and y is determined by the integral

δ =
∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt. (70)

I.e., if δ > 0, system (4) is permanent, if δ ≤ 0, then the predator y will tend to extinction,
while the prey x will tend to the predator-free periodic solution u∗

0(t). Therefore, our model
means that the compositive effect of season 1 and 2, i.e., the logistic and Gompertz growth
functions and predating functional response Φi(s) (i = 1, 2), including the impulsive effect
αi, jointly influence the survivor of system (4). It is different from the previous results in
which the model was always assumed in one season, or determined only by one process.

Remark 3.2 Let δ = δ1 + δ2, where

δ1 =
∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt,

δ2 =
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt.
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δ1 > 0 (or δ2 > 0) means that the net growth of predator y is positive in season 1 (or season
2), i.e., the population of predator y is increasing in season 1 (or season 2). δ1 ≤ 0 (or δ2 ≤ 0)
means that the net growth of predator y is negative in season 1 (or season 2), i.e., the
population of predator y is decreasing in season 1 (or season 2). According to Remark 3.1,
we have the following four cases:

Case 1, if δ1 > 0, δ2 > 0, then system (4) is permanent (see Fig. 1a, 1b);
Case 2, if δ1 < 0 (or δ1 > 0), δ2 > 0 (or δ2 < 0) and δ = δ1 + δ2 > 0, then system (4) is perma-

nent (see Fig. 3a, 3b);
Case 3, if δ1 ≤ 0, δ2 ≤ 0, then the predator y will tend to extinction, while the prey x will

tend to the predator-free periodic solution u∗
0(t) (see Fig. 2a, 2b);

Figure 1 Dynamics behavior of model (5) and (4); for model (5), we take initial values x0 = 0.1, 0.2, 0.3, 0.4, 0.6,
respectively; for model (4), we take initial values (x0, y0) = (0.1, 1.8), (0.2, 1.6), (0.3, 1.4), (0.4, 1.5), (0.6, 1.3),
respectively
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Figure 2 Dynamics behavior of model (4); here we take initial values (x0, y0) = (0.1, 1.8), (0.2, 1.6), (0.3, 1.4),
(0.4, 1.5), (0.6, 1.3), respectively

Figure 3 Dynamics behavior of model (4); here we take initial values (x0, y0) = (0.1, 1.8), (0.2, 1.6), (0.3, 1.4),
(0.4, 1.5), (0.6, 1.3), respectively

Case 4, if δ1 ≥ 0 (or δ1 ≤ 0), δ2 ≤ 0 (or δ2 ≥ 0) and δ = δ1 + δ2 ≤ 0, then the conclusion is
as the same as the Case 3 (see Fig. 3c, 3d).

4 Numerical simulation and discussion
In this paper, we have investigated a class of two-species predator–prey models with two
kinds of general functional responses and prey Gompertz and logistic growth alternating
under seasonal succession. The criteria on the ultimate boundedness, permanence, and
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global attractivity of nonnegative periodic solution for model (4) are established. Biologi-
cally, we can see the effects of season succession on population dynamics due to changes
of environment. E.g., there exists competition between two species in good season (or sea-
son with rich abundance of food), while without competition in the bad season (or season
with severe scarcity of food; see, e.g., [7, 9]), meanwhile, the population in good season
grows faster than in bad season (see, e.g., [10]).

To illustrate our results, in model (4), we take Φ1(s) = cs
e+s , Φ2(s) = ds2

f +s2 , r1 = 0.5, a2 = 0.25,
b2 = 0.25, k1 = 10, c = 1, e = 1, d = 1, f = 1, ã1 = 0.1, ã2 = 0.1, b̃1 = 0.1, b̃2 = 0.1, c̃1 = 0.38,
c̃2 = 0.28, α1 = 0.4, and α2 = 1.2. In model (5), we take r1 = 0.5, a2 = 0.25, b2 = 0.25, k1 = 10,
α1 = 0.4, α2 = 1.2, and ω = 2. For assumption (H2), we can obtain

( a2
b2

)1–a

k1–a
1 ba(b – 1)1–a ≈ 1

101–0.368 × 1.6490.368 × (1.649 – 1)1–0.368 ≈ 0.255

< α1α
a
2 ≈ 0.4 × 1.20.368 ≈ 0.428

≤ 1. (71)

According to Lemma 2.1, system (5) has a unique 2ω-periodic solution u∗
0(t), which is

globally asymptotically stable, see Fig. 1a, in which we can see 1.4 ≤ u∗
0(t) ≤ 5.4.

