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Abstract
In this paper, a delay Lasota–Wazewska system with feedback control on time scales is
proposed. Firstly, by using some differential inequalities on time scales, sufficient
conditions which ensure the permanence of the system are obtained. Secondly, by
means of the fixed point theory and the exponential dichotomy of linear dynamic
equations on time scales, some sufficient conditions for the existence of unique
almost periodic solution are obtained. Moreover, exponential stability of the almost
periodic positive solution is investigated by applying the Gronwall inequality. Finally,
numeric simulations are carried out to show the feasibility of the main results.
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1 Introduction
Today the dynamical systems are classified into some types, among which discrete systems
and continuous systems are two important types. But it is troublesome to study the so-
lutions for discrete and continuous systems, respectively. Therefore, it is more significant
to study a biological model which can effectively unify the discrete time and continuous
time. The theory of time scales was initiated by Stefan Hilger in his Ph.D. thesis in 1988,
providing a rich theory that unified and extended discrete and continuous analysis [1].
The theory of time scale calculus and dynamic equation on time scales provides us with a
powerful tool for attacking such mixed processes. There has been considerable work done
on the study of the almost periodicity and stability of the systems on time scales. Many
interesting and important results can be found in many articles; for example, see [2–10]
and the references cited therein.

In real world phenomenon, ecosystems are often disturbed by unpredictable forces
which can result in changes in the biological parameters such as survival rates. The distur-
bance functions are called control variables in the language of control. In 1993, a feedback
control variable was introduced into the Logistic models by Gopalsamy and Weng [11].
They discussed the asymptotic behavior of solution in Logistic models with feedback con-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-019-2483-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-019-2483-8&domain=pdf
mailto:snailkitty@126.com


Chen et al. Advances in Difference Equations         (2020) 2020:17 Page 2 of 13

trols. The feedback control models play an important and fundamental role. We also refer
to Fan [7], Chen [12], Li [13] and [14–22] for further study on systems with feedback con-
trol.

In 1976, Wazewska–Czyzewska, Lasota [23] investigated the Lasota–Wazewska model

x′(t) = –ax(t) + be–βx(t–τ ), (1.1)

which described the survival of red blood cells in animals. Some generalized models have
been discussed by many authors; see [24–28]. Because of the various effects of the envi-
ronmental factors in real life environment (e.g. food supplies, seasonal effects of weather,
etc.), it is more practical and meaningful to investigate the biological model with almost
periodic coefficients. Besides, permanence is affected by such factors as environment, at-
tack rates, and so on. The permanence of ecosystems will play an important role to pre-
dict the change trend of populations in the long run. Many authors [7, 12, 21, 29, 30] have
investigated the permanence of biological systems. However, to the best of the authors’
knowledge, to this day, still no scholars consider the permanence of the Lasota–Wazewska
model with feedback control on time scales.

Motivated by the aforementioned discussion, in the present paper, we first propose an al-
most periodic Lasota–Wazewska model with feedback control and multiple time-varying
delays on time scales:

x�(t) = –α(t)x(t) +
m∑

j=1

βj(t)e–γj(t)x(t–τj(t))

– c(t)u
(
t – θ (t)

)
x(t), j = 1, 2, . . . , m,

u�(t) = –a(t)u(t) + b(t)x
(
t – η(t)

)
,

(1.2)

where t ∈ T, T is an almost periodic time scale, x(t) denotes the number of red blood cells
at time t. τj(t) is the time required to produce a red blood cell. u(t) is the control variable
at time t. About more details of the system (1.2), we can refer [23–26].

In this work, we aim to investigate the permanence of the Lasota–Wazewska timescale
model with multiple time-varying delays and feedback control. Of particular interest is
the question of whether or not the feedback control variables can affect the permanence
of the timescale system. Furthermore, using the exponential dichotomy of linear dynamic
equations on time scales and a fixed point theorem on time scales, we study the existence
and uniqueness of almost periodic solutions for the model. The exponential stability of
the almost periodic solution of the model is obtained by the Gronwall inequality. Our
results obtained in this paper are completely new and complement the previously known
result [28], which studied the almost periodic solutions for a Lasota–Wazevska model in
continuous systems. The results derived in this paper are meaningful.

