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Abstract
In this research work, we investigate the controllability of linear fractional differential
control systems with state and control delay. By using an explicit solution formula,
a rank criterion for controllability is established. For the controllability criteria, we
establish necessary and sufficient conditions of a fractional differential systems with
state and control delay. In the end, a numerical example is constructed to support the
results.
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1 Introduction
The fractional differential equation is a mathematical model which is useful for the ex-
planation of hereditary characteristics and memory of different processes and materials.
A variety of research work is based on the basic study of fractional differential equations
[1–6] as in further work various researchers considered control problems; for example,
see [7–9].

The controllability shows a major presence in the advancement of modern mathematical
control theory and engineering which has a close connection with structural decompo-
sition, quadratic optimal and so on; see [10–17]. Controllability is a qualitative property
of fractional delay dynamical system, so one needs to find its representation of a solution.
He and Wei [18, 19] gave a representation of a solution and discussed the controllability
and then for a fractional control delay system obtained necessary and sufficient condi-
tions, Nirmala [11] give a representation of a solution by using Laplace transform and
Mittag-Leffler function and established controllability criteria for fractional delay dynam-
ical system. Moreover, Khusainov et al. [20] obtained the representation of a solution of
a Cauchy problem for a linear differential equation with pure delay by using the delayed
Mittag-Leffler function, Shukla et al. [21–24] discussed the complete and approximate
controllability of semilinear stochastic systems with delays in the state and control func-
tion with non-Lipschitz coefficients, the Schauder fixed point theorem, sequence meth-
ods and by the theory of the strongly continuous z-order cosine family, and the fixed point
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theorem, respectively. In a most recent work [25] the authors discussed the relative con-
trollability problem and an explicit representation of solutions is given with the use of
delayed Mittag-Leffler function, Li and Wang [26] discussed the controllability criteria of
a fractional differential system with state delay by using an explicit solution formula. By
following this study we consider a fractional differential system with state and control de-
lay and discussed its controllability by giving its necessary and sufficient conditions. Li
and Wang [27] considered pure delay for linear fractional differential equations and gave
a representation of a solution by using a delayed Mittag-Leffler type matrix:

{
cDα

0+ x(t) = Ax(t – h), x(t) ∈Rn, t ∈ J := [0, t1], h > 0,
x(t) = ϕ(t), –h ≤ t ≤ 0,ϕ ∈ C1

h := C1([–h, 0],Rn),
(1)

where cDα
0+ x(t) stands for the αth order Caputo fractional derivative of x(t) where zero is

a lower limit, t1 is the integral multiple of h, A ∈Rn×n, h > 0 is a time delay, n ∈N stands
for a constant matrix. EA.α

h is a new notation (delayed Mittag-Leffler type matrix) being
reported in Definition 2.3 [28], any solution x ∈ C([–h, t1],Rn) of (1) can be established by
Li:

x(t) = EAtα
h ϕ(–h) +

∫ 0

–h
EA(t–h–τ )α

h ϕ′(τ ) dτ . (2)

Motivated by the previous study, in this research work we deal with the fractional differ-
ential systems with state and control delay by using of an explicit formula governed by

⎧⎪⎨
⎪⎩

cDα
0+ x(t) = Ax(t – h) + Bu(t) + Cu(t – h), x(t) ∈ J := [0, t1], h > 0, t1 ≥ 0,

x(t) = ϕ(t), –h ≤ t ≤ 0,
u(t) = ψ(t), –h ≤ t ≤ 0,

(3)

where x : [–h, t1] →Rn is a continuous differentiable on [0, t1] with t1 > (n – 1)h, 0 < α ≤ 1,
A ∈Rn×n, B, C ∈Rn×m are any matrices, h > 0 shows the time delay, x(t) ∈Rn denotes the
state vector, u(t) ∈ Rm shows the control vector, ϕ(t) shows the initial state function and
ψ(t) shows the initial control function ϕ ∈ C1

h := C1([–h, 0],Rn). The lay-out of this arti-
cle as follows, Sect. 2 includes some useful definitions, preliminary results, and lemmas
about delayed Mittag-Leffler type matrix to establish the controllability of fractional dif-
ferential systems with state and control delay. In Sect. 3 we obtain necessary and sufficient
conditions for controllability criteria for the above fractional differential delay system (3).
Section 4 presents an example to explain the applicability of the theoretical results.

