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Abstract
In this paper, we study moment estimates for the invariant measure of the stochastic
Burgers equation with multiplicative noise. Based upon an a priori estimate for the
stochastic convolution, we derive regularity properties on invariant measure. As an
application, we prove smoothing properties for the transition semigroup by
introducing an auxiliary semigroup. Finally, the m-dissipativity of the associated
Kolmogorov operator is given.
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1 Introduction
We consider the following stochastic Burgers equation with a multiplicative noise on the
interval [0, 1] with Dirichlet boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

dX(t, ξ ) = (�ξ X(t, ξ ) + 1
2∂ξ (X2(t, ξ ))) dt + g(X(t, ξ )) dW (t, ξ ), t ≥ 0,

X(t, 0) = X(t, 1) = 0, t ≥ 0,

X(0, ξ ) = x(ξ ), ξ ∈ [0, 1],

(1.1)

where x ∈ H = L2(0, 1), and (W (t))t≥0 is a cylindrical Wiener process on H , defined on
a filtered probability space (Ω ,F ,P) adapted to a filtration (Ft)t≥0 that is assumed to be
right-continuous and complete in the sense that F0 contains all P-null sets. Moreover,
the function g is a real valued function that is supposed to be Lipschitz continuous and
bounded.

Equation (1.1) has been well studied by several authors, we refer to Refs. [1–8], and it is
well known that there exists a unique mild solution with paths in C([0, T], L2(0, 1)) for any
T > 0. We denote the unique mild solution of Eq. (1.1) by X(t, x), that is, for any x ∈ H the
process (X(t, x))t≥0 is adapted to the filtration (Ft)t≥0, and it fulfills the equation

X(t, x) = etAx +
∫ t

0
e(t–s)Ab

(
X(s, x)

)
ds +

∫ t

0
e(t–s)Ag

(
X(s, x)

)
dW (s), (1.2)
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P-a.s. for all t ∈ [0, T], where A and b are the operators defined by

Ax = �ξ x, x ∈ D(A) = H2(0, 1) ∩ H1
0 (0, 1), (1.3)

and

b(x) =
1
2
∂ξ

(
x2), x ∈ D(b) = H1

0 (0, 1), (1.4)

and for any x ∈ H the symmetric Nemytskii operator g(x) ∈ L(H) is defined by

[
g(x)y

]
(ξ ) = g

(
x(ξ )

)
y(ξ ), y ∈ H , ξ ∈ [0, 1]. (1.5)

In this paper, we will mainly be interested in studying the moment estimates for the
invariant measure, the properties of the corresponding transition semigroup and the as-
sociated Kolmogorov operator. The corresponding transition semigroup Pt is given by

Ptϕ(x) = E
[
ϕ
(
X(t, x)

)]
, t ≥ 0, x ∈ H ,ϕ ∈ Bb(H), (1.6)

where Bb(H) is the Banach space of all Borel bounded mappings ϕ : H →R endowed with
the sup norm

‖ϕ‖0 = sup
x∈H

∣
∣ϕ(x)

∣
∣,

and E means the expectation taken with respect to P. The Kolmogorov operator is for-
mally denoted as

K0ϕ(x) =
1
2

Tr
[
g(x)g(x)∗D2ϕ(x)

]
+

〈
x, A∗Dϕ(x)

〉
+

〈
Dϕ(x), b(x)

〉
, x ∈ H , (1.7)

here ϕ(x) ∈ EA(H), which is the linear span of all real and imaginary parts of functions of
the form

x �→ ei〈x,h〉, x ∈ H , h ∈ D
(
A∗). (1.8)

Da Prato and Gatarek [1] studied Eq. (1.1) and proved that it had a unique invariant
measure ν for the semigroup Pt . The existence can be obtained by the Krylov–Bogoliubov
theorem and an a priori estimate on the solution, and the uniqueness is shown by the Doob
theorem.

Moment estimates for invariant measures have been a much debated topic for many au-
thors for a period of time. It is worth mentioning, for the abstract form of problem (1.1)
(see (2.5) in Sect. 2) with additive noise case (that is, the operator g(x) is a symmetric
positive definite operator), Da Prato and Debussche [9] proved that the moment of the
invariant measure was finite by introducing a modified Ornstein–Uhlenbeck process to
get an a priori estimate on the solution. Es-Sarhir and Stannat [10, 11] proved moment es-
timates of the invariant measure based on a pathwise estimate on the stochastic convolu-
tion. Lewis and Nualart [12] gave a random field solution and obtained moment estimates
for the solution to Burgers’ equation by the Feynman–Kac representation. Dong and Sun
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[13] considered the averaging principle for one dimensional stochastic Burgers equation
and showed that the slow component strongly and weakly converges to the solution of the
corresponding averaged equation by proving the moment estimates. The same result may
be generalized to the stochastic Navier–Stokes equations with white noise or Lévy noise
with the aid of [14, 15] and the references therein.

The aim of this paper is mainly to extend the results of [9] to the case of multiplicative
noise with coefficient satisfying proper properties. In this situation, there are many diffi-
culties by using the tools of the Itô formula and a modified Ornstein–Uhlenbeck process,
thus we estimate the mild solution by choosing the factorization formula and a generaliza-
tion of maximal inequality of martingales to stochastic convolution, which can be found
in the monographs by Da Prato and Zabczyk [16].

The rest of this paper is organized as follows. Some notions and preliminary results for
Eq. (1.1) are given in Sect. 2. In Sect. 3, we derive moment estimates on the solution and the
corresponding invariant measure with the help of the method of factorization, then show
that the invariant measure has Lp (p ≥ 1) regularity; see Theorem 3.3 and Corollary 3.5.
Finally, we discuss the smoothing properties of the semigroup Pt in interpolation space,
and prove that the associated Kolmogorov operator is m-dissipative in Sect. 4.