The paper is arranged as follows. In Sect. 2, we introduce some notations and defini-
tions which are needed in later sections. The permanence and almost periodic solutions
of system (1.2) is investigated in Sects. 3 and 4, respectively. An example together with its
numeric simulations is presented in Sect. 5 to show the feasibility of the main results. We
end this paper by a briefly discussion.
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2 Preliminaries
In this section, we shall give some notations, definitions and lemmas which are used in
what follows. The reader is assumed to be familiar with some basic properties about time
scales and one can find in Bohner and Peterson’s book [30] most of the materials needed
are available in this paper.

Let T be a nonempty closed subset (time scale) of R. Since almost periodic functions
defined on T are bounded, we use the notations

h+ = sup
t∈T

{
h(t)

}
, h– = inf

t∈T
{

h(t)
}

,

where h(t) is an almost periodic function.

Definition 2.1 ([30]) For f : T →R, we define f �(t) to be the number (if it exists) with the
property that, for any given ε > 0, there exists a neighborhood U of t such that

∣∣(f
(
σ (t)

)
– f (s)

)
–

(
σ (t) – s

)∣∣ < ε
∣∣σ (t) – s

∣∣, for all s ∈ U .

We call f �(t) the delta (or Hilger) derivative of f at t. If F�(t) = f (t), then we define the
delta integral by

∫ t
r f (s)�s = F(t) – F(r) for t, r ∈ T.

We define the set R+ = R+(T,R) = {r ∈R : 1 + μ(t)r(t) > 0,∀t ∈ T}.

Lemma 2.1 ([31]) Assume that a > 0, b > 0 and –a ∈R+. Then

y�(t) ≥ (≤)b – ay(t), y(t) > 0, t ∈ [t0,∞)T

implying

y(t) ≥ (≤)
b
a

[
1 +

(
ay(t0)

b
– 1

)
e(–a)(t, t0)

]
, t ∈ [t0,∞)T.

Lemma 2.2 ([31]) Assume that a > 0, b > 0. Then

y�(t) ≥ (≤)b – ay
(
σ (t)

)
, y(t) > 0, t ∈ [t0,∞)T

implying

y(t) ≥ (≤)
b
a

[
1 +

(
ay(t0)

b
– 1

)
e	a(t, t0)

]
, t ∈ [t0,∞)T.

Definition 2.2 ([32]) Let Γ be a collection of sets which is constructed by subsets of R.
A time scale T is called an almost periodic time scale with respect to Γ , if

Γ ∗ =
{
±τ ∈

⋂

Λ∈Γ

: t ± τ ∈ T,∀t ∈ T

}
�= Ø

and Γ ∗ is called the smallest almost periodic set of T. Obviously, if T is an almost periodic
time scale, then infT = –∞ and supT = +∞.
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Definition 2.3 ([32]) Let T is an almost periodic time scale with respect to Γ . A function
f (t) ∈ C(T,Rn) is called almost periodic if for any given ε > 0, the set E(f , ε) = {τ ∈ Γ ∗ :
|f (t + τ ) – f (t)| < ε,∀t ∈ T} is relatively dense in T; that is, for any given ε > 0, there exists a
real number l = l(ε) > 0 such that each interval of length l contains at least one τ = τ (ε) ∈
E(f , ε) satisfying |f (t + τ ) – f (t)| < ε,∀t ∈ T.

The set E(f , ε) is called ε-translation set of f (t), τ is called ε-translation number of f (t)
and l(ε) is called the contain interval length of E(f , ε).

Definition 2.4 ([32, 33]) Let Q(t) be n×n rd-continuous matrix function on T. The linear
system

x�(t) = Q(t)x(t), t ∈ T (2.1)

is said to admit an exponential dichotomy on T if there exist positive constant κ , α, pro-
jection P and the fundamental solution matrix X(t) of (2.1) satisfying

∣∣X(t)PX–1(σ (s)
)∣∣ ≤ κe	α

(
t,σ (s)

)
for t ≥ σ (s), s, t ∈ T,

∣∣X(t)(I – P)X–1(σ (s)
)∣∣ ≤ κe	α

(
σ (s), t

)
for t ≤ σ (s), s, t ∈ T,

where | · | is a matrix norm on T, that is, if Q = (aij)n×m then we can take |Q| =
(
∑n

i=1
∑n

j=1 |aij|2) 1
2 .

