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Abstract
In the present article, by using the fixed point technique and the Arzelà–Ascoli
theorem on cones, we wish to investigate the existence of solutions for a non-linear
problems regular and singular fractional q-differential equation

(cDα
q f )(t) = w(t, f (t), f ′(t), (cDβ

q f )(t)),

under the conditions f (0) = c1f (1), f ′(0) = c2(cD
β
q f )(1) and

f ′′(0) = f ′′′(0) = · · · = f (n–1)(0) = 0, where α ∈ (n – 1,n) with n ≥ 3, β ,q ∈ J = (0, 1), c1 ∈ J,
c2 ∈ (0,Γq(2 – β)), the function w is Lκ -Carathéodory, w(t, x1, x2, x3) and may be
singular and cDα

q the fractional Caputo type q-derivative. Of course, here we applied
the definitions of the fractional q-derivative of Riemann–Liouville and Caputo type by
presenting some examples with tables and algorithms; we will illustrate our results,
too.
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1 Introduction
The fractional calculus and q-calculus deal with the generalization of integration and dif-
ferentiation of integer order to any order. It is known that fractional calculus is used for
a better description of phenomena having both discrete and continuous behaviors, and
applying in different sciences and engineering such as mechanics, electricity, biology, con-
trol theory, signal and image processing [1–12]. It has an old history and several fractional
derivations where defined, such as the Caputo, the Riemann–Liouville and the Caputo
and Fabrizio derivations. These derivations appeared recently in much work on integro-
differential equations by using different views which young researchers could use for their
work [13–27]. The fractional q-calculus has been applied to almost very field of non-linear
mathematics analysis [28–38]. This branch of mathematics was introduced by Jackson
in 1910 [1, 39]. For earlier work on the topic, we refer to [40, 41], whereas the prelimi-
nary concepts on q-fractional calculus can be found in [4]. For some applications of the
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q-fractional calculus, see for example [2, 3, 5, 7, 8, 42–44]. Also, there has been a signif-
icant increase in knowledge in the field of differential and q-differential equations and
inclusions in recent years [45–49].

In 2012, Ahmad et al., studied the existence and uniqueness of solutions for the frac-
tional q-difference equations cDα

q u(t) = T(t, u(t)) with the boundary conditions α1u(0) –
β1Dqu(0) = γ1u(η1) and α2u(1) – β2Dqu(1) = γ2u(η2), where α ∈ (1, 2], αi, βi, γi, ηi are real
numbers, for i = 1, 2 and T ∈ C(J × R,R) [34]. In 2013, Baleanu et al., reviewed the non-
linear singular fractional problem (cDαu)(t) = w(t, u(t), u′(t), (cDβu)(t)), under the bound-
ary conditions u(0) = a1u(1), u′(0) = a2(cDβu)(1) and u′′(0) = u′′′(0) = · · · = u(n–1)(0) = 0 on
cones, where α ∈ (n – 1, n) with an integer number n ≥ 3, β , a1, a2 ∈ J = (0, 1), (–∞, 1),
(0,Γ (2 – β)), respectively, and w is a Lκ -Carathéodory function, κ(α – 1) > 1, with the
same conditions, which is was addressed by Agarwal et al. [50]. In 2013, Zhao el al.
[38] reviewed the q-integral problem (Dα

q u)(t) + f (t, u(t)) = 0, with the conditions u(1),
u(0) equal to μIβ

q u(η), 0, respectively, for almost all t ∈ (0, 1), where q ∈ (0, 1) and α,
β , η belong to (1, 2], (0, 2], (0, 1), respectively, μ is positive real number, Dα

q is the q-
derivative of Riemann–Liouville and real-values continuous map u defined on I × [0,∞).
In 2014, Jiang et al., investigated the existence and uniqueness of solution of the problem
Dβ

q (φp(Dα
q y(x))) + w(x, y(x), Dγ

q y(x)) = 0, under the conditions y(0) = Dqy(0) = Dα
q y(0) = 0

and y(1) = μIqy(η), by invoking the p-Laplacian operator, where w belongs to C(E,R) with
E = [0, 1] ×R

2, α and β , q, η, γ belong to in (2, 3) and (0, 1), respectively, μ > 0 is constant,
Dα

q is the fractional q-derivative of the Riemann–Liouville type, Dq and Iq denote the q-
derivative and the q-integral, receptively, and φp is the p-Laplacian operator defined by
φp(s) = |s|p–2s, with p > 1 [51].

Two year later, in 2016, Abdeljawad et al. [52] stated and proved a new discrete q-
fractional version of the Gronwall inequality: (qCα

a f )(t) = w(t, f (t)) and f (a) = γ such that
α ∈ (0, 1], a ∈ Tq = {qn : n ∈ Z}, t belongs to Ta = [0,∞)q = {q–ia : i = 0, 1, 2, . . .}, qCα

a means
the Caputo fractional difference of order α and w(t, x) fulfills a Lipschitz condition for all
t and x. Then, in 2017, Zhou et al. [53] provided existence criteria for the solutions of the
fractional Langevin differential equation under some conditions:

⎧
⎨

⎩

Dβ

0+φp[(Dα
0+ + η)f (t)] = w(t, f (t), Dα

0+ f (t)),

f (0) = –f (1), Dα
0+ f (0) = –Dα

0+ f (1),

and

⎧
⎨

⎩

qDβ

0+φp[(Dα
0+ + η)f (t)] = w(t, f (t), qDα

0+ f (t)),

f (0) = –f (1), qDα
0+ f (0) = –qDα

0+ f (1),

for each t ∈ [0, 1], where 0 < α,β ≤ 1, η is larger than or equal to zero, 1 < α + β < 2, q ∈
(0, 1), and φp(s) = |s|p–2s, with p ∈ (1, 2]. In 2017, Baleanu et al., presented a new method to
investigate some fractional integro-differential equations involving the Caputo–Fabrizio
derivation,

CFDαu(t) =
(2 – α)M(α)

2(1 – α)

∫ t

0
exp

(
α

α – 1
(t – s)

)

u′(s) ds,
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where t is used and M(α) is a normalization constant depending on α such that M(0) =
M(1) = 1; one proved the existence of approximate solutions for these problems [16]. In
the same year, they introduced a new operator entitled the infinite coefficient-symmetric
Caputo–Fabrizio fractional derivative and applied it to the investigation of the approxi-
mate solutions for two infinite coefficient-symmetric Caputo–Fabrizio fractional integro-
differential problems [17].

