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Abstract
In this paper, we prove the existence and uniqueness of solutions for a singular
fractional differential equation boundary value problem with p-Laplacian operator.
The main results of this paper are obtained by constructing the monotone iterative
sequences of upper and lower solutions and applying the comparison result. Finally,
we also provide an illustrative example in support of the existence theorem. Our
results generalize some related results in the literature.
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1 Introduction
The fractional calculus and its varied applications in many fields of science and engineer-
ing have gained much attention and developed rapidly in recent decades. Fractional dif-
ferential equations have been used in the mathematical modeling of process in physics,
chemistry, aerodynamics, polymer rheology, fluid flow phenomena, wave propagation,
signal theory, electrical circuits, control theory and viscoelastic materials etc. For details,
see [1–7] and the references therein.

Many research papers have appeared concerning the existence of solutions for the ini-
tial or boundary value problems of fractional differential equations; see [8–19]. We no-
tice that recently a kind of general boundary value conditions, nonlinear boundary value
conditions, were investigated in [10, 11]. Moreover, some papers considered recently frac-
tional boundary value problems with p-Laplacian [12–14, 20, 21], and the upper and lower
method and the monotone iterative technique are used in [12–14].

By means of the monotone iterative method and lower and upper solutions, Jankowski
[11] considered the following fractional differential equations with nonlinear boundary
conditions:

⎧
⎨

⎩

(Dq
T u)(t) = f (t, u(t)), t ∈ [0, T), T > 0,

0 = g(u(0), u(T)),

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-019-2482-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2482-9&domain=pdf
http://orcid.org/0000-0001-5741-1175
mailto:dingyouzheng@163.com


Liu et al. Advances in Difference Equations         (2020) 2020:83 Page 2 of 12

where f ∈ C([0, T] × R,R), g ∈ C(R × R,R), and Dq
T u is the right-handed Riemann–

Liouville fractional derivative of u with 0 < q < 1, u(a) = (T – t)1–qu(t)|t=a, a = 0, T . One
obtained the existence results of a unique solution of the nonlinear fractional differential
equations with initial condition at the point T , and got the existence results of a related lin-
ear fractional differential problems in terms of the Mittag-Leffler function and the method
of successive approximations. On the base of the conclusions, sufficient conditions which
guarantee that the problem has extremal solutions were given.

Ding et al. [12] generalized the above problem to the following fractional boundary value
problem with p-Laplacian via the upper and lower method and the monotone iterative
method:

⎧
⎨

⎩

Dβ

0+ (φp(Dα
0+ u(t))) = f (t, u(t), Dα

0+ u(t)), t ∈ (0, 1],

t
1–β
p–1 Dα

0+ u(t)|t=0 = 0, g(ũ(0), ũ(1)) = 0,

where 0 < α,β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is the Riemann–Liouville fractional derivative of

order α, φp(t) = |t|p–2t, p > 1 is the p-Laplacian operator, f ∈ C([0, 1]×R×R,R), g ∈ C(R×
R,R), ũ(0) = t1–αu(t)|t=0 and ũ(1) = t1–αu(t)|t=1. The existence and uniqueness of extremal
solutions are investigated by constructing two well-defined monotone iterative sequences
of upper and lower solutions.

Motivated by the above work, in this paper, we investigate the existence and uniqueness
of extremal solution for a singular fractional differential equation with p-Laplacian and
subjects to more general nonlinear boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (φp(Dα
0+ u(t))) = f (t, u(t), Dα

0+ u(t)), t ∈ (0, T],

g(ũ(0), ũ(T)) = 0,

h(Dα
0+ u(0), Dα

0+ u(T)) = 0,

(1.1)

where 0 < α,β ≤ 1, 1 < α + β ≤ 2, r = 1–β

p–1 , Dα
0+ is the Riemann–Liouville fractional deriva-

tive of order α, φp(t) = |t|p–2t (p > 1) is the p-Laplacian operator, f ∈ C([0, T] × R ×
R,R), g ∈ C(R×R,R), h ∈ C(R×R,R), ũ(c) = t1–αu(t)|t=c, and Dα

0+ u(c) = trDα
0+ u(t)|t=c, c =

0, T .
In problem (1.1), the boundary value conditions g(x, y) = 0, h(x, y) = 0 are a class of gen-

eral conditions. When h(x, y) = x the problem (1.1) become the problem in [12]. The con-
ditions can cover anti-periodic [22] or other nonlinear boundary conditions. Moreover,
the function u and its derivatives may have singularities at both 0 and T . Therefore the
problem (1.1) can generalize those problems in [12–14]. Thus our conclusions can be more
extensive. We here not only obtain the existence and uniqueness of extremal solutions but
also the iterative sequences which converge to the solutions.