Consider the almost periodic system

x�(t) = Q(t)x(t) + g(t), t ∈ T, (2.2)

where Q(t) is an almost periodic matrix function, g(t) is an almost periodic vector func-
tion.

Lemma 2.3 ([5]) If the linear system (2.1) admits an exponential dichotomy, then the al-
most periodic system (2.2) has an almost periodic solution x(t) as follows:

x(t) =
∫ t

–∞
X(t)PX–1(σ (s)

)
g(s)�s –

∫ +∞

t
X(t)(I – P)X–1(σ (s)

)
g(s)�s, t ∈ T.

3 The permanence
In view of the biological significance, we also assume that the coefficient functions
α,βj,γj, τj, (j = 1, 2, . . . , m), a, b, c, θ and η: T→R

+ are all bounded rd-continuous and

min
{
α–,β–

j ,γ –
j , τ–

j , a–, b–, c–, θ–,η–}
> 0,

max
{
α+,β+

j ,γ +
j , τ+

j , a+, b+, c+, θ+,η+}
< +∞.

The initial condition of system (1.2) is of the form

x(s) = φ(s) > 0, s ∈ [–τ , 0)T,φ ∈ Crd
(
[–τ , 0)T,R

)
,φ(0) > 0,

u(s) = ϕ(s) > 0, s ∈ [–τ , 0)T,ϕ ∈ Crd
(
[–τ , 0)T,R

)
,ϕ(0) > 0,

(3.1)
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where τ = max{τ+
j , θ+,η+} (j = 1, 2, . . . , m), [–τ , 0)T = [–τ , 0) ∩T.

Set

M1 =
∑m

j=1 β+
j

α– , M2 =
b+M1

a– ,

m1 =
∑m

j=1 β–
j e–γ +

j M1 – c+M1M2

α+ , m2 =
b–m1

a+ .

Theorem 3.1 Let (x(t), u(t))T be any positive solution of system (1.2) with initial condition
(3.1). Assume that

(H1)
∑m

j=1 β–
j e–γ +

j M1 > c+M1M2

holds, then system (1.2) is permanent, that is, any positive solution (x(t), u(t))T of system
(1.2) satisfies

m1 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M1,

m2 ≤ lim inf
t→+∞ u(t) ≤ lim sup

n→+∞
u(t) ≤ M2.

Proof Assume that (x(t), u(t))T is any positive solution of system (1.2) with initial condi-
tion (3.1). From the first equation of system (1.2), it immediately follows that

x�(t) ≤ –α(t)x
(
σ (t)

)
+

m∑

j=1

β+
j .

By Lemma 2.2, we have

lim sup
t→+∞

x(t) ≤
∑m

j=1 β+
j

α– := M1. (3.2)

Let ε > 0 be any small enough positive constant, there exists T1 > 0 such that

x(t) < M1 + ε, ∀t > T1.

From the second equation of (1.2), we get

u�(t) < –a–u(t) + b+(M1 + ε), ∀t ∈ [T1 + τ , +∞)T.

By applying Lemma 2.1, it follows that

lim sup
t→+∞

u(t) ≤ b+(M1 + ε)
a– .

Setting ε → 0, the above inequality leads to

lim sup
t→+∞

u(t) ≤ b+M1

a– := M2. (3.3)
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For any positive constant ε small enough, there exists a T2 > T1 + τ such that

u(t) < M2 + ε, ∀t ∈ [T2, +∞)T.

On the other hand, from the first equation of system (1.2), we have

x�(t) > –α+x
(
σ (t)

)
+

m∑

j=1

β–
j e–γ +

j (M1+ε) – c+(M1 + ε)(M2 + ε), ∀t ∈ [T2 + τ , +∞)T.

By Lemma 2.2, we can get

lim inf
t→+∞ x(t) ≥

∑m
j=1 β–

j e–γ +
j (M1+ε) – c+(M1 + ε)(M2 + ε)

α+ .

Setting ε → 0, the above inequality leads to

lim inf
t→+∞ x(t) ≥

∑m
j=1 β–

j e–γ +
j M1 – c+M1M2

α+ := m1. (3.4)

Then, for an arbitrarily small positive constant ε > 0, there exists a T3 > T2 + τ such that

x(t) > m1 – ε, ∀t ∈ [T3, +∞)T.