In addition to, Akbari et al., by using the shifted Legendre and Chebyshev polynomials,
discussed the existence of solutions for a sum-type fractional integro-differential problem
under the Caputo differentiation [19]. Over the past three years, Baleanu and Rezapour
et al., by using the Caputo–Fabrizio derivative, achieved innovation, and remarkable and
interesting results were found for solutions of fractional differential equations [13–16, 18,
20–25]. In the next year, Rezapour et al., investigated the existence of solutions for the
inclusion cDαx(t) ∈ F(x, f (x), cDβ f (x), f ′(x)) for each x ∈ I with the conditions cDβ f (0) –
∫ η1

0 f (r) dr = f (0) + f ′(0) and cDβ f (1) –
∫ η2

0 f (r) dr = f (1) + f ′(1), where the multifunction F
maps [0, 1] ×R

3 to 2R and is compact valued and cDα is the Caputo differential operator
[54].

In 2019, Samei et al., discussed the fractional hybrid q-differential inclusions cDα
q (x/F(t,

x, Iα1
q x, . . . , Iαn

q x)) ∈ T(t, x, Iβ1
q x, . . . , Iβk

q x), with the boundary conditions x(0) = x0 and x(1) =
x1, where 1 < α ≤ 2, q ∈ (0, 1), x0, x1 ∈ R, αi > 0, for i = 1, 2, . . . , n, βj > 0, for j = 1, 2, . . . , k,
n, k ∈ N, cDα

q denotes a Caputo type q-derivative of order α, Iβ
q denotes the Riemann–

Liouville type q-integral of order β , F : J × R
n → (0,∞) is continuous and T mapping

J ×R
k to P(R) is a multifunction [32]. Also, they discussed the existence of solutions for the

fractional q-derivative inclusions cDα
q x(t) ∈ F(t, x(t), x′(t), cDβ

q x(t)), x(0) + x′(0) + cDβ
q x(0) =

∫ η1
0 x(s) ds, and x(1)+x′(1)+cDβ

q x(1) =
∫ η2

0 x(s) ds, for any t in I and q,η1,η2,β ∈ (0, 1), where
F maps I ×R

3 into 2R is a compact valued multifunction and cDα
q is the fractional Caputo

type q-derivative operator of order α ∈ (1, 2], and Γq(2 – β)(η2ν – ν2η – η2 + ν2 + 4η –
2ν – 2) + 2(1 – η) �= 0, such that α – β > 1 [49]. In 2019, Samei et al. [32, 36], investigated
the fractional hybrid q-difference inclusion, and also equations and inclusions of multi-
term fractional q-integro-differential equations with non-separated and initial boundary
conditions.

In this article, motivated by the main idea of the literature, we are going to investigate
the problems of the fractional q-differential equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(cDα
q f )(t) = w(t, f (t), f ′(t), (cDβ

q f )(t)),

f (0) = c1f (1),

f ′(0) = c2(cDβ
q f )(1),

f ′′(0) = f ′′′(0) = · · · = f (n–1)(0) = 0,

(1)

where α ∈ (n – 1, n) with n ≥ 3, β , q ∈ J = (0, 1), c1 ∈ J , c2 ∈ (0, B) with B = Γq(2 – β), the
function w is Lκ -Carathéodory being positive real valued and κ(α – 1) > 1, w(t, x1, x2, x3)
may be singular at the value 0 of its space variables x1, x2, x3; cDα

q is the fractional Caputo
type q-derivative.

This manuscript is organized as follows: In Sect. 2, we recall some preliminary concepts
and fundamental results of q-calculus. Section 3 is devoted to the main results, while ex-
amples illustrating the obtained results and algorithm for the problems are presented in
Sect. 4.
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2 Preliminaries
First of all, we summarize the basic definitions and properties of q-calculus and q-
fractional integrals and derivatives. One can find more information about them in [1–6, 8].

Suppose that q ∈ (0, 1) and a ∈ R. Define [a]q = 1–qa

1–q [1]. The power function (x – y)n
q

with n ∈ N0 is (x – y)(n)
q =

∏n–1
k=0(x – yqk) and (x – y)(0)

q = 1 where x, y ∈ R and N0 := {0} ∪N

[1–3]. Also, for α ∈ R and a �= 0, we have (x – y)(α)
q = xα

∏∞
k=0(x – yqk)/(x – yqα+k). If

y = 0, then it is clear that x(α) = xα (Algorithm 1). The q-Gamma function is given by
Γq(z) = (1 – q)(z–1)/(1 – q)z–1, where z ∈ R\{0, –1, –2, . . .} [1, 2, 55, 56]. Note that Γq(z + 1) =
[z]qΓq(z). We show in Algorithm 2, a pseudo-code for estimating the q-Gamma func-
tion. The q-derivative of the function f , is defined by (Dqf )(x) = f (x)–f (qx)

(1–q)x and (Dqf )(0) =
limx→0(Dqf )(x) [2, 6, 57]. One can find in Algorithm 3 a pseudo-code for calculating the
q-derivative of the function f . The higher-order q-derivative of a function f is defined by
(Dn

qf )(x) = Dq(Dn–1
q f )(x) for all n ≥ 1, where (D0

qf )(x) = f (x) [57]. The q-integral of a func-
tion f defined on [0, b] is defined by

Iqf (x) =
∫ x

0
f (s) dqs = x(1 – q)

∞∑

k=0

qkf
(
xqk),

for x ∈ [0, b], provided that the series absolutely converges, which is shown in Algorithm 4
[57, 58]. If a is in [0, b], then