For some related results on boundary value problem with p-Laplacian, obtained by
means of the monotone iterative method, the monotone type conditions for nonlinear
terms f with respect to the functions u or their derivatives are usually required. In this pa-
per, we only consider the functions f + Mφp(Dα

0+ u(t)) not f to be enslaved to the monotone
type conditions.

The paper is organized as follows. In Sect. 2, we provide some preliminaries, the exis-
tence result for linear fractional problems with initial value conditions and a comparison
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result. In Sect. 3, the existence and uniqueness theorems of extremal solutions are es-
tablished by constructing two well-defined monotone iterative sequences of upper-lower
solutions. Finally, as applications of the theoretical results, an example is given to illustrate
the existence result.

2 Preliminaries
Let J = [0, T] be a closed interval on the real axisR. It is well known that C[0, T] is a Banach
space of continuous functions from [0, T] into R with the norm ‖u‖C = maxt∈[0,T] |u(t)|.
Denote Cλ[0, T] by

Cλ[0, T] =
{

u ∈ C(0, T] : tλu ∈ C[0, T]
}

,

where λ ∈ [0, 1). Then Cλ[0, T] is also a Banach space with the norm ‖u‖Cλ
= ‖tλu‖C . It is

clear that C[0, T] := C0[0, T] ⊂ Cλ[0, T] ⊂ Cδ[0, T] for 0 ≤ λ ≤ δ < 1 and Cλ[0, T] ⊂ L[0, T]
(L[0, T] is a space of Lebesgue integrable real functions defined on [0, T]). Define Cα

r [0, T]
by

Cα
r [0, T] =

{
u(t) ∈ C1–α[0, T] :

(
Dα

0+ u
)
(t) ∈ Cr[0, T]

}
,

where 0 < α,β ≤ 1, r = 1–β

p–1 , p > 1 and p + β > 2. It is a Banach space with the norm ‖u‖Cα
r =

‖u‖C1–α
+ ‖Dα

0+ u‖Cr (see Lemma 2.2 in [14]).
We introduce some useful definitions and fundamental facts of fractional calculus the-

ory; for more details, see [1, 2].

Definition 2.1 ([1]) The Riemann–Liouville fractional integral Iα
0+ is given by

Iα
0+ f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds

and the fractional derivative Dα
0+ is defined by

Dα
0+ f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds =

(
d
dt

)n(
In–α

0+ f
)
(t),

where n – 1 < α ≤ n, n ∈N, provided the integrals exist.

Lemma 2.1 ([1]) Assume that we have the function u ∈ C(0, T] ∩ L(0, T] with a fractional
derivative of order α (0 < α ≤ 1) that belongs to C(0, T] ∩ L(0, T]. Then

Iα
0+ Dα

0+ u(t) = u(t) + ctα–1 for some c ∈R;

Dα
0+ Iα

0+ u(t) = u(t).

Lemma 2.2 ([12, Lemma 2.1]) Assume that 0 < β ≤ 1, M ∈R, κ ∈ R, u(t) ∈ C1–β[0, T] and
h(t) ∈ C1–β[0, T]. Then the linear fractional initial value problem

⎧
⎨

⎩

Dβ

0+ u(t) + Mu(t) = h(t), t ∈ (0, T],

t1–βu(t)|t=0 = κ ,
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has the following solution of integral representation:

u(t) = Γ (β)κtβ–1Eβ ,β
(
–Mtβ

)
+

∫ t

0
(t – s)β–1Eβ ,β

(
–M(t – s)β

)
h(s) ds,

where Eβ ,β (x) =
∑∞

k=0
xk

Γ (kβ+β) is the Mittag-Leffler function. It is continuous and nonnega-
tive [1, 8].

Lemma 2.3 Suppose that 0 < α,β ≤ 1, M is a constant, k0, h0 ∈ R, u(t) ∈ Cα
r [0, T] and

η(t) ∈ C1–β[0, T]. Then the following linear fractional initial value problem:

⎧
⎨

⎩

Dβ

0+ (φp(Dα
0+ u(t))) + Mφp(Dα

0+ u(t)) = η(t), t ∈ (0, T],

ũ(0) = k0, Dα
0+ u(0) = h0,

(2.1)

has a unique solution with the integral form

u(t) = k0tα–1 +
1

Γ (α)

∫ t

0
(t – s)α–1φq

[

Γ (β)φp(h0)sβ–1Eβ ,β
(
–Msβ

)

+
∫ s

0
(s – τ )β–1Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]

ds, (2.2)

where φq is the inverse function of φp.