2 Preliminaries and essential lemmas
This part includes some basic definitions and results used throughout this paper and some
lemmas for the main results. We recall some well-known definitions. For more details, see
[3, 5].

Definition 2.1 ([29]) We consider a function f : [0,∞) → R where its Caputo fractional
derivative of order (0 < α < 1) is defined as

(cDα
0+ x

)
(t) =

1
Γ (1 – α)

∫ t

0

x′(θ )
(t – θ )α

dθ , t > 0.
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Here the Gamma function is denoted by Γ (·).

Definition 2.2 ([29]) We consider a function f : [0,∞) →R where its fractional integral
of order α > 0 is defined as

(
Iα

0+ f
)
(t) =

1
Γ (α)

∫ t

0
(t – θ )α–1f (θ ) dθ .

Here Γ (·) denotes the Gamma function.

Definition 2.3 ([26]) A matrix EA.α
h : R → Rn×n known as a delayed Mittag-Leffler type

matrix is defined as

EAtα
h =

⎧⎪⎨
⎪⎩

Θ , –∞ < t < –h,
I, –h ≤ t ≤ 0,
I + A (t)α

Γ (α+1) + A2 (t–h)2α

Γ (2α+1) + · · · + Ak (t–(k–1)h)kα

Γ (kα+1) , (k – 1)h ≤ t ≤ kh, k ∈N ,
(4)

where zero and identity matrices are shown by Θ and I, respectively.

Definition 2.4 The system (3) is said to be controllable on J = [0, t1] if one can reach any
state from any allowed initial state x(t) = ϕ(t) and initial control u(t) = ψ(t).

Lemma 2.5 ([26]) Let f : J → Rn be a continuous vector value function. A solution x ∈
C([–h, t1],Rn) of the following system:

{
cDα

0+ x(t) = Ax(t – h) + f (t), x(t) ∈Rn, t ∈ J := [0, t1], h > 0,
x(t) = ϕ(t), –h ≤ t ≤ 0,ϕ ∈ C1

h ,
(5)

can be written in the form of an integral equation by using the method in [26];

x(t) = EAtα
h ϕ(–h) +

∫ 0

–h
EA(t–h–τ )α

h ϕ′(τ ) dτ +
∫ t

0
EA(t–h–τ )α

h f (τ ) dτ .

By Lemma 2.8 in [26], a solution x ∈ C([–h, t1],Rn) of system (3) can be composed in the
form

x(t) = EAtα
h ϕ(–h) +

∫ 0

–h
EA(t–h–τ )α

h ϕ′(τ ) dτ

+
∫ t

0
EA(t–h–τ )α

h Bu(τ ) dτ +
∫ t

0
EA(t–h–τ )α

h Cu(τ – h) dτ . (6)

Lemma 2.6 ([18]) From Lemma 2.5 for system (3), a general solution can be composed as

x(t) = EAtα
h ϕ(–h) +

∫ 0

–h
EA(t–h–τ )α

h ϕ′(τ ) dτ +
∫ t–h

0
EA(t–h–τ )α

h Bu(τ ) dτ

+
∫ t

t–h
EA(t–h–τ )α

h Bu(τ ) dτ +
∫ t–h

0
EA(t–2h–τ )α

h Cu(τ ) dτ

+
∫ 0

–h
EA(t–2h–τ )α

h Cψ(τ ) dτ . (7)
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Definition 2.7 We call the set in [18] R(ϕ,ψ) = {ν | there exists t1 > 0, u(t) ∈ Cl–1, such
that the solution of the system (3) x(t,ϕ,ψ) satisfies x(t1,ϕ,ψ) = ν} the reachable set of (3)
with x(t) = ϕ(t) and u(t) = ψ(t) at –h ≤ t ≤ 0.

Lemma 2.8 ([18]) For the beta function

B(p, q) =
∫ 1

0
sp–1(1 – s)q–1 ds

(
Re(p) > 0, Re(q) > 0

)
,

we have

B(p, q) =
Γ (p)Γ (q)
Γ (p + q)

.

Lemma 2.9 ([28]) Let (k – 1)h ≤ t ≤ kh, k ∈N , we have

∫ t

(k–1)h
(t – s)–α

(
s – (k – 1)h

)kα–1 ds =
(
t – (k – 1)h

)(k–1)αB[1 – α, kα],

where B is the beta function; see Lemma 2.8.