2 Preliminaries
We list some notations which are applied in this paper. We denote the norm of Lp(0, 1),
p ≥ 1 by | · |p. Let H be a separable real Hilbert space L2(0, 1) (norm | · |, inner product〈·, ·〉),
L(H) represent the Banach algebra of all linear bounded operators from H into H endowed
with the norm

‖T‖ = sup
{|Tx|; x ∈ H , |x| = 1

}
, T ∈ L(H), (2.1)

and L1(H) be the space of all nuclear operators.
Considering the abstract form of problem (1.1), we introduce the linear self-adjoint op-

erator A defined by (1.3), and the nonlinear operators b and g corresponding to (1.4) and
(1.5). We denote by etA, t ≥ 0 the semigroup on H generated by A, and by {ek} the complete
orthonormal system on H which diagonalizes A and by {λk} the corresponding eigenval-
ues. We have

ek(ξ ) =
√

2 sin(kπξ ), ξ ∈ [0, 1], k = 1, 2, . . . , (2.2)

and

λk = –π2k2, k = 1, 2, . . . . (2.3)

Finally, the cylindrical Wiener process W (t), t ≥ 0 can be formally written as

W (t) =
∞∑

k=1

ekβk(t), t ≥ 0, (2.4)

where {βk} is a sequence of mutually independent standard Brownian motions on a filtered
probability space (Ω ,F ,Ft ,P).
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Now, we can rewrite problem (1.1) as follows:

⎧
⎨

⎩

dX = (AX + b(X)) dt + g(X) dW (t),

X(0) = x.
(2.5)

We shall consider the solution of equation (2.5) in the space ZT consisting of all continuous
process on [0, T] with value in L2(0, 1), such that

‖X‖p∗
T = E

(
sup

t∈[0,T]

∣
∣X(t)

∣
∣p∗)

< ∞, (2.6)

for certain p∗ > 4, which is equivalent to the norm of the space Lp∗ (Ω , C([0, T], L2(0, 1))).

Definition 2.1 A mild solution of Eq. (2.5) is a process X ∈ ZT such that

X(t, x) = etAx +
∫ t

0
e(t–s)Ab

(
X(s, x)

)
ds +

∫ t

0
e(t–s)Ag

(
X(s, x)

)
dW (s), (2.7)

P-a.s. for all t ∈ [0, T].

An important role will be played by the stochastic convolution

WX(t) =
∫ t

0
e(t–s)Ag

(
X(s, x)

)
dW (s) =

∞∑

k=1

∫ t

0
e(t–s)A[

g
(
X(s, x)

)
ek

]
dβk(s), (2.8)

where X ∈ ZT . In fact, though the cylindrical Wiener process (2.4) does not leave H , the
stochastic convolution WX(t) does.

The following result is about the existence and uniqueness of a mild solution for Eq. (2.5);
see e.g. [1].

Proposition 2.2 Let T > 0 and any x ∈ H , there exists a unique mild solution X(t, x) of
Eq. (2.5).

At last, for the need of the proof in next sections, we introduce some important notions
and inequalities. For any γ ∈R, the interpolation space denoted by

Vγ :=
(
D

(
(–A)γ

)
,‖ · ‖γ

)
, (2.9)

for any x ∈ Vγ , ‖x‖2
γ = 〈(–A)γ x, (–A)γ x〉 which is equivalent to the norm of the Sobolev

space H2γ (0, 1). For any p ≥ 2, by the Sobolev embedding theorem, we get

Vγ ⊂ Lp(0, 1), γ = (p – 2)/(4p).

The Poincaré inequality renders

‖v‖γ1 ≤ πγ1–γ2‖v‖γ2 , (2.10)
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where γ1 ≤ γ2, v ∈ Vγ2 . We will also use the classical interpolation estimate

‖v‖γ2 ≤ ‖v‖
γ3–γ2
γ3–γ1
γ1 ‖v‖

γ2–γ1
γ3–γ1
γ3 , (2.11)

here γ1 < γ2 < γ3, v ∈ Vγ3 , and the Agmon estimate

|v|∞ ≤ |v| 1
2 ‖v‖ 1

2
1
2

, v ∈ V 1
2

. (2.12)

Defining the trilinear form b : Vγ1 × Vγ2 × Vγ3 , γi ≥ 0, i = 1, 2, 3 by

b(x, y, z) :=
∫ 1

0
x∂ξ yz dξ ; (2.13)

moreover, applying integration by parts, we obtain the following identity:

b(x, y, y) = b(y, y, x) = –
1
2

b(y, x, y), b(x, y, z) = –b(y, x, z) – b(x, z, y).

We introduce the following result, which was proved in [17], Lemma 2.1.

Lemma 2.3 The trilinear b is well defined and is continuous on Vγ1 × Vγ2+ 1
2

× Vγ3 where
γi ≥ 0, and

γ1 + γ2 + γ3 ≥ 1
4

, if γi �= 1
4

, i = 1, 2, 3,

or

γ1 + γ2 + γ3 >
1
4

, if γi =
1
4

for some i,

that is, there exists a constant c > 0 such that

∣
∣b(x, y, z)

∣
∣ ≤ c‖x‖γ1‖y‖γ2+ 1

2
‖z‖γ3 , ∀x ∈ Vγ1 , y ∈ Vγ2+ 1

2
, z ∈ Vγ3 . (2.14)

3 Moment estimates for invariant measure
In this section we first estimate the stochastic convolution term of the mild solution for
Eq. (2.5) in the interpolation space, then we derive estimates of moments of the associated
invariant measure.

Proposition 3.1 For all k ≥ 1, there exists a constant Ck such that for any T > 0 we have

sup
0≤t≤T

E
[∣
∣WX(t)

∣
∣k] ≤ Ck (3.1)

and

sup
0≤t≤T

E
[∥
∥WX(t)

∥
∥k

β

] ≤ Ck , for all β ∈
(

0,
1
4

)

. (3.2)



Shi and Liu Advances in Difference Equations         (2020) 2020:11 Page 6 of 21

Proof By the boundedness of the probability measure and the Hölder inequality, we need
only prove the result for all k ≥ p∗. Firstly, using Theorem 5.2.5 in [18], for any 1

p∗ < α < 1
4 ,

there exists the following decomposition:

WX(t) =
∫ t

0
(t – s)α–1e(t–s)Ah(s) ds := Rαh(t), (3.3)

where h(t) = sin(πα)
π

∫ t
0 (t – τ )–αe(t–τ )Ag(X(τ , x)) dW (τ ). By the Hölder inequality, for any

m > 1, we have

∣
∣Rαh(t)

∣
∣ ≤

∫ t

0
(t – s)α–1∣∣e(t–s)Ah(s)

∣
∣ds

≤
∫ t

0
(t – s)α–1e–π2(t–s)∣∣h(s)

∣
∣ds

≤
(∫ t

0
e–π2(t–s)(t – s)(α–1) m

m–1 ds
) m–1

m

×
(∫ t

0
e–π2(t–s)∣∣h(s)

∣
∣m ds

) 1
m

. (3.4)

Notice that if desired there exists a constant c1 such that
∫ t

0
e–π2(t–s)(t – s)(α–1) m

m–1 ds ≤
∫ ∞

0
e–π2ss(α–1) m

m–1 ds ≤ c1 < ∞, (3.5)

we only need (α – 1) m
m–1 + 1 > 0, that is, mα > 1. Thus we can choose m = k. Then putting