Proof Let v(t) = φp(Dα
0+ u(t)), then we have φp(trDα

0+ u(t)) = t1–βv(t), 0 < t ≤ T . Thus the
problem (2.1) is converted to the following fractional initial value problem:

⎧
⎨

⎩

Dβ

0+ v(t) + Mv(t) = η(t), t ∈ (0, T],

t1–βv(t)|t=0 = φp(h0).

From Lemma 2.2, we find

v(t) = Γ (β)φp(h0)tβ–1Eβ ,β
(
–Mtβ

)
+

∫ t

0
(t – s)β–1Eβ ,β

(
–M(t – s)β

)
η(s) ds (2.3)

and v(t) ∈ C1–β[0, T], thus

Dα
0+ u(t) = φq

[

Γ (β)φp(h0)tβ–1Eβ ,β
(
–Mtβ

)
+

∫ t

0
(t –s)β–1Eβ ,β

(
–M(t –s)β

)
η(s) ds

]

. (2.4)

For v(t) ∈ C(0, T] ∩ L(0, T], we have Dα
0+ u(t) ∈ Cr[0, T] ⊂ C(0, T] ∩ L(0, T]. Lemma 2.1

yields

u(t) = ctα–1 +
1

Γ (α)

∫ t

0
(t – s)α–1φq

[

Γ (β)φp(h0)sβ–1Eβ ,β
(
–Msβ

)

+
∫ s

0
(s – τ )β–1Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]

ds.



Liu et al. Advances in Difference Equations         (2020) 2020:83 Page 5 of 12

By virtue of ũ(0) = k0, we get c = k0 and

u(t) = k0tα–1 +
1

Γ (α)

∫ t

0
(t – s)α–1φq

[

Γ (β)φp(h0)sβ–1Eβ ,β
(
–Msβ

)

+
∫ s

0
(s – τ )β–1Eβ ,β

(
–M(s – τ )β

)
η(τ ) dτ

]

ds. (2.5)

Conversely, it is obvious that u(t) ∈ C1–α[0, T] and ũ(0) = k0. Noting that Dα
0+ tα–1 = 0,

Dα
0+ Iαu = u, ∀u ∈ C(0, T] ∩ L(0, T] and differentiating (2.5) with order α, we arrive at (2.4).

Since η(t) ∈ C1–β [0, T], it is clear that φp(Dα
0+ u(t)) ∈ C1–β [0, T], and Dα

0+ u(t) ∈ Cr[0, T].
Using φp to (2.4) and then multiply by t1–β , we get

t1–βφp
(
Dα

0+ u(t)
)

= Γ (β)φp(h0)Eβ ,β
(
–Mtβ

)
+ t1–β

∫ t

0
(t – s)β–1Eβ ,β

(
–M(t – s)β

)
η(s) ds,

and trDα
0+ u(t)|t=0 = h0. Differentiating the above equation with order β , from Lemma 2.2,

we find

Dβ

0+
(
φp

(
Dα

0+ u(t)
))

+ Mφp
(
Dα

0+ u(t)
)

= η(t).

This completes the proof. �

Lemma 2.4 (Comparison result) If u(t) ∈ Cα
r [0, T] and satisfies

⎧
⎨

⎩

Dβ

0+ (φp(Dα
0+ u(t))) + Mφp(Dα

0+ u(t)) ≥ 0, t ∈ (0, T],

ũ(0) ≥ 0, Dα
0+ u(0) ≥ 0,

where M is a constant, then Dα
0+ u(t) ≥ 0 and u(t) ≥ 0 for t ∈ (0, T].

Proof Let w(t) = φp(Dα
0+ u(t)), then w(t) ∈ C1–β[0, T] and satisfies

⎧
⎨

⎩

Dβ

0+ w(t) + Mw(t) ≥ 0, t ∈ (0, T],

t1–βw(t)|t=0 ≥ 0,

hence w(t) ≥ 0 for t ∈ (0, T], by Lemma 2.2. Since φp(x) is nondecreasing, u(t) satisfies

⎧
⎨

⎩

Dα
0+ u(t) ≥ 0, t ∈ (0, T],

ũ(0) ≥ 0.