∫ b

a
f (u) dqu = Iqf (b) – Iqf (a) = (1 – q)

∞∑

k=0

qk[bf
(
bqk) – af

(
aqk)],

whenever the series exists. The operator In
q is given by (I0

q h)(x) = h(x) and

(
In

q h
)
(x) =

(
Iq

(
In–1

q h
))

(x),

for n ≥ 1 and g ∈ C([0, b]) which is shown in Algorithm 5 [57]. It has been proved that
(Dq(Iqf ))(x) = f (x) and (Iq(Dqf ))(x) = f (x) – f (0) whenever f is continuous at x = 0 [2, 57,
58]. The fractional Riemann–Liouville type q-integral of the function f on J , of α ≥ 0 is
given by (I0

q f )(t) = f (t) and

(
Iα

q f
)
(t) =

1
Γq(α)

∫ t

0
(t – qs)(α–1)f (s) dqs,

for t ∈ J and α > 0 [35, 55, 59]. Also, the fractional Caputo type q-derivative of the function
f is given by

(cDα
q f

)
(t) =

(
I[α]–α

q
(
D[α]

q f
))

(t)

=
1

Γq([α] – α)

∫ t

0
(t – qs)([α]–α–1)(D[α]

q f
)
(s) dqs, (2)

for t ∈ J and α > 0 [35, 59]. It has been proved that (Iβ
q (Iα

q f ))(x) = (Iα+β
q f )(x) and

(Dα
q (Iα

q f ))(x) = f (x), where α and β in [0,∞) [2, 35, 55, 59].
Let J = [0, 1] and A be a subset ofR3. We denote the space of functions whose κth powers

of modulus are integrable on J , endowed with norm ‖u‖κ = (
∫ 1

0 |u(t)|κ dt)1/κ and the set of
absolutely continuous functions on J , by Lκ (J) and AC(J), respectively, where κ ∈ [1,∞).
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Definition 1 We say that f is multi-singular when it is singular at more than one point t.
Also, a real-valued and non-continuous function f on the interval I = [a, b] is said to be
singular whenever f is non-constant on I , and there exists a set S of measure 0 such that
for x outside of S the derivative f ′(x) exists and is zero, that is, the derivative of f vanishes
almost everywhere.

Definition 2 A function w is called Lκ -Carathéodory on J × A whenever the real-valued
function w(·, x1, x2, x3) on J is measurable for all (x1, x2, x3) belonging to A, the real-valued
function w(t, ·, ·, ·) defined on A is continuous for each t and belongs to (0, 1] and for each
compact set C ⊂ A, there exists ϕC ∈ Lκ (J), such that |w(t, x1, x2, x3)| ≤ ϕC(t), for t belong-
ing to J and (x1, x2, x3) ∈ C.

Definition 3 A real value function f define on J is called a positive solution for prob-
lem (1), whenever f (t) is more than to zero, cDα

q f is a function in Lκ (J) and f satisfies the
boundary conditions for all t ∈ J .

Throughout the paper, we suppose that the function w in (1) has the following condi-
tions:

(H1) The map w is an Lκ -Carathéodory on J × A, where κ(α – 1) > 1 and it fulfills the
estimate

w(t, x1, x2, x3) ≤ g1(x1) + g2
(|x2|

)
+ g3

(|x3|
)

+ γ (t)θ
(
x1, |x2|, |x3|

)
,

for t ∈ J and (x1, x2, x3) belonging to A, where positive valued functions g1, g2, g3 in
C(R>0) are decreasing, γ and θ in Lκ (J) and C(E) where
E = [0,∞) × [0,∞) × [0,∞), respectively, are positive, w is increasing in all its
arguments and limy→∞ w(y,y,y)

y = 0 and Γq(α)(Iα
q gκ

i )(1) < ∞ for i = 1, 2, 3.
(H2) For each t ∈ J and (x1, x2, x3) belongs to A, there exists m > 0 such that

m ≤ w(t, x1, x2, x3).
Since we imagine that problem (1) is singular, that is, w(t, x1, x2, x3) may be singular at
the value zero of its space variables x1, x2 and x3, we use regularization and sequential
techniques for the existence of positive solutions of the problem. For this purpose, for
each natural number n, define the function wn on J × A by

wn(t, x1, x2, x3) = w
(
t, ξ+

n (x1), ξ+
n (x2), ξ+

n (x3)
)
,

where ξ+
n (u) = u, whenever f ≥ 1

n and ξ+
n (u) = 1

n , whenever u < 1
n .

Remark 1 Since w is Lκ -Carathéodory, obviously wn is an Lκ -Carathéodory function on
J × A and by assumption (H1), for each n, we get

wn(t, x1, x2, x3) ≤ g1

(
1
n

)

+ g2

(
1
n

)

+ g3

(
1
n

)

+ γ (t)θ
(
1 + x1, 1 + |x2|, 1 + |x3|

)

and wn(t, x1, x2, x3) ≤ g1(x1) + g2(|x2|) + g3(|x3|) + γ (t)θ (1 + x1, 1 + |x2|, 1 + |x3|). Also, the
condition (H2) entails that there exists a natural number m such that m ≤ wn(t, x1, x2, x3).
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Lemma 4 ([60]) Suppose that τ belongs to Lκ (J) and t1, t2 ∈ J . Then

∣
∣Γq(α – 1)

(
Iα–1

q τ
)
(t)

∣
∣ ≤

(
td

d

)1/p

‖τ‖κ ,

for almost all t belongs to J and

∣
∣
∣
∣

∫ t2

0
(t2 – qs)(α–2)τ (s) dqs –

∫ t1

0
(t1 – qs)(α–2)τ (s) dqs

∣
∣
∣
∣

≤
(

td
1 + (t2 – t1)d – td

2
d

)1/p

‖τ‖κ +
(

(t2 – t1)d

d

)1/p

‖τ‖κ ,

whenever t1 ≤ t2, here d – 1 = (α – 2)p with p = κ–1
κ

.