(3.5) into (3.4), we have

sup
0≤t≤T

E
[∣
∣WX(t)

∣
∣k] ≤ cm–1

1 sup
0≤t≤T

∫ t

0
e–π2(t–s)

E
[∣
∣h(s)

∣
∣k]ds. (3.6)

By applying Lemma 7.7 in [19], we get

∫ t

0
e–π2(t–s)

E
[∣
∣h(s)

∣
∣k]ds

≤ c2

∫ t

0
e–π2(t–s)

(∫ s

0

(
E

[∥
∥(s – τ )–αe(s–τ )Ag

(
X(τ , x)

)∥
∥k

HS

]) 2
k dτ

) k
2

ds, (3.7)

on the other hand,

∥
∥(s – τ )–αe(s–τ )Ag

(
X(τ , x)

)∥
∥2

HS = (s – τ )–2α

∞∑

i=1

∣
∣e(s–τ )Ag

(
X(τ , x)

)
ei

∣
∣2

= (s – τ )–2α

∞∑

i=1

∞∑

j=1

e–2π2j2(s–τ )∣∣
〈
g
(
X(τ , x)

)
ei, ej

〉∣
∣2

= (s – τ )–2α

∞∑

j=1

e–2π2j2(s–τ )∣∣g
(
X(τ , x)

)
ej
∣
∣2

≤ ‖g‖2
0(s – τ )–2α

∞∑

j=1

e–2π2j2(s–τ ), (3.8)
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considering Eq. (2.5) in [20], we have J(t) =
∑∞

j=1 e–tj2 ≤ 4t– 1
2 e– t

2 , then

∫ s

0
(s – τ )–2α

∞∑

j=1

e–2π2j2(s–τ ) dτ ≤
∫ ∞

0
τ–2αJ

(
2π2τ

)
dτ

≤ 4
∫ ∞

0
τ–2α

(
2π2τ

)– 1
2 e–π2τ dτ

= 2
√

2π4α–2Γ

(
1
2

– 2α

)

:= c3 < ∞, (3.9)

combining (3.6)–(3.9), we obtain

sup
0≤t≤T

E
[∣
∣WX(t)

∣
∣k] ≤ cm–1

1 c2

(
sin(πα)

π

)k

‖g‖k
0c

k
2
3

∫ T

0
e–π2s ds := Ck < ∞, (3.10)

thus we complete the proof of (3.1). For any β ∈ (0, 1
4 ), using (3.3) we get

(–A)βWX(t) =
∫ t

0
(t – s)α–1(–A)βe(t–s)Ah(s) ds := Rα,βh(t), (3.11)

where h(t) = sin(πα)
π

∫ t
0 (t –τ )–αe(t–τ )Ag(X(τ , x)) dW (τ ), 1

p∗ < α < 1
4 . For β ∈ (0, 1

4 ), there exists
a constant cβ such that

∥
∥(–A)βetA∥

∥ ≤ cβ t–βe–π2t , (3.12)

again by the Hölder inequality, for any m > 1, it follows that

∣
∣Rα,βh(t)

∣
∣ ≤

∫ t

0
(t – s)α–1∣∣(–A)βe(t–s)Ah(s)

∣
∣ds

≤ cβ

∫ t

0
(t – s)α–1–βe–π2(t–s)∣∣h(s)

∣
∣ds

≤ cβ

(∫ t

0
e–π2(t–s)(t – s)(α–1–β) m

m–1 ds
) m–1

m

×
(∫ t

0
e–π2(t–s)∣∣h(s)

∣
∣m ds

) 1
m

. (3.13)

Similarly, if desired there exists a constant c1 such that

∫ t

0
e–π2(t–s)(t – s)(α–1–β) m

m–1 ds ≤
∫ ∞

0
e–π2ss(α–1–β) m

m–1 ds ≤ c1 < ∞, (3.14)

we only need (α – 1 – β) m
m–1 + 1 > 0, that is, α > β + 1

m ; notice that 1
p∗ < α < 1

4 , thus

β +
1
m

<
1
4

, (3.15)

here we can choose m = k, so, for any β ∈ (0, 1
4 ), there exists a sufficiently large constant

k̄, such that (3.15) holds. Next, fully analogous to the proof of (3.1), we can prove that for
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any k > k̄, there exists a constant Ck such that

sup
0≤t≤T

E
[∣
∣(–A)βWX(t)

∣
∣k] ≤ Ck . (3.16)

Consequently, by the Hölder inequality, for any k ≥ p∗,

sup
0≤t≤T

E
[∥
∥WX(t)

∥
∥k

β

] ≤ Ck , (3.17)

and the proof is complete. �

Remark 3.2
(1) The results of Proposition 3.1 hold for all β < 1

4 . For any β ≤ 0, by the Poincaré
inequality ‖v‖β ≤ πβ |v|, then combining with (3.1) we get the result.

(2) From (3.9) in the proof of Proposition 3.1, we see that the integral on the left is
controlled by the Gamma function. However, the domain of the Gamma function is
(0,∞), so we must have α < 1

4 . Equation (3.15) shows that β < 1
4 , thus β < 1

4 in our
conclusion is the best parameter control.

We mention that there exists a unique invariant measure for the transition semigroup
defined by (1.6) in our introduction; now we derive an estimate of its moments.

Theorem 3.3 For any k ≥ 1, there exists a constant C such that

∫

H
|y|kν(dy) < C, (3.18)

and
∫

H
‖y‖2

βν(dy) < C, for any β ∈
[

0,
1
4

)

. (3.19)

Proof By the Hölder inequality, we only need prove the result for any k ≥ p∗. It is well
known that the invariant measure ν is ergodic because of the uniqueness, that is, for any
ϕ ∈ L2(H ,ν), we have

lim
T→∞

1
T

∫ T

0
E

[
ϕ
(
X(t, x)

)]
dt = lim

T→∞
1
T

∫ T

0
Ptϕ(x) dt =

∫

H
ϕ(y)ν(dy). (3.20)

Assume that νT (dy) = 1
T

∫ T
0 πt(x, dy) dt, T ≥ 1, where πt(x, dy) represents the distribution

function of X(t, x), t ≥ 0, X(t, x) is the mild solution for Eq. (2.5), x is the initial value. Then
(3.20) can be denoted by

lim
T→∞

∫

H
ϕ(y)νT (dy) =

∫

H
ϕ(y)ν(dy).