Therefore we get u(t) ≥ 0, t ∈ (0, T] from Lemma 2.1. This lemma is complete. �

3 Main results and an example
We introduce the definition of a pair of lower and upper solutions for using the monotone
iterative method.
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Definition 3.1 A function u(t) ∈ Cα
r [0, T] is called a lower solution of problem (1.1) if it

satisfies
⎧
⎨

⎩

Dβ

0+ (φp(Dα
0+ u(t))) ≤ f (t, u(t), Dα

0+ u(t)), t ∈ (0, T],

g(ũ(0), ũ(T)) ≥ 0, h(Dα
0+ u(0), Dα

0+ u(T)) ≥ 0.
(3.1)

A function v(t) ∈ Cα
r [0, T] is called an upper solution of problem (1.1) if it satisfies

⎧
⎨

⎩

Dβ

0+ (φp(Dα
0+ v(t))) ≥ f (t, v(t), Dα

0+ v(t)), t ∈ (0, T],

g(ṽ(0), ṽ(T)) ≤ 0, h(Dα
0+ v(0), Dα

0+ v(T)) ≤ 0.
(3.2)

We need the following assumptions for our main results.
(H1) Assume that u0, v0 ∈ Cα

r [0, T] are lower and upper solutions of the problem (1.1),
respectively, and u0(t) ≤ v0(t), t ∈ (0, T].

(H2) There exists a constant M such that

f
(
t, u(t), Dα

0+ u(t)
)

– f
(
t, v(t), Dα

0+ v(t)
) ≤ M

[
φp

(
Dα

0+ v(t)
)

– φp
(
Dα

0+ u(t)
)]

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), Dα
0+ u0(t) ≤ Dα

0+ u(t) ≤ Dα
0+ v(t) ≤ Dα

0+ v0(t), t ∈ (0, T].
(H3) There exist constants λ1 > 0,λ2 ≥ 0 such that

g(x1, y1) – g(x2, y2) ≤ λ1(x2 – x1) – λ2(y2 – y1)

for ũ0(0) ≤ x1 ≤ x2 ≤ ṽ0(0) and ũ0(T) ≤ y1 ≤ y2 ≤ ṽ0(T).
(H4) There exist constants μ1 > 0,μ2 ≥ 0 such that

h(x1, y1) – h(x2, y2) ≤ μ1(x2 – x1) – μ2(y2 – y1)

for Dα
0+ u0(0) ≤ x1 ≤ x2 ≤ Dα

0+ v0(0) and Dα
0+ u0(T) ≤ y1 ≤ y2 ≤ Dα

0+ v0(T).

Theorem 3.1 Assume that f ∈ C([0, T] × R × R,R), g ∈ C(R × R,R), h ∈ C(R × R,R)
and (H1)–(H4) hold. Then there exist sequences {un(t)}, {vn(t)} ⊂ Cα

r [0, T] such that
limn→∞ un = x, limn→∞ vn = y on (0, T] and x, y are minimal and maximal solutions on
the interval [u0, v0] of the problem (1.1), respectively, where

[u0, v0] =
{

u ∈ Cα
r [0, T] : u0(t) ≤ u(t) ≤ v0(t), t ∈ (0, T], ũ0(0) ≤ ũ(0) ≤ ṽ0(0)

}
.

That is, for any solution u ∈ [u0, v0],

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ x ≤ u ≤ y ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0

and

Dα
0+ u0 ≤ Dα

0+ u1 ≤ · · · ≤ Dα
0+ un ≤ · · · ≤ Dα

0+ x ≤ Dα
0+ u ≤ Dα

0+ y ≤ · · · ≤ Dα
0+ vn ≤ · · ·

≤ Dα
0+ v1 ≤ Dα

0+ v0.
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Proof Let F(u(t)) := f (t, u(t), Dα
0+ u(t)). For n = 1, 2, . . . , we define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ

0+ (φp(Dα
0+ un(t))) + Mφp(Dα

0+ un(t)) = F(un–1(t)) + Mφp(Dα
0+ un–1(t)),

t ∈ (0, T],

ũn(0) = ũn–1(0) + 1
λ1

g(ũn–1(0), ũn–1(T)),

Dα
0+ un(0) = Dα

0+ un–1(0) + 1
μ1

h(Dα
0+ un–1(0), Dα

0+ un–1(T)),

(3.3)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dβ

0+ (φp(Dα
0+ vn(t))) + Mφp(Dα

0+ vn(t)) = F(vn–1(t)) + Mφp(Dα
0+ vn–1(t)),

t ∈ (0, T],

ṽn(0) = ṽn–1(0) + 1
λ1

g(ṽn–1(0), ṽn–1(T)),

Dα
0+ vn(0) = Dα

0+ vn–1(0) + 1
μ1

h(Dα
0+ vn–1(0), Dα

0+ vn–1(T)).