3 Main results
At present, we discuss the existence of solutions of problem (1). Foremost, we prove the
key result.

Lemma 5 Suppose that v belongs to C(J). Then the boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(cDα
q f )(t) = v(t),

f (0) = c1f (1),

f ′(0) = c2(cDβ
q f )(1),

f ′′(0) = f ′′′(0) = · · · = f (n–1)(0) = 0,

(3)

for each t ∈ J , where c1 ∈ (n–1, n) with n ≥ 3 and c2 ∈ (0, B) with B = Γq(2–β), is equivalent
to the fractional integral equation f (t) =

∫ 1
0 Gq(t, s)v(s) dqs, for all s, t ∈ J , where

Gq(t, s) =

⎧
⎨

⎩

(t–qs)(α–1)

Γq(α) + c1(1–qs)(α–1)

(1–c1)Γq(α) + c2B(c1+t–c1t)(1–qs)(α–β–1)

(1–a)Γq(α–β)(B–c2) , s ≤ t,
c1(1–qs)(α–1)

(1–c1)Γq(α) + c2B(c1+t–c1t)(1–qs)(α–β–1)

(1–c1)Γq(α–β)(B–c2) , t ≤ s.
(4)

Proof From (cDα
q )f (t) = v(t), for all t belonging to (0, 1) and the boundary conditions

f ′′(0) = f ′′′(0) = f (n–1)(0) = 0, we obtain

f (t) =
(
Iα

q v
)
(t) + f (0) + f ′(0)t +

f ′′(0)
2!

t2 + · · · +
f (n–1)(0)
(n – 1)!

tn–1

=
(
Iα

q v
)
(t) + f (0) + f ′(0)t.

So, we obtain

(cDβ
q f

)
(t) =

(
Iα–β

q v
)
(t) +

(cDβ
q
)(

f (0) + f ′(0)t
)

=
(
Iα–β

q v
)
(t) +

1
B

f ′(0)t1–β .

Therefore, f (1) = (Iα
q v)(1) + f (0) + f ′(0), and (cDβ

q f )(1) = (Iα–β
q v)(1) + 1

B f ′(0). By using the
conditions of problem (3), we get f (0) = c1((Iα

q v)(1) + f (0) + f ′(0)) and f ′(0) = c2((Iα–β
q v)(1) +



Liang and Samei Advances in Difference Equations         (2020) 2020:14 Page 7 of 22

1
B f ′(0)). Hence,

f (0) =
c1

(1 – c1)
(
Iα

q v
)
(1) +

c1c2B
(1 – c1)(B – c2)

(
Iα–β

q v
)
(1)

and f ′(0) = c2B
B–c2

(Iα–β
q v)(1). We simply observe that

f (t) =
(
Iα

q v
)
(t) dqs + f (0) + f ′(0)t

=
∫ t

0

[
(t – qs)(α–1)

Γq(α)
+

c1(1 – qs)(α–1)

(1 – c1)Γq(α)

+
c2B(c1 + t – c1t)(1 – qs)(α–β–1)

(1 – c1)Γq(α – β)(B – c2)

]

v(s) dqs

+
∫ 1

t

[
c1(1 – qs)(α–1)

(1 – c1)Γq(α)

+
c2B(c1 + t – c1t)(1 – qs)(α–β–1)

(1 – c1)Γq(α – β)(B – c2)

]

v(s) dqs

=
∫ 1

0
Gq(t, s)v(s) dqs.

This completes our proof. �

For unification, we put p = κ–1
κ

with κ ≥ 1, d = (α – 2)p + 1,

Λ1 =
1

(1 – c1)Γq(α)
+

Γq(α – β)(B – c2) + c2Γq(2 – β)
(1 – c1)Γq(α – β)(Γq(2 – β) – c2)

=
Γq(α – β)(B – c2) + c2BΓq(α)

(1 – c1)Γq(α)Γq(α – β)(B – c2)
(5)

and

Λ2 =
c1c2B

(1 – c1)Γq(α – β)(B – c2)
. (6)

Lemma 6 The q-Green function Gq(t, s) in Lemma 5, which belongs to C(J × J), for all
(t, s) ∈ J × J , satisfies the conditions:

(i) Gq(t, s) ≤ Λ1(1 – qs)(α–β–1) ≤ 1,
(ii) Gq(t, s) ≥ Λ2(1 – qs)(α–β–1).

Proof One can easy to check that Gq(t, s) > 0 on J × J . Then from (5) and (6), we have

(t – qs)(α–1)

Γq(α)
+

c1(1 – qs)(α–1)

(1 – c1)Γq(α)
+

c2B(c1 + t – c1t)(1 – qs)(α–β–1)

(1 – c1)Γq(α – β)(B – c2)

≤ (1 – qs)(α–β–1)(Γq(α – β)(B) – c2) + c2BΓq(α)
(1 – c1)Γq(α)Γq(α – β)(B – c2)

= Λ1(1 – qs)(α–β–1)
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and

c1(1 – qs)(α–1)

(1 – c1)Γq(α)
+

c2B(c1 + t – c1t)(1 – qs)(α–β–1)

(1 – c1)Γq(α – β)(B – c2)

≤ (1 – qs)(α–β–1)(c1(1 – qs)(–β)

(1 – c1)Γq(α)

+
c2B(c1 + t – c1t)

(1 – c1)Γq(α – β)(B – c2)

≤ Λ1(1 – qs)(α–β–1),

whenever s ≤ t and t ≤ s, respectively, for t and s in J . Therefore, Gq(t, s) ≤ Λ1(1 –
qs)(α–β–1), for all (t, s) belonging to J × J . Finally, it is observed that

(1 – c1)(B – c2)Γq(α – β)Γq(α)Gq(t, s)

≥ c2BΓq(α)(c1 + t – c1t)(1 – qs)(α–β–1)

≥ c1c2BΓq(α)(1 – qs)(α–β–1).