Lemma 2.10 For a delayed Mittag-Leffler type matrix EA.α
h : R→Rn×n, one has

cDα
0+

(
EAtα

h
)

= AEA(t–h)α
h , (8)

i.e., EAtα
h is a solution of (cDα

0+ x)(t) = Ax(t – h) that satisfies the initial conditions EAtα
h = I ,

–h ≤ t ≤ 0.

Proof For arbitrary t ∈ (–∞, –h], EAtα
h = EA(t–h)α

h = Θ . Obviously, (8) holds. Next for t ∈
(–h, 0], EAtα

h = I and EA(t–h)α
h = Θ . which shows cDα

0+ I = Θ = AΘ . Thus, (8) holds.
For arbitrary t ∈ ((k – 1)h, Kh], k ∈N , we follow mathematical induction to establish our

result.
(1) For k = 1, 0 ≤ t ≤ h, we have

x(t) = EAtα
h = I +

A(t)α

Γ (α + 1)
, x′(t) =

αA(t)α–1

Γ (α + 1)
. (9)

Next by using the Caputo fractional differentiation expression of EA.α
h via (9) and

Lemma 2.9, we obtain

cDα
0+

(
EAsα

h
)
(t) =

αA
Γ (α + 1)Γ (1 – α)

∫ t

0
(t – s)–α(s)α–1 ds = A. (10)

(2) For k = 2, h ≤ t ≤ 2h, we have

x(t) = EAtα
h = I +

A(t)α

Γ (α + 1)
+

A2(t – h)2α

Γ (2α + 1)
,

x′(t) =
αA(t)α–1

Γ (α + 1)
+

2αA2(t – h)2α–1

Γ (2α + 1)
.

(11)
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Next by using the Caputo fractional differentiation expression of EA.α
h via (11), (10) and

Lemma 2.9, we obtain

cDα
0+

(
EAsα

h
)
(t) = A +

2αA2

Γ (2α + 1)Γ (1 – α)

∫ t

h
(t – s)–α(s – h)2α–1 ds

= A +
A2(t – h)α

Γ (α + 1)
.

(3) Let k = M, (M – 1)h ≤ t ≤ Mh and M ∈N ; the following relation holds:

cDα
0+

(
EAsα

h
)
(t) = A +

A2(t – h)α

Γ (α + 1)
+

A3(t – 2h)2α

Γ (2α + 1)
+ · · ·

+
AM(t – (M – 1)h)(M–1)α

Γ ((M – 1)α + 1)
.

Next let k = M + 1, Mh ≤ t ≤ (M + 1)h; by elementary computation, we get

x′(t) =
αA(t)α–1

Γ (α + 1)
+

2αA2(t – h)2α–1

Γ (2α + 1)
+ · · ·

+
(M + 1)αA(M+1)(t – Mh)(M+1)α–1

Γ ((M + 1)α + 1)
. (12)

Now taking the Caputo fractional differentiation expression of EA.α
h via (12) and

Lemma 2.9, we obtain

cDα
0+

(
EAsα

h
)
(t)

=
αA

Γ (α + 1)Γ (1 – α)

∫ t

0
(t – s)–αsα–1 ds

+
2αA2

Γ (2α + 1)Γ (1 – α)

∫ t

h
(t – s)–α(s – h)2α–1 ds + · · ·

+
(M + 1)αA(M+1)

Γ (1 – α)Γ ((M + 1)α + 1)

∫ t

Mh
(t – s)–α(s – Mh)(M+1)α–1 ds

= A +
A2(t – h)α

Γ (α + 1)
+

A3(t – 2h)2α

Γ (2α + 1)
+ · · · +

A(M+1)(t – Mh)Mα

Γ (Mα + 1)
.

This shows that Eq. (8) is satisfied for any (k – 1)h ≤ t ≤ kh and k ∈N . The proof is com-
pleted. From Lemma 2.10, we have

cDα
0+

(
EA(t–h–τ )α

h
)

= AEA(t–2h–τ )α
h . (13)

�

3 Main results
In this part for the controllability of system (3) necessary and sufficient conditions are
given. Firstly we prove a lemma, then by using this lemma the main results are constructed.