(3.4)

From u0, v0 ∈ Cα
r [0, T], we have Dα

0+ u0(t), Dα
0+ v0(t) ∈ Cr[0, T] and F(u0(t)) + φp(Dα

0+ u0(t)),
F(v0(t)) + φp(Dα

0+ v0(t)) ∈ C1–β [0, T]. In view of Lemma 2.3, the functions u1, v1 are well
defined in the space Cα

r [0, T]. By induction, we can infer that un, vn are well defined in the
space Cα

r [0, T].
Firstly, we prove that u0(t) ≤ u1(t) ≤ v1(t) ≤ v0(t) and Dα

0+ u0(t) ≤ Dα
0+ u1(t) ≤ Dα

0+ v1(t) ≤
Dα

0+ v0(t) for t ∈ (0, T].
Let δ(t) := φp(Dα

0+ u1(t)) – φp(Dα
0+ u0(t)). The definition of u1 and the assumption that u0

is a lower solution imply

Dβ

0+δ(t) + Mδ(t) = F
(
u0(t)

)
– Dβ

0+ (φp
(
Dα

0+ u0(t)
) ≥ 0,

and ũ1(0) – ũ0(0) = 1
λ1

g(ũ0(0), ũ0(T)) ≥ 0, trDα
0+ u1(0) – trDα

0+ u0(0) = 1
μ1

h(trDα
0+ u0(0),

trDα
0+ u0(T)) ≥ 0, thus we have Dα

0+ u0(t) ≤ Dα
0+ u1(t) and u1(t) ≥ u0(t), t ∈ (0, T] by

Lemma 2.4.
Using a similar method, we can show that v1(t) ≤ v0(t) and Dα

0+ v1(t) ≤ Dα
0+ v0(t) for all

t ∈ (0, T]. Now, we put ξ (t) = φp(Dα
0+ v1(t)) – φp(Dα

0+ u1(t)). From (3.3), (3.4) and (H2), we
have

Dβ

0+ξ (t) + Mξ (t) = F
(
v0(t)

)
– F

(
u0(t)

)
+ M

[
φp

(
Dα

0+ v0(t)
)

– φp
(
Dα

0+ u0(t)
)] ≥ 0. (3.5)

We find, by (H3) and (H1),

ṽ1(0) – ũ1(0) = ṽ0(0) +
1
λ1

g
(
ṽ0(0), ṽ0(T)

)
–

[

u0(0) +
1
λ1

g
(
ũ0(0), ũ0(T)

)
]

=
1
λ1

[
λ
(
ṽ0(0) – ũ0(0)

)
+ g

(
ṽ0(0), ṽ0(T)

)
– g

(
ũ0(0), ũ0(T)

)]

≥ 1
λ1

[
λ1

(
ṽ0(0) – ũ0(0)

)
– λ1

(
ṽ0(0) – ũ0(0)

)
+ λ2(ṽ0(T) – ũ0(T)

]

=
λ2

λ1

(
ṽ0(T) – ũ0(T)

) ≥ 0. (3.6)
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Similarly,

Dα
0+ v1(0) – Dα

0+ u1(0) ≥ μ2

μ1

(
Dα

0+ v0(T) – Dα
0+ u0(T)

) ≥ 0. (3.7)

It follows from (3.5)–(3.7) and Lemma 2.4 that Dα
0+ v1(t) ≥ Dα

0+ u1(t) and v1(t) ≥ u1(t), t ∈
(0, T].

Next, we show that u1, v1 are lower and upper solutions of problem (1.1), respectively.
From (3.3) and conditions (H2)–(H4), we have

Dβ

0+
(
φp

(
Dα

0+ u1(t)
))

= F
(
u0(t)

)
– F

(
u1(t)

)
+ F

(
u1(t)

)

– M
[
φp

(
Dα

0+ u1(t)
)

– φp
(
Dα

0+ u0(t)
)]

≤ M
[
φp

(
Dα

0+ u1(t)
)

– φp
(
Dα

0+ u0(t)
)]

– M
[
φp

(
Dα

0+ u1(t)
)

– φp
(
Dα

0+ u0(t)
)]

+ F
(
u1(t)

)

= F
(
u1(t)

)

and

0 = g
(
ũ0(0), ũ0(T)

)
– g

(
ũ1(0), ũ1(T)

)
+ g

(
ũ1(0), ũ1(T)

)
– λ1

[
ũ1(0) – ũ0(0)

]

≤ g
(
ũ1(0), ũ1(T)

)
– λ2

(
ũ1(T) – ũ0(T)

)
,

0 = h
(
Dα

0+ u0(0), Dα
0+ u0(T)

)
– h

(
Dα

0+ u1(0), Dα
0+ u1(T)

)

+ h
(
Dα

0+ u1(0), Dα
0+ u1(T)

)
– μ1

[
Dα

0+ u1(0) – Dα
0+ u0(0)

]

≤ h
(
Dα

0+ u1(0), Dα
0+ u1(T)

)
– μ2

(
Dα

0+ u1(T) – Dα
0+ u0(T)

)
.