For any given k ≥ 1, for all m ≥ 1, y ∈ H , set ζm(y) = χ{|y|k≤m}|y|k , obviously ζm ∈ L2(H ,ν),
and ζm(y) ≤ |y|k . Therefore,

∫

H
ζm(y)ν(dy) = lim

T→∞

∫

H
ζm(y)νT (dy) ≤ lim

T→∞

∫

H
|y|kνT (dy). (3.21)
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Taking the limit m → ∞ in both sides of the inequality (3.21) yields
∫

H
|y|kν(dy) ≤ lim

T→∞

∫

H
|y|kνT (dy), (3.22)

using the distribution of X(t, x), t ≥ 0, the right side of the above inequality can be denoted
by

∫

H
|y|kνT (dy) =

1
T

∫ T

0
E

[∣
∣X(t, x)

∣
∣k]dt, (3.23)

and by Proposition 2.2, for any k ≥ p∗, there exists a constant c such that

sup
t∈[0,T]

E
[∣
∣X(t, x)

∣
∣k] ≤ c < ∞,

then (3.18) can be proved by combining (3.21)–(3.23) with the above inequality.
To prove (3.19), for any β ∈ [0, 1

4 ), k ≥ 1, m ≥ 1, and y ∈ H , we set ζm(y) = χ{‖y‖k
β≤m}‖y‖k

β ,

then ζm ∈ L2(H ,ν), and for all y ∈ H , we have ζm(y) ≤ ‖y‖k
β , and

∫

H
ζm(y)ν(dy) = lim

T→∞

∫

H
ζm(y)νT (dy) ≤ lim

T→∞

∫

H
‖y‖k

βνT (dy). (3.24)

Taking the limit m → ∞ in both sides of the inequality (3.24), we have
∫

H
‖y‖k

βν(dy) ≤ lim
T→∞

∫

H
‖y‖k

βνT (dy), (3.25)

the term of the right-hand side can be rewritten as

∫

H
‖y‖k

βνT (dy) =
1
T

∫ T

0
E

[∥
∥X(t, x)

∥
∥k

β

]
dt. (3.26)

Moreover, the mild solution X(t, x) has the following decomposition:

X(t, x) = Y (t) + WX(t), t ≥ 0. (3.27)

In view of Proposition 3.1, we have

E
[∥
∥X(t, x)

∥
∥k

β

] ≤ 2k–1(
E

[∥
∥Y (t)

∥
∥k

β

]
+ E

[∥
∥WX(t)

∥
∥k

β

])
, (3.28)

by (3.25), (3.26) and (3.28) it follows that

∫

H
‖y‖k

βν(dy) ≤ lim
T→∞

2k–1

T

(∫ T

0
E

[∥
∥Y (t)

∥
∥k

β

]
dt +

∫ T

0
E

[∥
∥WX(t)

∥
∥k

β

]
dt

)

. (3.29)

Considering (3.2), to prove (3.19), we only need the following claim.

Claim 1 Let k = 2, for any β ∈ [0, 1
4 ), there exists a constant C such that

lim
T→∞

1
T

∫ T

0
E

[∥
∥Y (t)

∥
∥k

β

]
dt ≤ C. (3.30)
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Thanks to (3.27), Y (t) satisfies the equation

d
dt

Y (t) = AY (t) + b
(
Y (t) + WX(t)

)
, t ≥ 0, (3.31)

taking the inner product in H with (–A)2β–1Y (t), on combining (1.4) with integration by
parts and Dirichlet boundary conditions, yields

d
dt

∥
∥Y (t)

∥
∥2

β– 1
2

+ 2
∥
∥Y (t)

∥
∥2

β

= 2
〈
b
(
Y (t) + WA(t)

)
, (–A)2β–1Y (t)

〉

=
∫ 1

0
∂ξ

[
Y (t) + WA(t)

]2 · (–A)2β–1Y (t) dξ

=
[
Y (t) + WA(t)

]2(–A)2β–1Y (t)|10 –
∫ 1

0

[
Y (t) + WA(t)

]2 · ∂ξ (–A)2β–1Y (t) dξ

= –
∫ 1

0

[
Y (t)2 + 2Y (t)WA(t) + W 2

A(t)
] · ∂ξ (–A)2β–1Y (t) dξ

= –
[∫ 1

0
Y (t)2 · ∂ξ (–A)2β–1Y (t) dξ +

∫ 1

0
W 2

A(t) · ∂ξ (–A)2β–1Y (t) dξ

+
∫ 1

0
2Y (t)WA(t) · ∂ξ (–A)2β–1Y (t) dξ

]

.

Then according (2.13), b(x, y, z) :=
∫ 1

0 x∂ξ yz dξ , we denote

I1(t) =
∣
∣
∣
∣

∫ 1

0
Y (t)2 · ∂ξ (–A)2β–1Y (t) dξ

∣
∣
∣
∣ =

∣
∣b

(
Y (t), (–A)2β–1Y (t), Y (t)

)∣
∣,

I2(t) =
∣
∣
∣
∣

∫ 1

0
W 2

A(t) · ∂ξ (–A)2β–1Y (t) dξ

∣
∣
∣
∣ =

∣
∣b

(
WA(t), (–A)2β–1Y (t), WA(t)

)∣
∣,

I3(t) =
∣
∣
∣
∣

∫ 1

0
2Y (t) · WA(t) · ∂ξ (–A)2β–1Y (t) dξ

∣
∣
∣
∣ = 2

∣
∣b

(
Y (t), (–A)2β–1Y (t), WA(t)

)∣
∣.

Therefore,

d
dt

∥
∥Y (t)

∥
∥2

β– 1
2

+ 2
∥
∥Y (t)

∥
∥2

β
≤ I1(t) + I2(t) + I3(t). (3.32)

By applying Lemma 2.3, choosing γ1 = γ3 = 0, γ2 = 1
2 – β > 1

4 , for all x, z ∈ H , y ∈ Vβ , we
have

∣
∣b

(
x, (–A)2β–1y, z

)∣
∣ ≤ c|x|∥∥(–A)2β–1y

∥
∥

1–β
|z| = c|x|‖y‖β |z|,

using the interpolation inequality and the Young inequality, we have

∣
∣I1(t)

∣
∣ =

∣
∣b

(
Y (t), (–A)2β–1Y (t), Y (t)

)∣
∣ ≤ c

∣
∣Y (t)

∣
∣2∥∥Y (t)

∥
∥

β

≤ 1
3
∥
∥Y (t)

∥
∥2

β
+ c1

∣
∣Y (t)

∣
∣4,
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∣
∣I2(t)

∣
∣ =

∣
∣b

(
WX(t), (–A)2β–1Y (t), WX(t)

)∣
∣ ≤ c

∣
∣WX(t)

∣
∣2∥∥Y (t)

∥
∥

β

≤ 1
3
∥
∥Y (t)

∥
∥2

β
+ c2

∣
∣WX(t)

∣
∣4,

and

∣
∣I3(t)

∣
∣ = 2

∣
∣b

(
Y (t), (–A)2βY (t), WX(t)

)∣
∣ ≤ c

∣
∣Y (t)

∣
∣
∥
∥Y (t)

∥
∥

β

∣
∣WX(t)

∣
∣

≤ 1
3
∥
∥Y (t)

∥
∥2

β
+ c3

∣
∣Y (t)

∣
∣4 + c4

∣
∣WX(t)

∣
∣4,

by (3.32) it follows that

d
dt

∥
∥Y (t)

∥
∥2

β– 1
2

+
∥
∥Y (t)

∥
∥2

β
≤ c

(∣
∣Y (t)

∣
∣4 +

∣
∣WX(t)

∣
∣4).