Therefore, Gq(t, s) ≥ Λ2(1 – qs)(α–β–1) for all (t, s) belonging to J × J . �

Consider the Banach space X = C1(J) endowed with the norm ‖u‖∗ = max{‖u‖,‖u′‖}
and the cone P on X, containing all the functions u belonging to X such that u(t) ≥ 0 and
u′(t) ≥ 0 for all t. Now, we define an operator Θn on P by

(Θnu)(t) =
∫ 1

0
Gq(t, s)Tn

(
s, f (s), f ′(s),

(cDβ
q f

)
(s)

)
dqs.

At present, we show that the operator Θn is completely continuous [61].

Lemma 7 Θn is a completely continuous operator, whenever the Θn satisfy conditions (H1)
and (H2) for all natural number sn.

Proof Consider an element u ∈ P. Then u ∈ C(J). Also, u and u′ are larger than or equal to
zero. Therefore by the definition of cDβ

q , we get (cDβ
q u)(t) ∈ C(J) and (cDβ

q u)(t) ≥ 0. Now,
define τ (t) = wn(t, f (t), f ′(t), (cDβ

q f )(t)). Then τ ∈ Lκ (J) and τ (t) higher than or equal to m
for almost all t ∈ J . It follows from Gq(t, s) ≥ 0 for all (t, s) belonging to J × J , from the
equality

(Θnu)(t) =
aΓq(α – β)(B – c2)(1 – qs)(α–1)

(1 – c1)Γq(α – β)(Γq(2 – β) – c2)
(
Iα

q τ
)
(1)

+
c2BΓq(α)(c1 + t – c1t)(1 – qs)(α–β–1)

(1 – c1)Γq(α)(B – c2)
(
Iα–β

q τ
)
(1) +

(
Iα

q τ
)
(t).

From the properties of Iα
q that Θnu ∈ C(J) and (Θnu)(t) ≥ 0 for all t ∈ J we have (Θnu)′(t) =

(Iα–1
q τ )(t). Hence, (Θnu)′ ∈ C(J) and (Θnu)′ higher than or equal to zero, on J . We test

that the operator Θn is continuous. Suppose that the sequence um ⊂ P is convergent and
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limm→∞ um = u. Thus, limm→∞ u(i)
m (t) = u(i)(t) uniformly on J for i = 0, 1. Since

(cDβ
q u

)
(t) =

d
dt

(
I1–β

q
)(

u(t) – u(0)
)

=
(
I1–β

q u′)(t), (7)

we get

∣
∣
(cDβ

q um
)
(t) –

(cDβ
q u

)
(t)

∣
∣ ≤ ‖u′

m – u′‖
Γq(1 – β)

∫ t

0
(t – qs)(–β) dqs ≤ ‖um – u‖∗

Γq(β)

and limm→∞(cDβ
q um)(t) = (cDβ

q u)(t) uniformly on J . In addition, by using (7), we have
|(cDβ

q um)(t)| ≤ u′
m

Γq(β) and so

‖(cDβ
q um

)‖ ≤ ‖u′
m‖

Γq(β)
. (8)

Put τm(t) = wn(t, um(t), u′
m(t), (cDβ

q um)(t)) and τ (t) = wn(t, u(t), u′(t), (cDβ
q u)(t)). Then

limm→∞ τm(t) = τ (t) and there exists μ ∈ Lκ (J) such that 0 ≤ τm(t) ≤ μ(t), for each t in
J and natural number m. Since wn is a Lκ -Carathéodory function, {um}, {(cDβ

q um)(t)}
are bounded in C1(J), C(J), respectively. So, limm→∞(Θnum)(t) = (Θnu)(t) uniformly
on J . Since {τm} is Lκ -convergent on J , we conclude that limm→∞(Θnum)′(t) =
limm→∞(Iα–1

q τm)(t) = (Θnu)′(t), uniformly on J . Hence, the operator Θn is a continuous.
We choose a positive constant r such that both ‖um‖ and ‖u′

m‖ are less than or equal to r
for each natural number m, thus, we have Γq(β)‖(cDβ

q um)(t)‖ ≤ r and

∣
∣
∣
∣

∫ t

0
(t – qs)(α–2)τm(s) dqs

∣
∣
∣
∣ ≤

(∫ t

0
(t – qs)((α–2)p) dqs

) 1
p
(∫ t

0

∣
∣τm(s)

∣
∣κ dqs

) 1
κ

≤
(

td

d

) 1
p
‖τm‖κ , (9)

for all m. On the other hand, the relations

0 ≤ (Θnum)(t) =
∫ 1

0
Gq(t, s)τm(s) dqs ≤

∫ 1

0
Gq(t, s)μ(s) dqs ≤ ‖μ‖1

Γq(α)

and

0 ≤ (Θnum)′(t) =
(
Iα–1

q τm
)
(t) ≤ (

Iα–1
q μ

)
(t) ≤ 1

Γq(α – 1)

[
1

(α – 2)p + 1

] 1
p
‖μ‖κ ,

hold for each t and m and so {Θnum} is bounded in C(J). Moreover, it follows from Lemma
4 that

∣
∣(Θnum)′(t2) – (Θnum)′(t1)

∣
∣ =

∣
∣
(
Iα–1

q
)(

τm(t2) – τm(t1)
)∣
∣

≤ ‖τm‖κ

Γq(α – 1)

[(
td
1 + (t2 – t1)d – td

2
d

) 1
p

+
(

(t2 – t1)d

d

) 1
p
]

≤ ‖μ‖κ

Γq(α – 1)

[(
td
1 + (t2 – t1)d – td

2
d

) 1
p

+
(

(t2 – t1)d

d

) 1
p
]

,
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for each t1 and t2 belonging to J such that t1 ≤ t2 is fulfilled. As a result, {(Θnum)′} is
equicontinuous on J . Consequently, based on the Arzelà–Ascoli theorem, {Θnum} is rela-
tively compact in C1(J). Also, since Θn is continuous, we conclude that the operator Θn is
completely continuous. �

Lemma 8 ([61, 62]) Let X be a Banach space, P ⊂ X a cone and O1 and O2 bounded
open balls in X centered at the origin with O1 ⊂ O2. A completely continuous operator w
mapping P ∩ (O2\O1) into P has a fixed point whenever ‖w(u)‖ ≥ ‖u‖ and ‖w(u)‖ ≤ ‖u‖
for u ∈ P ∩ ∂O1 and u ∈ P ∩ ∂O2, respectively.