Since ũ1(T) ≥ ũ0(T), trDα
0+ u1(T) ≥ trDα

0+ u0(T), the above inequality implies

g
(
ũ1(0), ũ1(T)

) ≥ 0, h
(
Dα

0+ u1(0), Dα
0+ u1(T)

) ≥ 0.

This proves that u1 is a lower solution of the problem (1.1). Similarly, we can prove that v1

is an upper solution of (1.1).
Using mathematical induction, we know that

u0(t) ≤ u1(t) ≤ · · · ≤ un(t) ≤ un+1(t) ≤ vn+1(t) ≤ vn(t) ≤ · · · ≤ v1(t) ≤ v0(t),

Dα
0+ u0 ≤ Dα

0+ u1 ≤ · · · ≤ Dα
0+ un ≤ Dα

0+ un+1

≤ Dα
0+ vn+1 ≤ Dα

0+ vn ≤ · · · ≤ Dα
0+ v1 ≤ Dα

0+ v0,

(3.8)

for t ∈ (0, T] and n = 1, 2, 3, . . . .
The sequences {t1–αun} and {trDα

0+ un} are uniformly bounded and equi-continuous [14].
Similarly, we can prove that the sequences {t1–αvn} and {trDα

0+ vn} are uniformly bounded
and equi-continuous. The Arzela–Ascoli theorem guarantees that {t1–αun} and {t1–αvn}
converge to t1–αx(t) and t1–αy(t) uniformly on [0, T], respectively; {trDα

0+ un} and {trDα
0+ vn}

converge to {trDα
0+ x(t)} and {trDα

0+ y(t)} uniformly on [0, T], respectively. Therefore ‖un –
x‖Cα

r → 0,‖vn – y‖Cα
r → 0 (n → ∞).
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By the integral representation (2.2) for the linear fractional problem, the solution un(t)
of problem (3.3) can be expressed as

un(t) = tα–1kn–1 +
1

Γ (α)

∫ t

0
(t – s)α–1φq

[

Γ (β)φp(hn–1)sβ–1Eβ ,β
(
–Msβ

)

+
∫ s

0
(s – τ )β–1Eβ ,β

(
–M(s – τ )β

)
ηn–1(τ )

]

dτ , t ∈ (0, T],

where kn–1 = ũn–1(0) + 1
λ

g (̃un–1(0), ũn–1(T)), ηn–1(s) = F(un–1(s)) + Mφp(Dα
0+ un–1(s)) and

hn–1 = Dα
0+ un–1(0) + 1

μ1
h(Dα

0+ un–1(0), Dα
0+ un–1(T)).

By the assumption of f and applying the dominated convergence theorem, x(t) satisfies
the following integral equation:

x(t) = tα–1̃x(0) +
1

Γ (α)

∫ t

0
(t – s)α–1φq

[

Γ (β)φp(h0)sβ–1Eβ ,β
(
–Msβ

)

+
∫ s

0
(s – τ )β–1Eβ ,β

(
–M(s – τ )β

)
η(τ )

]

dτ , t ∈ (0, T],

where h0 = Dα
0+ x(0),η(s) = F(x(s))+Mφp(Dα

0+ x(s)). By Lemma 2.3, we know x(t) is a solution
of problem (1.1). In the same way as above, we can prove that y(t) is also a solution of
problem (1.1), and satisfies u0 ≤ x ≤ y ≤ v0 on (0, T].

To prove that x(t), y(t) are extremal solutions of (1.1), let u ∈ [u0, v0] be any solution
of the problem (1.1). We suppose that un ≤ u ≤ vn, t ∈ (0, T] for some n. Let ζ (t) =
φp(Dα

0+ u(t)) – φp(Dα
0+ un+1(t)),(t) = φp(Dα

0+ vn+1(t)) – φp(Dα
0+ u(t)). Then, by condition (H2),

we see that

Dβ

0+ζ (t) + Mζ (t) = F
(
u(t)

)
– F

(
un(t)

)
+ M

[
φp

(
Dα

0+ u
)

– φp
(
Dα

0+ un
)] ≥ 0

and

Dβ

0+(t) + M(t) = F
(
vn(t)

)
– F

(
u(t)

)
+ M

[
φp

(
Dα

0+ vn
)

– φp
(
Dα

0+ v
)] ≥ 0.