Therefore

∥
∥Y (t)

∥
∥2

β– 1
2

+
∫ t

0

∥
∥Y (s)

∥
∥2

β
ds ≤ |x|2 + c

(∫ t

0

∣
∣Y (s)

∣
∣4 ds +

∫ t

0

∣
∣WX(s)

∣
∣4 ds

)

, (3.33)

now in view of (3.1) we get

E

[∫ t

0

∣
∣WX(s)

∣
∣4 ds

]

=
∫ t

0
E

[∣
∣WX(s)

∣
∣4]ds ≤ Ct.

Considering that X(t, x) ∈ ZT , we have

E

[∫ t

0

∣
∣Y (s)

∣
∣4 ds

]

≤ 8
(∫ t

0
E

[∣
∣X(t, x)

∣
∣4]ds +

∫ t

0
E

[∣
∣WX(s)

∣
∣4]ds

)

≤ Ct.

Taking the expectation we conclude that

∫ t

0
E

[∥
∥Y (s)

∥
∥2

β

]
ds ≤ C(t + 1).

The result follows. �

Remark 3.4
(1) We can conclude that the invariant measure ν has the Lp (p ≥ 1) regularity from

(3.18).
(2) By the Sobolev embedding theorem, for any p ≥ 2, we have

|x|p ≤ c‖x‖β , for β =
p – 2

4p
, (3.34)

therefore, by (3.19) and Hölder’s inequality, for any p ≥ 1, there exists a constant C
such that

∫

H
|y|2pν(dy) < C.
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Corollary 3.5 For any β ∈ [0, 1
4 ), there exists cβ = 4

4β+3 such that

∫

H
‖y‖2k

β ν(dy) < ∞, ∀k ∈ [0, cβ ). (3.35)

Proof For any β ∈ [0, 1
4 ), cβ = 4

4β+3 > 1, considering the conclusion of Theorem 3.3, we
need only to prove the result for k ∈ (1, cβ ). Analogous to the proof of Theorem 3.3, we
need to show the following claim.

Claim 2 For any β ∈ [0, 1
4 ), k ∈ (1, cβ ), there exists a constant C such that

lim
T→∞

1
T

∫ T

0
E

[∥
∥Y (t)

∥
∥k

β

]
dt ≤ C.

Note that Y (t) satisfies Eq. (3.31), let γ = β – 1
2k , it follows that

1
2k

d
dt

∣
∣(–A)γ Y (t)

∣
∣2k

=
∣
∣(–A)γ Y (t)

∣
∣2k–2〈AY (t) + b

(
Y (t) + WX(t)

)
, (–A)2γ Y (t)

〉

= –
∥
∥Y (t)

∥
∥2k–2

γ

∥
∥Y (t)

∥
∥2

γ + 1
2

+
∥
∥Y (t)

∥
∥2k–2

γ

〈
b
(
Y (t) + WX(t)

)
, (–A)2γ Y (t)

〉
,

by the interpolation inequality, we get

∥
∥Y (t)

∥
∥

β
≤ ∥

∥Y (t)
∥
∥1– 1

k
γ

∥
∥Y (t)

∥
∥

1
k
γ + 1

2
,

then using the Poincaré inequality, ‖Y (t)‖γ ≤ c‖Y (t)‖β , yields

1
2k

d
dt

∣
∣(–A)γ Y (t)

∣
∣2k +

∥
∥Y (t)

∥
∥2k

β
≤ ∥

∥Y (t)
∥
∥2k–2

γ

∣
∣
〈
b
(
Y (t) + WX(t)

)
, (–A)2γ Y (t)

〉∣
∣

≤ c
∥
∥Y (t)

∥
∥2k–2

β

∣
∣
〈
b
(
Y (t) + WX(t)

)
, (–A)2γ Y (t)

〉∣
∣

≤ c
2
∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
Y (t), (–A)2γ Y (t), Y (t)

)∣
∣

+
c
2
∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
WX(t), (–A)2γ Y (t), WX(t)

)∣
∣

+ c
∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
Y (t), (–A)2γ Y (t), WX(t)

)∣
∣

:= I1(t) + I2(t) + I3(t).

Now using the properties of the trilinear quantity b(x, y, z), set γ1 = γ3 = 0, γ2 = 1
k – 1

2 – β >
1
4 , then, for all x, z ∈ H , y ∈ Vβ , it follows that

∣
∣b

(
x, (–A)2γ y, z

)∣
∣ ≤ c|x|∥∥(–A)2γ y

∥
∥ 1

k –β
|z| = c|x|‖y‖β |z|;
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applying, respectively, the interpolation inequality and Young inequality, we get

∣
∣I1(t)

∣
∣ =

c
2
∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
Y (t), (–A)2γ Y (t), Y (t)

)∣
∣

≤ c
2
∣
∣Y (t)

∣
∣2∥∥Y (t)

∥
∥2k–1

β

≤ 1
6
∥
∥Y (t)

∥
∥2k

β
+ c1

∣
∣Y (t)

∣
∣4k ,

∣
∣I2(t)

∣
∣ =

c
2
∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
WX(t), (–A)2γ Y (t), WX(t)

)∣
∣

≤ c
2
∣
∣WX(t)

∣
∣2∥∥Y (t)

∥
∥2k–1

β

≤ 1
6
∥
∥Y (t)

∥
∥2k

β
+ c2

∣
∣WX(t)

∣
∣4k ,

and

∣
∣I3(t)

∣
∣ = c

∥
∥Y (t)

∥
∥2k–2

β

∣
∣b

(
Y (t), (–A)2γ Y (t), WX(t)

)∣
∣

≤ c
∣
∣Y (t)

∣
∣
∥
∥Y (t)

∥
∥2k–1

β

∣
∣WX(t)

∣
∣

≤ 1
6
∥
∥Y (t)

∥
∥2k

β
+ c3

∣
∣Y (t)

∣
∣4k + c4

∣
∣WX(t)

∣
∣4k .