Theorem 9 Let w satisfy conditions (H1) and (H2). Then problem (1) has a solution fn in
P such that

fn ≥ mΛ2

α – β
, f ′

n(t) ≥ mtα–1

Γq(α)
, and

(cDβ
q fn

)
(t) ≥ mtα–β

Γq(α – β + 1)
, (10)

for all t belonging to J and the natural number n.

Proof By using Lemma 7, one can conclude that the operator Θn : P → P is completely
continuous. A function f is a solution of problem (1), whenever f solves the operator
equation f = Θnf . Finally, we demonstrate wn in P is a fixed point of Θn with desired con-
tinuousness. For this purpose, it is observed that

(Θnu)(t) =
∫ 1

0
Gq(t, s)wn

(
s, u(s), u′(s),

(cDβ
q u

)
(s)

)
dqs

≥ m
∫ 1

0
Gq(t, s) dqs ≥ m

∫ 1

0
(1 – t)α(1 – qs)(α–β–1) dqs

=
mΛ2

α – β
(11)

and so ‖Θnu‖∗ ≥ ‖Θnu‖ ≥ mΛ2
α–β

. Put

O1 =
{

u ∈ X : ‖u‖∗ <
mΛ2

α – β

}

.

Then ‖Θnu‖∗ ≥ ‖u‖∗ for all u belonging to P∩∂O1. Let vn = g1( 1
n )+g2( 1

n )+g3( 1
n ). Inequality

(7) implies that

∣
∣(Θnu)(t)

∣
∣ ≤

∣
∣
∣
∣

∫ 1

0
Gq(t, s)wn

(
s, f (s), f ′(s),

(cDβ
q f

)
(s)

)
dqs

∣
∣
∣
∣

≤
∫ 1

0

∣
∣Gq(t, s)

∣
∣
[
vn + γ (s)θ

(
1 +

∣
∣u(s)

∣
∣, 1 +

∣
∣u′(s)

∣
∣, 1 +

∣
∣
(cDβ

q u
)
(s)

∣
∣
)]

dqs

≤ Λ1
(
vn + w

(
1 + ‖u‖, 1 +

∥
∥u′∥∥, 1 +

∥
∥
(cDβu

)∥
∥
)‖γ ‖1

)

and

∣
∣(Θnu)′(t)

∣
∣ =

∣
∣
(
Iα–1

q wn
)(

t, u(t), u′(t),
(cDβ

q u
)
(t)

)
dqs

∣
∣

≤ (
Iα–1

q
(
vn + γ (t)θ

(
1 +

∣
∣u(t)

∣
∣, 1 +

∣
∣u′(t)

∣
∣, 1 +

∣
∣
(cDβ

q u
)
(t)

∣
∣
)))
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+
vntα–1

(α – 1)Γq(α – 1)

+ w
(
1 + ‖u‖, 1 +

∥
∥u′∥∥, 1 +

∥
∥
(cDβ

q u
)∥
∥
)(

Iα–1
q γ

)
(t),

for each u ∈ P and all t ∈ J , because w is increasing in all its arguments. Since ‖u‖ and
‖u′‖ are less than or equal to ‖u‖∗, ‖(cDβ

q u)‖ ≤ ‖u′‖
Γq(β) ≤ ‖u‖∗

Γq(β) and by inequality (9),
∫ t

0 (t –
qs)(α–2)γ (s) dqs ≤ ( 1

d )1/p‖γ ‖κ , we have

∥
∥Θn(x)

∥
∥ ≤ Λ1

[

vn + w
(

1 + ‖u‖∗, 1 + ‖u‖∗, 1 +
‖u‖∗
Γq(β)

)

‖γ ‖1

]

and

∥
∥(Θnu)′

∥
∥ ≤ 1

Γq(α – 1)

[
vn

α – 1
+ w

(

1 + ‖u‖∗, 1 + ‖u‖∗, 1 +
‖u‖∗
Γq(β)

)(
1
d

)1/p

‖γ ‖κ

]

.

Therefore,

‖Θnu‖∗ ≤ M
[

vn

α – 1
+ Nw

(

1 + ‖u‖∗, 1 + ‖u‖∗, 1 +
‖u‖∗
Γq(β)

)]

,

where N and M are max{‖γ ‖1, ( 1
d )1/p‖γ ‖κ} and max{Λ1, 1

Γq(α–1) }, respectively. Since

lim
v→∞

w(1 + v, 1 + v, 1 + v)
v

is equal to zero, by condition (H1), there exists a positive constant L such that

M
[

vn

α – 1
+ Nw

(

1 + v, 1 + v,
v

Γ (β)

)]

< v,

for each v higher than or equal to L. Hence, ‖Θnu‖∗ < ‖u‖∗ for all u in P with ‖u‖∗ ≥ L. Let
O2 = {u ∈ X : ‖u‖∗ < L}, then ‖θnu‖∗ < ‖u‖∗ for u ∈ P ∩ ∂Ω2. Now applying the last result,
with X and w = Θn, we conclude that Θn has a fixed point fn in P ∩ (O2\O1). Consequently,
fn is a solution of Problem (1). The first inequality follows from (11), fn = (Θnfn)(t) ≥ mΛ2

α–β
,

the second one follows from the relation

(Θnu)′(t) =
(
Iα–1

q wn
)(

t, u(t), u′(t),
(cDβ

q u
)
(t)

) ≥ (
Iα–1

q m
)

=
mtα–1

Γq(α)
,

for t ∈ J and u belongs to P. Finally, using the second inequality and (I1–β
q u)(t) =