In addition, by condition (H3), we have

ũ(0) – ũn+1(0) = ũ(0) +
1
λ1

g
(
ũ(0), ũ(T)

)
–

[

ũn(0) +
1
λ1

g
(
ũn(0), ũn(T)

)
]

=
1
λ1

[
λ1ũ(0) + g

(
ũ(0), ũ(T)

)
–

(
λ1ũn(0) + g

(
ũn(0), ũn(T)

))]

≥ λ2

λ1

(
ũ(T) – ũn(T)

) ≥ 0

and

ṽn+1(0) – ũ(0) = ṽn(0) +
1
λ1

g
(
ṽn(0), ṽn(T)

)
–

[

ũ(0) +
1

λ – 1
g
(
ũ(0), ũ(T)

)
]

=
1
λ1

[
λ1ṽn(0) + g

(
ũ(0), ũ(T)

)
– (λ1ũ(0) + g

(
ũn(0), ũn(T)

)]
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≥ λ2

λ1

(
ṽn(T) – ũ(T)

) ≥ 0.

By condition (H4), we have

Dα
0+ u(0) – Dα

0+ un+1(0) = Dα
0+ u(0) +

1
μ1

h
(
Dα

0+ u(0), Dα
0+ u(T)

)

–
[

Dα
0+ un(0) +

1
μ1

h
(
Dα

0+ un(0), Dα
0+ un(T)

)
]

=
1
μ1

[
μ1Dα

0+ u(0) + h
(
Dα

0+ u(0), Dα
0+ u(T)

)

–
(
μ1Dα

0+ un(0) + h
(
Dα

0+ un(0), Dα
0+ un(T)

))]

≥ μ2

μ1

(
Dα

0+ u(T) – Dα
0+ un(T)

) ≥ 0

and

Dα
0+ vn+1(0) – Dα

0+ u(0) ≥ μ2

μ1

(
Dα

0+ vn+1(T) – Dα
0+ u(T)

) ≥ 0.

Therefore, Dα
0+ un+1(t) ≤ Dα

0+ u(t) ≤ Dα
0+ vn+1(t) and un+1(t) ≤ u(t) ≤ vn+1(t), t ∈ (0, T], fur-

thermore, by induction x(t) ≤ u(t) ≤ y(t), Dα
0+ x ≤ Dα

0+ u ≤ Dα
0+ y on (0, T] by taking n → ∞.

The proof is complete. �

Theorem 3.2 The assumptions in Theorem 3.1 hold and there exists a constant N such
that

f
(
t, u(t), Dα

0+ u(t)
)

– f
(
t, v(t), Dα

0+ v(t)
) ≥ –N

[
φp

(
Dα

0+ u(t)
)

– φp
(
Dα

0+ v(t)
)]

(3.9)

for u0(t) ≤ u(t) ≤ v(t) ≤ v0(t), Dα
0+ u0(t) ≤ Dα

0+ u(t) ≤ Dα
0+ v(t) ≤ Dα

0+ v0(t), t ∈ (0, T], and
ũ0(0) = ṽ0(0), Dα

0+ u0(0) = Dα
0+ v0(0). Then problem (1.1) has a unique solution in the order

interval [u0, v0].

Proof From Theorem 3.1, we know x(t) and y(t) are extremal solutions and x(t) ≤ y(t), t ∈
(0, T]. It is sufficient to prove x(t) ≥ y(t), t ∈ (0, T].

In fact, by (3.8) and Dα
0+ u0(0) = Dα

0+ v0(0), we know Dα
0+ x(0) = Dα

0+ y(0). Let w(t) =
φp(Dα

0+ x(t)) – φp(Dα
0+ y(t)), t ∈ (0, T], we have, from (3.9),

⎧
⎨

⎩

Dβ

0+ w(t) = F(x(t)) – F(y(t)) ≥ –N[φp(Dα
0+ x(t)) – φp(Dα

0+ y(t))] = –Nw(t),

t1–βw(t)|t=0 = 0.

Then w(t) ≥ 0, t ∈ (0, T], i.e. Dα
0+ x(t) ≥ Dα

0+ y(t), t ∈ (0, T]. And also by (3.8) and ũ0(0) =
ṽ0(0), we have x̃(0) = ỹ(0), Lemma 2.4 implies x(t) ≥ y(t), t ∈ (0, T]. Thus, we obtain x(t) =
y(t). The problem (1.1) has a unique solution. The proof is complete. �

Finally, we present an example to illustrate Theorem 3.1.