By the above inequalities we deduce

1
2k

d
dt

∣
∣(–A)γ Y (t)

∣
∣2k +

1
2
∥
∥Y (t)

∥
∥2k

β
≤ c

(∣
∣Y (t)

∣
∣4k +

∣
∣WX(t)

∣
∣4k).

Finally, integrating the above inequality with respect to t yields

1
2k

∣
∣(–A)γ Y (t)

∣
∣2k +

1
2

∫ t

0

∥
∥Y (s)

∥
∥2k

β
ds

≤ 1
2k

|x|2k + c
(∫ t

0

∣
∣Y (s)

∣
∣4k ds +

∫ t

0

∣
∣WX(s)

∣
∣4k ds

)

.

Therefore, by Proposition 2.2 and Proposition 3.1, we complete the proof. �

4 Transition semigroup and the Kolmogorov operator
This section mainly study the smoothing properties of the semigroup Pt defined by (1.6).
Actually, it is well known that it has the strong Feller property by the existence and unique-
ness of the invariant measure. But the result as regards the properties of its derivation
DPtϕ(x) is less obvious. We introduce an auxiliary semigroup similar to the method in
[9, 14], denoteing by

Stϕ(x) = E
[
e–c

∫ t
0 |X(s,x)|4 dsϕ

(
X(t, x)

)]
, (4.1)

where X(t, x) is the unique mild solution of Eq. (2.5), the constant c is sufficiently large.
Then the required results can be derived by the estimates for the smoothing properties of
St and identity

Ptϕ(x) = Stϕ(x) + c
∫ t

0
St–s

(|x|4Psϕ(x)
)

ds. (4.2)
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4.1 Estimate for the derivation of X(t, x)
We have the following result for the Gâteaux derivative of X(t, x), which can be found in
[1].

Lemma 4.1 For any h ∈ H , the Gâteaux derivative of the mild solution X(t, x), denoted as
ηh(t, x) =: DX(t, x)h, satisfies

{
dηh(t, x) = [Aηh(t, x) + b′(X(t, x))ηh(t, x)] dt + g ′(X(t, x))ηh(t, x) dW (t),
ηh(0, x) = h,

(4.3)

where b′(X(t, x))ηh(t, x) = ∂ξ (X(t, x)ηh(t, x)). Furthermore, for any T > 0, p ≥ 2, there exists
a constant cp,T > 0 such that

∥
∥ηh(t, x)

∥
∥p

T = E

[
sup

t∈[0,T]

∣
∣ηh(t, x)

∣
∣p

]
< cp,T |h|p < ∞.

It is easy to see that ηh(t, x) fulfills the following integral equation:

ηh(t, x) = etAh +
∫ t

0
e(t–s)Ab′(X(s, x)

)
ηh(s, x) ds

+
∫ t

0
e(t–s)Ag ′(X(s, x)

)
ηh(s, x) dWs.

(4.4)

Formally, we denote the stochastic integral term as Z(t), defining

Z(t) =
∫ t

0
e(t–s)Ag ′(X(s, x)

)
ηh(s, x) dWs. (4.5)

Now, in view of the generalized form of the maximal inequality for the stochastic integral
with respect to martingales, see e.g. [16], for any k ≥ 1, β < 1

4 , one can obtain

E
[∣
∣(–A)βZ(t)

∣
∣2k] ≤ c

(∫ t

0

(
E

[∥
∥(–A)βe(t–s)Ag ′(X(s, x)

)
ηh(s, x)

∥
∥2k

HS

]) 1
k ds

)k

,

here

∥
∥(–A)βe(t–s)Ag ′(X(s, x)

)
ηh(s, x)

∥
∥2

HS

=
∞∑

i,j=1

∣
∣
〈
(–A)βe(t–s)A[

g ′(X(s, x)
)
ηh(s, x)ei

]
, ej

〉∣
∣2

=
∞∑

i,j=1

(π j)4βe–2π2j2(t–s)∣∣
〈
g ′(X(s, x)

)
ηh(s, x)ei, ej

〉∣
∣2

=
∞∑

j=1

(π j)4βe–2π2j2(t–s)∣∣g ′(X(s, x)
)
ηh(s, x)ej

∣
∣2

≤ c
∥
∥g ′∥∥

0

∣
∣ηh(s, x)

∣
∣2

∞∑

j=1

j4βe–2π2j2(t–s),
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then we define

Jβ (t) =
∞∑

j=1

j4βe–j2t ,

it is easy to show that there exists a constant cβ > 0 such that

Jβ (t) ≤ cβ t– 1
2 –2βe–t . (4.6)

Hence combining Eq. (3.5), as for – 1
2 – 2β + 1 > 0, that is, β < 1

4 , we have

E
[∥
∥Z(t)

∥
∥2k

β

]
= E

[∣
∣(–A)βZ(t)

∣
∣2k]

≤ c
(∫ t

0
cβ

∥
∥g ′∥∥

0

(
E

[∣
∣ηh(s, x)

∣
∣2k]) 1

k Jβ
(
2π2(t – s)

)
ds

)k

≤ cβ

∥
∥g ′∥∥k

0|h|2k
(∫ ∞

0
s– 1

2 –2βe–2π2s ds
)k

≤ cβ ,k,g |h|2k . (4.7)

Lemma 4.2 For any β ∈ [– 3
8 , – 1

4 ), there exists a constant c1, c2 > 0, such that, for any t ≥ 0,
x, h ∈ H , we have

E
[
e–c1

∫ t
0 |X(s,x)|4 ds∥∥ηh(t, x)

∥
∥2

β

]
+ E

[∫ t

0
e–c1

∫ s
0 |X(τ ,x)|4 dτ

∥
∥ηh(s, x)

∥
∥2

β+ 1
2

ds
]

≤ ‖h‖2
βec2t . (4.8)

Proof For any t ≥ 0, x, h ∈ H , set Y h(t) = ηh(t, x) – Z(t), thus Y h(t) satisfies

d
dt

Y h(t) = AY h(t) + b′(X(t, x)
)
ηh(t, x),

taking the inner product in H with (–A)2βY h(t), integrating by parts and using Hölder’s
inequality, one finds

1
2

d
dt

∥
∥Y h(t)

∥
∥2

β
+

∥
∥Y h(t)

∥
∥2

β+ 1
2

=
∫ 1

0
∂ξ

(
X(t, x)

[
Y h(t) + Z(t)

])
(–A)2βY h(t) dξ

= –
∫ 1

0
X(t, x)

[
Y h(t) + Z(t)

]
∂ξ

(
(–A)2βY h(t)

)
dξ

≤ ∣
∣X(t, x)

∣
∣
(∣
∣Y h(t)