From the second equation of system (1.2), it follows that

u�(t) > –a+u(t) + b–(m1 – ε), ∀t ∈ [T3 + τ , +∞)T.

By Lemma 2.1, we can get

lim inf
t→+∞ u(t) ≥ b–(m1 – ε)

a+ .

Setting ε → 0, the above inequality leads to

lim inf
t→+∞ u(t) ≥ b–m1

a+ := m2. (3.5)

Equations (3.2), (3.3), (3.4) and (3.5) show that if the condition (H1) holds, then system
(1.2) is permanent. �

Remark 3.1 If (H1) holds, system (1.2) is permanent. Theorem 3.1 revealed that the feed-
back control variables have no influence on the permanence of system (1.2).

4 The almost periodic positive solution
In this section, we state and prove our main results concerning of the existence and expo-
nential stability of positive almost periodic solutions of (1.2).

Set X = {ϕ ∈ C(T,R2) : ϕ = (ϕ1,ϕ2)} is an almost periodic function on T with the norm
‖ϕ‖T = supt∈T ‖ϕ(t)‖, where ‖ϕ(t)‖ = max{|ϕ1(t)|, |ϕ2(t)|}, then X is a Banach space.
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Theorem 4.1 Assume that (H1) holds. Suppose further that
(H2) max{ 1

α– (
∑m

j=1 β+
j γ +

j + c+(M1 + M2)), b+

a– } < 1
holds, then system (1.2) has a positive almost periodic solution in the region X

∗ = {ϕ =
(ϕ1,ϕ2)T , mi ≤ ϕi ≤ Mi, t ∈ T, i = 1, 2.}.

Proof For any given ϕ ∈X, the following almost periodic dynamic system is considered:

x�(t) = –α(t)x(t) +
m∑

j=1

βj(t)e–γj(t)ϕ1(t–τj(t))

– c(t)ϕ2
(
t – θ (t)

)
ϕ1(t), j = 1, 2, . . . , m,

u�(t) = –a(t)u(t) + b(t)ϕ1
(
t – η(t)

)
.

(4.1)

Because inft∈T α(t) = α– > 0, inft∈T a(t) = a– > 0, the linear system

x�(t) = –α(t)x(t),

u�(t) = –a(t)u(t),

admits an exponential dichotomy on T. Thus, by Lemma 2.3, we find that system (4.1) has
an almost periodic solution xϕ = (xϕ1 , xϕ2 )T , where

xϕ1 (t) =
∫ t

–∞
e–α

(
t,σ (s)

)
( m∑

j=1

βj(s)e–γj(s)ϕ1(s–τj(s))

– c(s)ϕ2
(
s – θ (s)

)
ϕ1(s)

)
�s,

xϕ2 (t) =
∫ t

–∞
e–a

(
t,σ (s)

)(
b(s)ϕ1

(
s – η(s)

))
�s.

Define a mapping T : X∗ → X
∗, by Tϕ(t) = xϕ(t),∀ϕ ∈ X

∗. We can observe that X∗ is a
closed subset of X obviously. For any ϕ ∈X

∗, by use of (H2), we have

xϕ1 (t) ≤
∫ t

–∞
e–α

(
t,σ (s)

)
( m∑

j=1

β+
j

)
�s ≤

∑m
j=1 β+

j

α– = M1,

xϕ2 (t) ≤
∫ t

–∞
e–a

(
t,σ (s)

)(
b+M1

)
�s ≤ b+M1

a– = M2.

We also have

xϕ1 (t) ≥
∫ t

–∞
e–α

(
t,σ (s)

)
( m∑

j=1

β–
j e–γ +

j M1 – c+M1M2

)
�s

≥ 1
α+

( m∑

j=1

β–
j e–γ +

j M1 – c+M1M2

)
= m1,

xϕ2 (t) ≥
∫ t

–∞
e–a

(
t,σ (s)

)(
b–m1

)
�s ≥ b–m1

a+ = m2.
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Therefore, the mapping T is a self-mapping from X
∗ to X

∗. Next, we prove that the map-
ping T is a contraction mapping on X

∗. By the mean value theorem, we get

∣∣e–x – e–y∣∣ =
∣∣–e–ξ

∣∣ · |x – y|, x ≤ ξ ≤ y.