Furthermore, for condition (15), we can obtain

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt

≥
∫ 2

0

[

–0.1 + 0.38
(

1.4
1.4 + 1

)]

dt +
∫ 4

2

[

–0.1 + 0.28
(

1.96
1.96 + 1

)]

dt

≈ 0.243 + 0.171 ≈ 0.414 > 0. (72)

Therefore, from Theorem 3.3 and Corollary 3.4, we can see that system (5) is permanent
and has a periodic solution (x∗(t), y∗(t)) (see Fig 1b, 1c).

In addition, if we take the nutrition conversion rate c̃1 = 0.08, c̃2 = 0.28, the death rate of
predator species ã1 = 0.06, ã2 = 0.02, and the other parameters are constant as mentioned
in Fig. 1, for condition (15), we can obtain

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt

≥
∫ 2

0

[

–0.06 + 0.08
(

1.4
1.4 + 1

)]

dt +
∫ 4

2

[

–0.02 + 0.28
(

1.96
1.96 + 1

)]

dt

≈ –0.027 + 0.331 ≈ 0.304 > 0. (73)

Therefore, from Theorem 3.3 and Corollary 3.4, we can see that system (4) is also per-
manent and has a positive 2ω-periodic solution (x∗(t), y∗(t)), which is globally attractive
(Fig. 3a, 3b). Here, although the results are as the same as above case, they are different.
The condition (15) in the former is δ1 > 0, δ2 > 0, but in the latter, condition (15) is δ1 < 0,
δ2 > 0 and δ = δ1 + δ2 > 0. That means the net growth rate δ of predator y is both positive in
seasons 1 and 2 in the former case, but is only positive in the season 2 and negative in the
season 1 in the latter case. Therefore, our results mean that the survival of populations x
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and y is determined by the two parts of seasons 1 and 2 together, though the growth rate
δi (i = 1, 2) of predator y maybe be negative in any one season, but if the multiple effects of
δ = δ1 + δ2 > 0, then both populations x and y will be permanent, which is different from
the previous results (see, e.g., [15, 16])

Furthermore, if we take T = 4.001 and T = 4.02, with other parameters unchanged, from
numerical simulations (Fig. 1d, e, and f ), we can see that population dynamics change from
periodic to almost periodic to chaotic. We find that the population dynamics of system (4)
is so sensitive with the actual parameters of ecosystems that any kinds of tiny changes in
the environment can cause different types of population trajectories.

Moreover, if we take ã1 = 0.5, ã2 = 0.6, c̃1 = 0.25, c̃2 = 0.3, and the other parameters
unchanged as above mentioned in Fig. 1, for condition (42), we can obtain

∫ ω

0

[
–ã1 + c̃1Φ1

(
u∗

0(t)
)]

dt +
∫ 2ω

ω

[
–ã2 + c̃2Φ2

(
u∗

0(t)
)]

dt

≤
∫ 2

0

[

–0.5 + 0.25
(

5.4
5.4 + 1

)]

dt +
∫ 4

2

[

–0.6 + 0.3
(

29.16
29.16 + 1

)]

dt

≈ (–0.578) + (–0.620) ≈ –1.198 < 0. (74)

Therefore, from Theorem 3.5, we can see that the predator y of system (4) is extinct, while
the prey x will tend to the predator-free 2ω-periodic solution (u∗

0(t), 0) (see Fig 2a, 2b).
In a brief, the population dynamics of two-species predator–prey model with alternating

Gompertz and logistic growth of prey under seasonal succession, and general functional
responses of predation are more complicated and subtle with the changes of environment.
Therefore, we conclude that the hybrid population models under seasonal succession per-
mit more possibilities of survival of life, which is more consistent with the real ecosystem
than the usual studied population models, and could be a new choice to model nature.
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