Γq(α)
Γq(α–β+1) tα–β , where u(t) = tα–1, we obtain

(cDβ
q fn

)
(t) =

(
I1–β

q f ′
n
)
(t) ≥ m

Γq(α)
(
I1–β

q h
)
(t) =

mtα–β

Γq(α – β + 1)
,

for each t. This completes our proof. �

Theorem 10 The problem (1) has a solution f such that (α – β)f (t) ≥ mΛ2, Γq(α)f ′(t) ≥
mtα–1 and Γq(α – β + 1)(cDβ

q f )(t) ≥ mtα–β , for all t ∈ J , whenever conditions (H1) and (H2)
hold.
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Proof By using Theorem 9, for each n, problem (1) has a solution fn ∈ P which satisfies
inequality (10). Hence

g1
(
fn(t)

) ≤ g1

(
mΛ2

α – β

)

, g2
(∣
∣f ′

n(t)
∣
∣
) ≤ g2

(
mtα–1

Γq(α)

)

and

g3
(∣
∣
(cDβ

q fn
)
(t)

∣
∣
) ≤ g3

(
mtα–β

Γq(α – β + 1)

)

,

for each t ∈ J and all natural number n. In addition, it follows from (8) that ‖(cDβ
q fn)‖ ≤

‖f ′
n‖

Γq(β) . We put

F(t) = g1

(
mΛ2

α – β

)

+ g2

(
mtα–1

Γq(α)

)

+ g3

(
mtα–β

Γq(α – β + 1)

)

. (12)

Therefore, we conclude that

m ≤ wn
(
t, fn(t), f ′

n(t),
(cDβ

q fn
)
(t)

)

≤ F(t) + γ (t)θ
(
1 + ‖fn‖, 1 +

∥
∥f ′

n
∥
∥, 1 +

∥
∥
(cDβ

q fn
)∥
∥
)

≤ F(t) + γ (t)θ
(

1 + ‖fn‖∗, 1 +
∥
∥f ′

n
∥
∥∗, 1 +

‖fn‖∗
Γq(β)

)

.

Since we have a positive value Gq(t, s) ≤ Λ1, we get

0 ≤ fn(t) =
∫ 1

0
Gq(t, s)wn

(
s, fn(s), f ′

n(s),
(cDβ

q fn
)
(s)

)
dqs

≤ Λ1

[∫ 1

0
F(qs) dqs + w

(

1 + ‖fn‖∗, 1 + ‖fn‖∗, 1 +
‖fn‖∗
Γq(β)

)

‖γ ‖1

]

and

0 ≤ f ′
n(t) ≤ (

Iα–1
q F

)
(t) + w

(

1 + ‖fn‖∗, 1 + ‖fn‖∗, 1 +
‖fn‖∗
Γq(β)

)
(
Iα–1

q γ
)
(t).

At present, we show that
∫ t

0 (t – qs)(α–2)F(s) dqs is bounded on [0, 1]. By using the Hölder
inequality, we get

∫ 1

0
(t – qs)(α–2)g1

(
mΛ2

α – β

)

dqs

= g1

(
mΛ2

α – β

)∫ 1

0
(t – qs)(α–2) dqs =

1
α – 1

g1

(
m(1 – t)α

α – β

)

=: λ1,

∫ t

0
(t – qs)(α–2)g2

(
msα–1

Γq(α)

)

dqs

=
(

1
d

)1/p(
Γq(α)

m

) 1
(α–1)κ

[∫ ( m
Γq(α) )

1
α–1

0
gκ

2
(
sα–1)dqs

]1/κ

=: λ2,
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and analogously

∫ t

0
(t – qs)(α–2)g3

(
msα–β

Γq(α – β + 1)

)

dqs

=
(

1
d

)1/p(
Γq(α – β + 1)

m

) 1
(α–β)κ

[∫ ( m
Γq(α–β+1) )

1
α–β

0
gκ

3
(
sα–β

)
dqs

]1/κ

=: λ3.

Note that (H1) guarantees λj < ∞ for j = 1, 2 and 3. Hence, for all t ∈ J , we obtain

∫ t

0
(t – qs)(α–2)F(s) dqs ≤ λ,

where λ = λ1 + λ2 + λ3. Also, we have

∫ 1

0
F(qs) dqs ≤ 1

α – 1
g1

(
mΛ2

α – β

)

+
(

Γq(α)
m

) 1
α–1

∫ ( m
Γq(α) )

1
α–1

0
g2

(
sα–1)ds

+
(

Γq(α – β + 1)
m

) 1
α–β

∫ ( m
Γq(α–β+1) )

1
α–β

0
g3

(
sα–β

)
dqs

< ∞.

Now, we conclude from the estimates

‖fn‖ = Λ1

[∫ 1

0
F(qs) dqs + w

(

1 + ‖fn‖∗, 1 + ‖fn‖∗, 1 +
‖fn‖∗
Γq(β)

)

‖γ ‖1

]

and

∥
∥f ′

n
∥
∥ ≤ 1

Γq(α – 1)

[

λ + w
(

1 + ‖fn‖∗, 1 + ‖fn‖∗, 1 +
‖fn‖∗
Γq(β)

)(
1
d

)1/p

‖γ ‖κ

]

to the inequality

‖fn‖∗ ≤ M
[

η1 + η2w
(

1 + ‖fn‖∗, 1 + ‖fn‖∗, 1 +
‖fn‖∗
Γq(β)

)]

, (13)

holding, for n ≥ 1, where M = max{Λ1, 1
Γq(α–1) }, η1 = max{λ,

∫ 1
0 F(qs) dqs} and

η2 = max

{

‖γ ‖1,
(

1
d

)1/p

‖γ ‖κ

}

.

Now, by condition (H1), there exists a positive constant L such that

M
[

η1 + η2w
(

1 + v, 1 + v, 1 +
v

Γq(β)

)]

< v,
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for each v higher than or equal to L. Now, inequality (13) gives ‖fn‖∗ < L, for all n. Therefore

wn
(
t, fn(t), f ′

n(t),
(cDβ

q fn
)
(t)

) ≤ R(t),

where R(t) = F(t) + γ (t)θ (1 + L, 1 + L, 1 + L
Γq(β) ). Note that, from condition (H1), R in Lκ (J).