Remark 3.1 Let

〈A|B, C〉 = α + Aα + A2α + · · · + An–1α + β + Bβ + B2β + · · · + Bn–1β ,
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where α = Image B, β = Image C and n stands for order of A. Then the space 〈A|B, C〉 is
spanned by the columns of the matrix

[
B, AB, A2B, . . . , An–1B, C, AC, A2C, A3C, . . . , An–1C

]
.

Lemma 3.2 For any z ∈Rn, define W (t) : Rn →Rn by

W (t) =
∫ t–h

0

[(
EA(t–h–τ )α

h B + EA(t–2h–τ )α
h C

)(
EA(t–h–τ )α

h B + EA(t–2h–τ )α
h C

)T]
z dτ

+
∫ t

t–h

[(
EA(t–h–τ )α

h
)
BBT(

EA(t–h–τ )α
h

)T]
z dτ . (14)

Then

Im W (t) = 〈A|B, C〉. (15)

Proof Showing Im W (t) = 〈A|B, C〉 is equivalent to

Ker W (t) =
n–1⋂
i=0

Ker BT(
AT)i

n–1⋂
j=0

Ker CT(
AT)j. (16)

If x ∈ ker W (t) and x 
= 0 then

0 = xT W (t)x

=
∫ t–h

0

∥∥(
EA(t–h–τ )α

h B + EA(t–2h–τ )α
h C

)T x
∥∥2 dτ

+
∫ t

t–h

∥∥BT(
EA(t–h–τ )α

h
)T x

∥∥2 dτ ,

that is
{

0 = (EA(t–h–τ )α
h B + EA(t–2h–τ )α

h C)T x, 0 ≤ τ ≤ t – h,
0 = BT (EA(t–h–τ )α

h )T x, t – h ≤ τ < t.
(17)

For the second equation of (17) by taking its Caputo derivative from Lemma 2.10 we have

0 = BT(cDα
0+EA(t–h–τ )α

h
)T x

= BT(
EA(t–2h–τ )α

h
)T AT x. (18)

Let τ = t – h; we have

0 = BT AT x.

For the second equation of (17) by performing repeatedly Caputo’s differentiation, we get

0 = BT AT x, for k = 0, 1, 2, 3, . . . , n – 1. (19)
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Using the Cayley–Hamiltonian theorem [18]

EAuα

h =
n–1∑
k=0

Ak(u – (k – 1)h)(k+1)α–1

Γ (kα + β)
, (20)

where u = t – h – τ . Then when 0 ≤ τ ≤ t – h

0 = BT(
EA(t–h–τ )α

h
)T AT x =

n–1∑
k=0

γk(t – h – τ )BT(
AT)kx = 0.

By taking it into the first equation of (17)

0 = CT(
EA(t–2h–τ )α

h
)T x, 0 ≤ τ ≤ t – h.

By taking its Caputo derivative and letting τ = t – 2h, we get

0 = CT(
EA(t–3h–τ )α

h
)T AT x.

By performing repeatedly Caputo’s differentiation, we get

0 = CT AT x, for k = 0, 1, 2, 3, . . . , n – 1. (21)

Using (19) and (21) we get

x ∈
n–1⋂
i=0

ker BT(
AT)i

n–1⋂
j=0

ker CT(
AT)j.

That is,

ker W (t) ⊂
n–1⋂
i=0

ker BT(
AT)i

n–1⋂
j=0

ker CT(
AT)j. (22)

Conversely, suppose

x ∈
n–1⋂
i=0

ker BT(
AT)i

n–1⋂
j=0

Ker CT(
AT)j,

then (19) and (21) hold.
For t – h ≤ τ < t, from (17 and 20),

BT(
EA(t–h–τ )α

h
)T AT x =

n–1∑
k=0

γk(t – h – τ )BT(
AT)kx = 0,
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for 0 ≤ τ ≤ t – h,

(
EA(t–h–τ )α

h B + EA(t–2h–τ )α
h C

)T x =
n–1∑
k=0

γk(t – h – τ )BT(
AT)kx

+
n–1∑
k=0

γk(t – 2h – τ )CT(
AT)kx

= 0.