For any ϕ = (ϕ1,ϕ2)T ,ψ = (ψ1,ψ2)T ∈X
∗, we obtain

∣∣(Tϕ)1(t) – (Tψ)1(t)
∣∣

≤
∫ t

–∞
e–α

(
t,σ (s)

)
( m∑

j=1

βj(s)
(
e–γj(s)ϕ1(s–τj(s)) – e–γj(s)ψ1(s–τj(s)))

– c(s)
(
ϕ1(s)ϕ2

(
s – θ (s)

)
– ψ1(s)ψ2

(
s – θ (s)

))
)

�s

≤
∫ t

–∞
e–α

(
t,σ (s)

) m∑

j=1

βj(s)γj(s)
∣∣ϕ1

(
s – τj(s)

)
– ψ1

(
s – τj(s)

)∣∣

+ c(s)
(∣∣ϕ1(s)

∣∣ · ∣∣ϕ2
(
s – θ (s)

)
– ψ2

(
s – θ (s)

)∣∣

+
∣∣ψ2

(
s – θ (s)

)∣∣ · ∣∣ϕ1(s) – ψ1(s)
∣∣)�s

≤ 1
α–

( m∑

j=1

β+
j γ +

j + c+(M1 + M2)

)
· ‖ϕ – ψ‖X,

∣∣(Tϕ)2(t) – (Tψ)2(t)
∣∣

=
∫ t

–∞
e–a

(
t,σ (s)

)
b(s)

(
ϕ2

(
s – η(s)

)
– ψ2

(
s – η(s)

))
�s

≤ 1
a– b+ · ‖ϕ – ψ‖X.

It follows from (H2) that

‖Tϕ – Tψ‖X ≤ max

{
1
α–

( m∑

j=1

β+
j γ +

j + c+(M1 + M2)

)
,

b+

a–

}
‖ϕ – ψ‖X < ‖ϕ – ψ‖X,

which implies that T is a contraction. By the fixed point theorem in Banach space, T has
a unique fixed point ϕ∗ = (ϕ∗

1 ,ϕ∗
2 ) ∈ X

∗ such that Tϕ∗ = ϕ∗. In view of (4.1), we receive
that ϕ∗ is a solution of system (1.2). Therefore, (1.2) has a unique almost periodic positive
solution in region X

∗. The proof is completed. �

Theorem 4.2 Assume that (H1) and (H2) holds, the unique positive almost periodic solu-
tion in the region X

∗ is exponentially stable.

Proof By Theorem 4.1, system (1.2) has a positive almost periodic solution w∗(t) =
(x∗(t), u∗(t))T in the region X

∗. Let w(t) = (x(t), u(t))T be any arbitrary solution of (1.2)
with initial value ϕ(t) = (ϕ1(t),ϕ2(t))T for t ∈ [–τ , 0)T. Let ϕ∗ = (ϕ∗

1 (t),ϕ∗
2 (t))T be the initial

function of w∗(t), w∗(t,ϕ∗) = ϕ∗(t) for t ∈ [–τ , 0)T. Now we prove (x∗(t), u∗(t))T is expo-
nential stable.
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Let y1(t) = x(t) – x∗(t), y2(t) = u(t) – u∗(t), then we have

y�
1 (t) =

(
x(t) – x∗(t)

)�

= –α(t)
(
x(t) – x∗(t)

)
+

m∑

j=1

βj(t)
{

e–γj(t)x(t–τj(t)) – e–γj(t)x∗(t–τj(t))}

– c(t)
{

u
(
t – θ (t)

)
x(t) – u∗(t – θ (t)

)
x∗(t)

}
, j = 1, 2, . . . , m,

y�
2 (t) =

(
u(t) – u∗(t)

)�

= –a(t)
(
u(t) – u∗(t)

)
+ b(t)

(
x
(
t – η(t)

)
– x∗(t – η(t)

))
.

(4.2)

Let h(t) =
∑m

j=1 βj(t){e–γj(t)x(t–τj(t)) – e–γj(t)x∗(t–τj(t))}– c(t){u(t –θ (t))x(t) – u∗(t –θ (t))x∗(t)}, j =
1, 2, . . . , m, then is follows from (4.2) that

y�
1 (t) = –α(t)y1(t) + h(t),

y�
2 (t) = –a(t)y2(t) + b(t)y1

(
t – η(t)

)
.