Liu et al. Advances in Difference Equations         (2020) 2020:83 Page 11 of 12

Example 3.1 Consider the following fractional periodic boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (φp(Dα
0+ u(t))) = t1/2(1 – t) – 2[Dα

0+ u(t)]2 + u(t), t ∈ (0, 1],

ũ(0)( Γ (5/6)
2Γ (4/3) – ũ(1)) = 0,

( 1
2 + Dα

0+ u(0))(1 – Dα
0+ u(1)) = 0,

(3.10)

where α = 1/2,β = 2/3, p = 3, T = 1, f (t, u, Dα
0+ u) = t1/2(1 – t) – 2[Dα

0+ u(t)]2 + u(t), g(x, y) =
x( Γ (5/6)

2Γ (4/3) – y), and h(x, y) = ( 1
2 + x)(1 – y).

Set

u0(t) ≡ 0, v0(t) =
Γ (5/6)
Γ (4/3)

t1/3, t ∈ [0, 1].

It is easily verified that D1/2
0+ u0(t) ≡ 0, D1/2

0+ v0(t) = t–1/6 for t ∈ (0, 1] and

t1/6D1/2
0+ u0(t)|t=0 = t1/6D1/2

0+ u0(t)|t=1 = 0, t1/6D1/2
0+ v0(t)|t=0 = t1/6D1/2

0+ v0(t)|t=1 = 1.

Therefore,

D2/3
0+

(
φ3

(
D1/2

0+ u0(t)
)) ≡ 0 ≤ f

(
t, u0, D1/2

0+ u0
)

= t1/2(1 – t),

g
(
ũ0(0), ũ0(1)

)
= 0, h

(
t1/6D1/2

0+ u0(t)|t=0, t1/6D1/2
0+ u0(t)|t=1

)
=

1
2

.

These show that u0 is a lower solution of (3.10). We have

D2/3
0+

(
φ3

(
D1/2

0+ v0(t)
))

= D2/3
0+

(
t–1/3) = 0 ≥ f

(
t, v0, D1/2

0+ v0
)

= t1/2(1 – t) – 2t–1/3 +
Γ (5/6)
Γ (4/3)

t1/3,

g
(
ṽ0(0), ṽ0(1)

)
= 0, h

(
t1/6D1/2

0+ v0(t)|t=0, t1/6D1/2
0+ v0(t)|t=1

)
= 0.

These show that v0 is an upper solution of (3.10), and u0(t) ≤ v0(t) on [0, 1].
For u0 ≤ u ≤ v ≤ v0, we have φ3(D1/2

0+ v) – φ3(D1/2
0+ u) = (D1/2

0+ v)2 – (D1/2
0+ u)2 and

f
(
t, u, D1/2

0+ u
)

+ 2φ3
(
D1/2

0+ u
)

–
[
f
(
t, v, D1/2

0+ v
)

+ 2φ3
(
D1/2

0+ v
)]

= u – v ≤ 0.

Thus, f (t, u, D1/2
0+ u) – f (t, v, D1/2

0+ v) ≤ 2[φ3(D1/2
0+ v) – φ3(D1/2

0+ u)].

In addition, ∂g(x,y)
∂x = Γ (5/6)

2Γ (4/3) – y ≥ – Γ (5/6)
2Γ (4/3) , ∂g(x,y)

∂y = –x for ũ0(0) ≤ x ≤ ṽ0(0), y ∈ [̃u0(1),
ṽ0(1)] = [0, Γ (5/6)

Γ (4/3) ]. Therefore, g(u1, v1) – g(u2, v2) ≤ Γ (5/6)
2Γ (4/3) (u2 – u1) for ũ0(0) ≤ u1 ≤ u2 ≤

ṽ0(0), ũ0(1) ≤ v1 ≤ v2 ≤ ṽ0(1). In the same way, h(u1, v1) – h(u2, v2) ≤ 1
2 (u2 – u1), for

t1/6D1/2
0+ u0(t)|t=0 ≤ u1 ≤ u2 ≤ t1/6D1/2

0+ v0(t)|t=0, t1/6D1/2
0+ u0(t)|t=1 ≤ v1 ≤ v2 ≤ t1/6D1/2

0+ v0(t)|t=1.
Hence, conditions (H1)–(H4) are satisfied. There exist two monotone iterative sequences

{uk} and {vk}, which converge uniformly to the minimal and maximal solutions of problem
(3.10) in [u0, v0] by Theorem 3.1.
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