Therefore, x ∈ ker W (t), that is,

Ker W (t) ⊃
n–1⋂
i=0

Ker BT(
AT)i

n–1⋂
j=0

Ker CT(
AT)j. (23)

From (22) and (23), it is proven that (16) holds, completing the proof of the lemma. �

Theorem 3.3 ([18]) For system (3) the fractional differential control system with state and
control delay is controllable iff

rank
[
B, AB, A2B, . . . , An–1B, C, AC, A2C, A3C, . . . , An–1C

]
= n.

That is, in Theorem 3.3 the conditions are equivalent to 〈A|B, C〉 = Rn.
By using Lemmas 2.8, 2.10, 3.2 we will prove Theorem 3.3.

Proof of Theorem 3.3 Firstly we show that R(0, 0) = 〈A|B, C〉.
Actually, let x ∈ R(0, 0), from Lemma 2.6 and Eq. (20), we get

x =
∫ t1–h

0

(
EA(t1–h–τ )α

h B + EA(t1–2h–τ )α
h C

)
u(τ ) dτ

+
∫ t1

t1–h
EA(t1–h–τ )α

h Bu(τ ) dτ ,

x =
∫ t1

0
EA(t1–h–τ )α

h Bu(τ ) dτ +
∫ t1–h

0
EA(t1–2h–τ )α

h Cu(τ ) dτ

=
n–1∑
i=0

∫ t1

0
γi(t1 – h – s)AiBu(s) ds +

n–1∑
j=0

∫ t1–h

0
γj(t1 – 2h – s)AjCu(s) ds,

which implies x ∈ 〈A|B, C〉.
Thus,

〈A|B, C〉 ⊃ R(0, 0). (24)
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On the other hand, we show 〈A|B, C〉 ⊂ R(0, 0). Let x̂ ∈ 〈A|B, C〉, let x(t) be a solution of
system (3) at t > 0 from Lemma 2.6 we get

x(t) =
∫ t–h

0

(
EA(t–h–τ )α

h B + EA(t–2h–τ )α
h C

)
u(τ ) dτ

+
∫ t

t–h
EA(t–h–τ )α

h Bu(τ ) dτ .

For x ∈ 〈A|B, C〉 from Lemma 3.2 there exists z ∈Rn, s.t.

x̂ = W (t)z.

Let

u(s) =

⎧⎪⎨
⎪⎩

(EA(t–h–τ )α
h B + EA(t–2h–τ )α

h C)T z, 0 ≤ s ≤ t – h,
BTEA(t–h–τ )α

h Z, t – h ≤ s < t,
0, –h ≤ s ≤ 0.

Then

∫ t

0
EA(t–h–s)α

h Bu(s) ds +
∫ t

0
EA(t–h–s)α

h Cu(s – h) ds

=
∫ t–h

0

[(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)
+

(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)]T z ds

+
∫ t

t–h

(
EA(t–h–s)α

h
)
BBT(

EA(t–h–s)α
h

)
z ds

= W (t)z = x̂.

That is

R(0, 0) ⊃ 〈A|B, C〉. (25)

Using (24) and (25) we get

R(0, 0) = 〈A|B, C〉.

Immediately we show the necessity of Theorem 3.3. Assuming that, for any x ∈Rn, system
(3) is controllable, by Definition 2.4, via the initial state ϕ = 0 and the initial control ψ = 0,
there occurs a control u(s) such that

=
∫ t–h

0

(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)
u(s) ds +

∫ t

t–h

(
EA(t–h–s)α

h
)
Bu(s) ds.

Using Eq. (20) we get x ∈ 〈A|B, C〉. That is, Rn ⊂ 〈A|B, C〉. Thus Rn = 〈A|B, C〉, and the
conditions of Theorem 3.3 are satisfied. At last, we show the sufficiency. Suppose the con-
ditions of Theorem 3.3 are satisfied, then Rn = 〈A|B, C〉. For any x ∈ Rn and any initial
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state ϕ and initial control ψ , let

k = x – EAtα
h ϕ(–h) –

∫ 0

–h
EA(t–h–s)α

h ϕ′(s) ds

–
∫ t–h

0

(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)
ψ(0) ds

–
∫ t

t–h
EA(t–h–s)α

h Bψ(0) ds –
∫ 0

–h
EA(t–2h–s)α

h Cψ(s) ds.