∣
∣
4 +

∣
∣Z(t)

∣
∣
4

)∣
∣∂ξ

(
(–A)2βY h(t)

)∣
∣
4,

and on account of the imbedding V 1
8

↪→ L4(0, 1) and the interpolation inequality, we ob-
tain

∣
∣Y h(t)

∣
∣
4 ≤ c

∥
∥Y h(t)

∥
∥ 1

8
≤ c

∥
∥Y h(t)

∥
∥2β+ 3

4
β

∥
∥Y h(t)

∥
∥–2β+ 1

4
β+ 1

2
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and
∣
∣∂ξ

(
(–A)2βY h(t)

)∣
∣
4 ≤ c

∥
∥∂ξ

(
(–A)2βY h(t)

)∥
∥ 1

8

≤ c
∥
∥Y h(t)

∥
∥

2β+ 5
8

≤ c
∥
∥Y h(t)

∥
∥–2β– 1

4
β

∥
∥Y h(t)

∥
∥2β+ 5

4
β+ 1

2
.

Therefore

1
2

d
dt

∥
∥Y h(t)

∥
∥2

β
+

∥
∥Y h(t)

∥
∥2

β+ 1
2

≤ c
∣
∣X(t, x)

∣
∣
∥
∥Y h(t)

∥
∥

1
2
β

∥
∥Y h(t)

∥
∥

3
2
β+ 1

2

+ c
∣
∣X(t, x)

∣
∣
∣
∣Z(t)

∣
∣
4

∥
∥Y h(t)

∥
∥

β+ 1
2

≤ c1
∣
∣X(t, x)

∣
∣4∥∥Y h(t)

∥
∥2

β
+

1
4
∥
∥Y h(t)

∥
∥2

β+ 1
2

+
∣
∣X(t, x)

∣
∣4 + c

∣
∣Z(t)

∣
∣4
4 +

1
4
∥
∥Y h(t)

∥
∥2

β+ 1
2

.

Integrating the last inequality with respect to t and taking expectations, we have

E
[
e–c1

∫ t
0 |X(s,x)|4 ds∥∥Y h(t)

∥
∥2

β

]
+ E

[∫ t

0
e–c1

∫ s
0 |X(τ ,x)|4 dτ

∥
∥Y h(s)

∥
∥2

β+ 1
2

ds
]

≤ ‖h‖2
βec2t .

Therefore, using once again that ηh(t, x) = Y h(t) + Z(t), (4.8) follows by the Minkowski
inequality and (4.7). �

4.2 Estimate to the regularity of Ptϕ

By the results to the Feynman–Kac semigroup ([1], Lemma 4.1) and ([15], Theorem 2.1),
for any ϕ ∈ Cb(H), which is a Banach space of all uniformly continuous and bounded func-
tions on H endowed with the supremum norm ‖ϕ‖0 = supx∈H |ϕ(x)|, the semigroup Stϕ is
differentiable in any direction h ∈ H , and the directional derivative DStϕ(x) · h can be de-
noted as

DStϕ(x) · h =
1
t
E

[

e–c
∫ t

0 |X(s,x)|4 dsϕ
(
X(t, x)

)
∫ t

0

〈
g–1(X(s, x)

)
ηh(s, x), dW (s)

〉
]

– 4cE
[

e–c
∫ t

0 |X(s,x)|4 dsϕ
(
X(t, x)

)
∫ t

0

(

1 –
s
t

)
∣
∣X(s, x)

∣
∣2〈X(s, x),ηh(s, x)

〉
ds

]

.

(4.9)

Moreover, for any ϕ ∈ C1
b(H), all x ∈ H and h ∈ H , it follows that

DStϕ(x) · h = E
[
e–c

∫ t
0 |X(s,x)|4 dsDϕ

(
X(t, x)

) · ηh(t, x)
]

– 4cE
[

e–c
∫ t

0 |X(s,x)|4 dsϕ
(
X(t, x)

)
∫ t

0

∣
∣X(s, x)

∣
∣2〈X(s, x),ηh(s, x)

〉
ds

]

. (4.10)

To estimate DSt , we always assume that the function g–1 is also bounded besides the
assumptions in the introduction, and use the space of continuous functions with kth-
polynomial growth, denoted by Cb,k(H), which is a Banach space of mappings ϕ : H → R

such that ϕ

1+|·|k ∈ Cb(H), equipped with the norm ‖ϕ‖0,k = ‖(1 + | · |k)–1ϕ‖0. Then the fol-
lowing result can be obtained.
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Proposition 4.3 For any ϕ ∈ Cb,4(H) and x ∈ H , there exists a constant c such that

∥
∥DStϕ(x)

∥
∥ 3

8
≤ cect(1 + |x|4)(1 + t– 7

8
∥
∥g–1∥∥

0

)‖ϕ‖0,4. (4.11)

Proof For any ϕ ∈ Cb,4(H), with the help of the approximation theorem, assume ϕ ∈ Cb(H),
by (4.9) and Hölder’s inequality, we have

∣
∣DStϕ(x) · h

∣
∣2 ≤ 1

t2 ‖ϕ‖2
0,4E

[
e–c

∫ t
0 |X(s,x)|4 ds(1 +

∣
∣X(t, x)

∣
∣4)2]

×E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

〈
g–1(X(s, x)

)
ηh(s, x), dW (s)

〉
)2]

+ 4c‖ϕ‖2
0,4E

[
e–c

∫ t
0 |X(s,x)|4 ds(1 +

∣
∣X(t, x)

∣
∣4)2]

×E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

∣
∣X(s, x)

∣
∣2〈X(s, x),ηh(s, x)

〉
ds

)2]

,

from the result of Proposition 2.2, we get

E
[
e–c

∫ t
0 |X(s,x)|4 ds(1 +

∣
∣X(t, x)

∣
∣4)2] ≤ cect(1 + |x|4)2. (4.12)

Using the same argument as the proof of Lemma 4.1 in [9], and by the Itô formula we
obtain

E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

〈
g–1(X(s, x)

)
ηh(s, x), dW (s)

〉
)2]

≤ ∥
∥g–1∥∥2

0E

[∫ t

0
e–c

∫ s
0 |X(τ ,x)|4 dτ

∣
∣ηh(s, x)

∣
∣2 ds

]

,

applying once again the fact that |x| ≤ c‖x‖ 1
2
– 3

8
‖x‖ 3

2
1
8

, by Lemma 4.2, it implies

E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

〈
g–1(X(s, x)

)
ηh(s, x), dW (s)

〉
)2]

≤ c
∥
∥g–1∥∥2

0E

[∫ t

0
e–c

∫ s
0 |X(τ ,x)|4 dτ

∥
∥ηh(s, x)