(4.3)

Thus, we see that y1(t), y2(t) can be expressed as follows:

y1(t) = y1(t0)e–α(t, t0) +
∫ t

t0

e–α

(
t,σ (s)

)
h(s)�s,

y2(t) = y2(t0)e–a(t, t0) +
∫ t

t0

e–a
(
t,σ (s)

)
b(s)y1

(
s – η(s)

)
�s, t ≥ t0, t0 ∈ [–τ , 0)T,

(4.4)

which implies that

y1(t) = e–α(t, t0)
(
ϕ1(t0) – ϕ∗

1 (t0)
)

+
∫ t

t0

e–α

(
t,σ (s)

)
h(s)�s,

y2(t) = e–a(t, t0)
(
ϕ2(t0) – ϕ∗

2 (t0)
)

+
∫ t

t0

e–a
(
t,σ (s)

)
b(s)y1

(
s – η(s)

)
�s.

(4.5)

Note that

∣∣h(t)
∣∣ ≤

m∑

j=1

∣∣βj(t)
∣∣ · ∣∣{e–γj(t)x(t–τj(t)) – e–γj(t)x∗(t–τj(t))}∣∣

+
∣∣c(t)

∣∣ · {∣∣u(
t – θ (t)

)
x(t) – u∗(t – θ (t)

)
x(t)

∣∣

+
∣∣u∗(t – θ (t)

)
x(t) – u∗(t – θ (t)

)
x∗(t)

∣∣}.

By the mean value theorem, we obtain

∣∣e–γj(t)x(t–τj(t)) – e–γj(t)x∗(t–τj(t))∣∣

=
∣∣–e–ξjγj(t)

[
x
(
t – τj(t)

)
– x∗(t – τj(t)

)]∣∣

≤ e–ξj
∣∣γj(t)

∣∣ · ∣∣x(
t – τj(t)

)
– x∗(t – τj(t)

)∣∣

≤ γ +
j
∣∣y1

(
t – τj(t)

)∣∣.
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Then we get

∣∣h(t)
∣∣ ≤

m∑

j=1

β+
j γ +

j
∣∣y1

(
t – τj(t)

)∣∣ + c+(
M1

∣∣y2
(
t – θ (t)

)∣∣ + M2
∣∣y1(t)

∣∣). (4.6)

Hence, by (4.5) and (4.6), we obtain

∣∣y1(t)
∣∣ ≤ e–α(t, t0)

∣∣ϕ1(t0) – ϕ∗
1 (t0)

∣∣

+
∫ t

t0

e–α

(
t,σ (s)

)
{ m∑

j=1

β+
j γ +

j
∣∣y1

(
s – τj(s)

)∣∣

+ c+(
M1

∣∣y2
(
s – θ (s)

)∣∣ + M2
∣∣y1(s)

∣∣)
}

�s,

∣∣y2(t)
∣∣ ≤ e–a(t, t0)

∣∣ϕ2(t0) – ϕ∗
2 (t0)

∣∣ +
∫ t

t0

e–a
(
t,σ (s)

)
b+∣∣y1

(
s – η(s)

)∣∣�s.

(4.7)

Taking the norm at both sides of (4.7), we have

∥∥y(t)
∥∥ ≤ e–α(t, t0)

∥∥ϕ – ϕ∗∥∥

+
∫ t

t0

e–α

(
t,σ (s)

)
{ m∑

j=1

|β+
j γ +

j + c+(M1 + M2)

}
‖y‖�s,

∥∥y(t)
∥∥ ≤ e–a(t, t0)

∥∥ϕ – ϕ∗∥∥ +
∫ t

t0

e–a
(
t,σ (s)

)
b+‖y‖�s.