For k ∈Rn = 〈A|B, C〉, that is, k ∈ R(0, 0), there exists a control u∗(s) such that

k =
∫ t–h

0

(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)
u∗(s) ds

+
∫ t

t–h
EA(t–h–s)α

h Bu∗(s) ds +
∫ 0

–h
EA(t–2h–s)α

h Cψ(s) ds.

Let u(s) = u∗(s) + ψ(0) then we have

x = EAtα
h ϕ(–h) +

∫ 0

–h
EA(t–h–s)α

h ϕ′(s) ds

+
∫ t–h

0

(
EA(t–h–s)α

h B + EA(t–2h–s)α
h C

)
u(s) ds

+
∫ t

t–h
EA(t–h–s)α

h Bu(s) ds +
∫ 0

–h
EA(t–2h–s)α

h Cψ(s) ds.

So the fractional control system (3) with state and control delay is controllable. Sufficiency
is proved. This completes the result of Theorem 3.3. �

4 Example
Now, we will apply the conditions which we obtained in the previous section for a frac-
tional differential system with state and control delay;

cDα
0+ x(t) = Ax(t – h) + Bu(t) + Cu(t – h),

α = 0.5, h = 1, where

A =

(
3 0
0 4

)
, B =

(
5
0

)
, C =

(
0
3

)
,

cD0.5
0+ x(t) =

(
3 0
0 4

)
x(t – 1) +

(
5
0

)
u(t) +

(
0
3

)
u(t – 1),

where x ∈Rn by simple calculations shows that

(BABCAC) =

(
2 15 0 0
0 0 3 12

)

and rank(BABCAC) = 2.



Nawaz et al. Advances in Difference Equations         (2020) 2020:30 Page 11 of 11

Funding
This work was supported by National Natural Science Foundation of China (110131013, 11471015).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to the manuscript. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 September 2019 Accepted: 23 December 2019

References
1. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations (1993)
2. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential

Operators of Caputo Type. Springer, Berlin (2010)
3. Hale, J.K., Lunel, S.M.V.: Introduction to functional differential equations. In: Introduction to Functional Differential

Equations, pp. 1–10. Springer, Berlin (1993)
4. Jiang, W.: The Degeneration Differential Systems with Delay. Anhui University Press, Hefei (1998)
5. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998)
6. Kolmanovskii, V., Myshkis, A.: Applied Theory of Functional Differential Equations. Springer, Berlin (2012)
7. Dai, L.: Singular Control Systems. Springer, Berlin (1989)
8. Wei, J., Wenzhong, S.: Controllability of singular systems with control delay. Automatica 37, 1873–1877 (2001)
9. Diblík, J., Fec̆kan, M., Pospís̆il, M.: On the new control functions for linear discrete delay systems. SIAM J. Control

Optim. 52, 1745–1760 (2014)
10. Dauer, J.P., Gahl, R.D.: Controllability of nonlinear delay systems. J. Optim. Theory Appl. 21, 59–70 (1977)
11. Nirmala, R.J., Balachandran, K., Rodríguez-Germa, L., Trujillo, J.J.: Controllability of nonlinear fractional delay dynamical

systems. Rep. Math. Phys. 77, 87–104 (2016)
12. Zhou, X.F., Wei, J., Hu, L.G.: Controllability of a fractional linear time-invariant neutral dynamical system. Appl. Math.

Lett. 26, 418–424 (2013)
13. Diblík, J., Khusainov, D.Y., Ružicková, M.: Controllability of linear discrete systems with constant coefficients and pure

delay. SIAM J. Control Optim. 47, 1140–1149 (2008)
14. Liang, C., Wang, J., O’Regan, D.: Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ.

Equ. 2017, Article ID 47 (2017)
15. Pospís̆il, M.: Relative controllability of neutral differential equations with a delay. SIAM J. Control Optim. 55, 835–855

(2017)
16. Khusainov, D.Y., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. Appl. Mech. 41, 210–221 (2005)
17. Wei, J.: On the interval controllability of fractional systems with control delay. J. Math. Res. 9, 87–96 (2017)
18. Wei, J.: The controllability of fractional control systems with control delay. Comput. Math. Appl. 64, 3153–3159 (2012)
19. He, B.B., Zhou, H.C., Kou, C.H.: The controllability of fractional damped dynamical systems with control delay.

Commun. Nonlinear Sci. Numer. Simul. 32, 190–198 (2016)
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