∥
∥

1
2
– 3

8

∥
∥ηh(s, x)

∥
∥

3
2
1
8

ds
]

≤ c
∥
∥g–1∥∥2

0E

[∫ t

0
e–c

∫ s
0 |X(τ ,x)|4 dτ

∥
∥ηh(s, x)

∥
∥2

– 3
8

ds
] 1

4

×E

[∫ t

0
e–c

∫ s
0 |X(τ ,x)|4 dτ

∥
∥ηh(s, x)

∥
∥2

1
8

ds
] 3

4

≤ c
∥
∥g–1∥∥2

0ectt
1
4 ‖h‖2

– 3
8

. (4.13)
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Therefore,

E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

∣
∣X(s, x)

∣
∣2〈X(s, x),ηh(s, x)

〉
ds

)2]

≤ E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

∣
∣X(s, x)

∣
∣3∣∣ηh(s, x)

∣
∣ds

)2]

≤ E

[

e–c
∫ t

0 |X(s,x)|4 ds
(∫ t

0

∣
∣X(s, x)

∣
∣6 ds

)(∫ t

0

∣
∣ηh(s, x)

∣
∣2 ds

)2]

≤ cect‖h‖2
– 3

8
. (4.14)

By Eqs. (4.12), (4.13), (4.14) it follows that

∣
∣DStϕ(x) · h

∣
∣ ≤ cect(1 + |x|4)(1 +

∥
∥g–1∥∥

0t– 7
8
)‖h‖– 3

8
,

and (4.11) follows. �

If ϕ ∈ C1
b(H), combining with (4.10), the following corollary can be proved by the same

argument as above. So we omit it.

Corollary 4.4 Assume that ϕ ∈ C1
b(H), and for any x ∈ H , ‖Dϕ(x)‖ 3

8
≤ cϕ , then we have

∥
∥DStϕ(x)

∥
∥ 3

8
≤ cϕect .

Proposition 4.5 Assume that the assumption of Corollary 4.4 holds, then there exists a
constant c such that

∥
∥DPtϕ(x)

∥
∥ 3

8
≤ (

cϕ + c‖ϕ‖0
(
1 + |x|4))ect . (4.15)

Proof For any h ∈ H , by (4.2) we have

DPtϕ(x) · h = DStϕ(x) · h + c
∫ t

0
DSt–s

(|x|4Psϕ
)
(x) · h ds,

considering the Feller property of the semigroup Pt , it follows that

∥
∥|x|4Psϕ

∥
∥

0,4 = sup
x∈H

|x|4|ϕ(x)|
1 + |x|4 ≤ ‖ϕ‖0.

Consequently, applying Proposition 4.3 and Corollary 4.4 yields

∣
∣DPtϕ(x) · h

∣
∣ ≤ cϕect‖h‖– 3

8
+ c‖ϕ‖0

(
1 + |x|4)

∫ t

0

(
1 + ‖g‖–1

0 (t – s)– 7
8
)
ec(t–s) ds‖h‖– 3

8

≤ (
cϕ + c‖ϕ‖0

(
1 + |x|4))ect‖h‖– 3

8
.

Hence the result follows. �
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4.3 Kolmogorov operator
In this section, we discuss the properties of the Kolmogorov operator in the space L2(H ,ν).
By a standard result it follows that the semigroup Pt can be uniquely extended to a
contraction Markov semigroup in L2(H ,ν), whose infinitesimal generator is denoted as
(K2, D(K2)), that is, K2 is m-dissipative by the Lumer–Phillips theorem in [21]. By using the
Itô formula we see that K2 is an extension of K0, that is, for any ϕ ∈ EA(H), K2ϕ = K0ϕ. So,
the operator K0 is dissipative and closeable in L2(H ,ν), here we denoted it by (K̄0, D(K̄0)).
Therefore, by the above results, the following conclusion holds.

Proposition 4.6 The operator K2 is the closure of K0, that is, K̄0 = K2, and K̄0 is m-
dissipative in L2(H ,ν).

Proof Analogous to the method in [9], we introduce the approximation operator

Kn
0 ϕ(x) =

1
2

Tr
[
gn(x)gn(x)∗D2ϕ(x)

]
+

〈
Ax + bn(x), Dϕ(x)

〉
, ϕ ∈ EA(H),

where gn, bn denotes the regular Galerkin approximations of g and b. Then we consider
the elliptic equation

λϕn – Kn
0 ϕn = f , (4.16)

here λ > 0 is sufficiently large, f ∈ EA(H), thus its solution is given by

ϕn(x) =
∫ +∞

0
e–λtPn

t f (x) dt, (4.17)

where Pn
t is the corresponding transition semigroup associated to the approximated prob-

lem

{
dX = (AX + bn(X)) dt + gn(X) dW (t),
X(0) = x.

(4.18)

Moreover, proceeding as in [22] it is not difficult to see that ϕn ∈ D(K̄0), so that

λϕn(x) – K̄0ϕn(x) = f (x) +
〈
bn(x) – b(x), Dϕn(x)

〉
. (4.19)

Upon using Proposition 4.5, we derive

∥
∥Dϕn(x)

∥
∥ 3

8
≤

∫ +∞

0
e–λt∥∥DPn

t f (x)
∥
∥ 3

8
dt

≤
∫ +∞

0
e–(λ–c)t(cf + c‖f ‖0

(
1 + |x|4))dt

=
cf + c‖f ‖0(1 + |x|4)

λ – c
.
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By Theorem 3.3, for any k ≥ 0, we have
∫

H ‖x2‖2
1
8
|x|2k < ∞, thus

∫

H

∣
∣
〈
b(x), Dϕn(x)

〉∣
∣2

ν(dx) ≤ C
∫

H

∥
∥b(x)

∥
∥2

– 3
8

∥
∥Dϕn(x)

∥
∥2

3
8
ν(dx)

≤ C
∫

H

∥
∥x2∥∥2

1
8

(
1 + |x|4)2

ν(dx) < ∞.

On the other hand, notice the fact that ‖bn(x) – b(x)‖– 3
8

→ 0, ν-a.s. and ‖bn(x) – b(x)‖– 3
8

≤
‖b(x)‖– 3

8
, with the help of the dominated convergence theorem it follows that

lim
n→+∞

〈
bn(x) – b(x), Dϕn(x)

〉
= 0, in Lp(H ,ν).

Therefore, on account of (4.19) we have EA(H) ⊂ R(λ – K̄0) ⊂ L2(H ,ν), and by Theo-
rem 3.20 in [23], K̄0 is m-dissipative in L2(H ,ν). We completed the proof. �
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