(4.8)

Then we get

‖y(t)‖
e–α(t, t0)

≤ ∥∥ϕ – ϕ∗∥∥ +
∫ t

t0

‖y‖
e–α(σ (s), t0)

ρ�s,

‖y(t)‖
e–a(t, t0)

≤ ∥∥ϕ – ϕ∗∥∥ +
∫ t

t0

‖y‖
e–a(σ (s), t0)

b+�s,
(4.9)

where ρ =
∑m

j=1 β+
j γ +

j + c+(M1 + M2).
By the Gronwall inequality [30], we have

∥∥y(t)
∥∥ ≤ ∥∥ϕ – ϕ∗∥∥eρ(t, t0)e–α(t, t0)

≤ ∥∥ϕ – ϕ∗∥∥e–(α––ρ)(t, t0),
∥∥y(t)

∥∥ ≤ ∥∥ϕ – ϕ∗∥∥eb+ (t, t0)e–a(t, t0)

≤ ∥∥ϕ – ϕ∗∥∥e–(a––b+)(t, t0).

(4.10)

From the condition (H2), we get

∥∥y(t)
∥∥ =

∥∥w(t) – w∗(t)
∥∥ ≤ ∥∥ϕ – ϕ∗∥∥e–λ(t, t0), (4.11)

where λ = min{α– – ρ, a– – b+} > 0. Hence, (4.11) implies that w∗(t) is exponentially stable.
The proof of Theorem 4.2 is completed. �
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Remark 4.1 If T = R and T = Z, then (1.2) reduces to

x′(t) = –α(t)x(t) +
m∑

j=1

βj(t)e–γj(t)x(t–τj(t))

– c(t)u
(
t – θ (t)

)
x(t), j = 1, 2, . . . , m,

u′(t) = –a(t)u(t) + b(t)x
(
t – η(t)

)
, t ∈R,

and

x(k + 1) – x(k) = –α(k)x(k) +
m∑

j=1

βj(k)e–γj(k)x(k–τj(k))

– c(k)u
(
k – θ (k)

)
x(k), j = 1, 2, . . . , m,

u(k + 1) – u(k) = –a(k)u(k) + b(k)x
(
k – η(k)

)
, k ∈ Z,

respectively.

5 Numerical simulation
Example 1 Consider the following system on time scales:

x�(t) = –
(
0.8 + 0.2 cos(

√
2t)

)
x(t)

+
3∑

j=1

(
0.21 + 0.01

∣∣sin(
√

3t)
∣∣)e–(0.21+0.01| cos t|)x(t–2)

–
(
0.1 + 0.1| cos t|)u(t – 3)x(t),

u�(t) = –(0.25 + 0.1 cos t)u(t) +
(
0.1 + 0.01 sin(

√
2t)

)
x(t – 2).

(5.1)

By direct calculation, we can get

α+ = 1, α– = 0.6, β+
j = 0.22, β–

j = 0.2,

γ +
j = 0.22, γ –

j = 0.2 (j = 1, 2, 3)

c+ = 0.2, c+ = 0.1, a+ = 0.25, a– = 0.15, c+ = 0.2, c– = 0.1,

then

M1 =
∑3

j=1 β+
j

α– = 1.1, M2 =
b+M1

a– = 0.0202,

3∑

j=1

β–
j e–γ +

j M1 = 0.4710 > c+M1M2 = 0.2240,

3∑

j=1

β+
j γ +

j + c+(M1 + M2) = 0.3692 < α– = 0.6, b+ = 0.11 < a– = 0.15,
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Figure 1 T =R, numeric simulations of the continuous
situation of system (5.1), the initial conditions
(x(0),u(0)) = (0.8, 0.5), (0.2, 0.3) and (0.3, 0.4), respectively

Figure 2 T = Z, numeric simulations of discrete situation
of system (5.1), the initial conditions (x(0),u(0)) = (0.2, 0.3),
(1, 0.5) and (0.8, 0.6), respectively

that is, conditions (H1) and (H2) hold. According to Theorem 4.1 and Theorem 4.2, system
(5.1) has a unique positive almost periodic solution, which is exponentially stable. For
dynamic simulations of system (5.1) with T = R and T = Z, see Figs. 1 and 2, respectively.

6 Discussion
Comparing with the previous relative results of [28], our investigation confirms that the
feedback control does not have any influence on the permanence of the system. Our re-
sults improve and complement some known results to some degree in the literature. The
explorations in this paper reveal that, when we deal with almost periodic solution for dif-
ferential equations and difference equations, it is unnecessary to prove results for continu-
ous and discrete cases separately. Our results could unify such problems in the framework
of dynamic equations on time scales.
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