Let

τn(t) = wn
(
t, fn(t), f ′

n(t),
(cDβ

q fn
)
(t)

)

and t1, t2 ∈ [0, δ] such that t1 ≤ t2. Then

∣
∣f ′

n(t2) – f ′
n(t1)

∣
∣ =

(
Iα–1

q
)∣
∣τn(t2) – τn(t1)

∣
∣

≤ 1
Γq(α – 1)

[∫ t1

0

(
(t1 – qs)(α–2) – (t2 – qs)(α–2))τn(s) dqs

+
∫ t2

t1

(t2 – qs)(α–2)τn(s) dqs
]

≤ 1
Γq(α – 1)

[∫ t1

0

(
(t1 – qs)(α–2) – (t2 – qs)(α–2))R(s) dqs

+
∫ t2

t1

(t2 – qs)(α–2)R(s) dqs
]

and so, by applying Lemma 4, we get

∣
∣f ′

n(t2) – f ′
n(t1)

∣
∣ ≤ ‖R‖κ

Γq(α – 1)

[(
td
1 + (t2 – t1)d – td

2
d

)1/p

+
(

(t2 – t1)d

d

)1/p]

.

As a consequence, {f ′
n} is equicontinuous on J . Since {fn} is bounded in C(J), without less of

generality, we may assume that {fn} is convergent in C(J) by the Arzelà–Ascoli theorem.
Let limn→∞ fn = f , then passing to the limit as n → ∞, we obtain (cDβ

q fn)(t) = (Iα–1
q f ′

n)(t)
and using Eq. (7), we have

lim
n→∞

(cDβ
q fn

)
(t) =

1
Γq(α – 1)

∫ t

0
(t – qs)(–β)f ′(s) dqs,

uniformly on J . The last relation yields limn→∞(cDβ
q fn)(t) = (cDβ

q f )(t) in C(J). Hence,

lim
n→∞ wn

(
t, fn(t), f ′

n(t),
(cDβ

q fn
)
(t)

)
= w

(
t, f (t), f ′(t),

(cDβ
q f

)
(t)

)
.

Since R ∈ Lκ (J), by taking n → ∞ in the equality

fn(t) =
∫ 1

0
Gq(t, s)wn

(
s, fn(s), f ′

n(s),
(cDβ

q fn
)
(s)

)
dqs.

By using the dominated convergence theorem for Lκ (J), we get

f (t) =
∫ 1

0
Gq(t, s)w

(
s, f (s), f ′(s),

(cDβ
q f

)
(s)

)
dqs.
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Consequently, f is a solution of problem (1), satisfying the boundary conditions. This com-
pletes our proof. �

4 Algorithms and examples
In this section, we give some algorithms to illustrate problem (1), in Theorems 10 and
present numerical examples. Foremost, we present a simplified analysis that can be ex-
ecuted to calculate the value of q-Gamma function, Γq(x), for input q, x and differ-
ent values of n. To this aim, we consider a pseudo-code description of the method for
calculating the q-Gamma function of order n in Algorithm 2 (for details, see the link
https://en.wikipedia.org/wiki/Q-gamma_function). Now we give some examples to illus-
trate our results. Table 1 shows that when q is constant, the q-Gamma function is an in-
creasing function. Also, for smaller values of x, an approximate result is obtained with
smaller values of n. It is shown by underlined rows. Table 2 shows that the q-Gamma
function for values q close to 1 is obtained with higher values of n in comparison with
other columns. They have been underlined in line 8 of the first column, line 17 of the sec-
ond column and line 29 of third columns of Table 2. Also, Table 3 is the same as Table 2,
but x values increased in 3. Similarly, the q-Gamma function for values of q close to 1 is
obtained with higher values of n in comparison with other columns.

Here, we provide an example to illustrate our main result.

Algorithm 1 The proposed method for calculating (a – b)(α)
q

Input: a, b, α, n, q
1: s ← 1
2: if n = 0 then
3: p ← 1
4: else
5: for k = 0 to n do
6: s ← s ∗ (a – b ∗ ak)/(a – b ∗ qα+k)
7: end for
8: p ← aα ∗ s
9: end if

Output: (a – b)(α)

Algorithm 2 The proposed method for calculating Γq(x)
Input: n, q ∈ (0, 1), x ∈R\{0, –1, 2, . . .}

1: p ← 1
2: for k = 0 to n do
3: p ← p(1 – qk+1)(1 – qx+k)
4: end for
5: Γq(x) ← p/(1 – q)x–1

Output: Γq(x)

https://en.wikipedia.org/wiki/Q-gamma_function
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Table 1 Some numerical results for calculation of Γq(x) with q = 1
3 that is constant, x = 4.5, 8.4, 12.7

and n = 1, 2, . . . , 15 of Algorithm 2

n x = 4.5 x = 8.4 x = 12.7 n x = 4.5 x = 8.4 x = 12.7

1 2.472950 11.909360 68.080769 9 2.340263 11.257158 64.351366
2 2.383247 11.468397 65.559266 10 2.340250 11.257095 64.351003
3 2.354446 11.326853 64.749894 11 2.340245 11.257074 64.350881
4 2.344963 11.280255 64.483434 12 2.340244 11.257066 64.350841
5 2.341815 11.264786 64.394980 13 2.340243 11.257064 64.350828
6 2.340767 11.259636 64.365536 14 2.340243 11.257063 64.350823
7 2.340418 11.257921 64.355725 15 2.340243 11.257063 64.350822
8 2.340301 11.257349 64.352456

Table 2 Some numerical results for calculation of Γq(x) with q = 1
3 ,

1
2 ,

2
3 , x = 5 and n = 1, 2, . . . , 35 of

Algorithm 2

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 3.016535 6.291859 18.937427 18 2.853224 4.921884 8.476643
2 2.906140 5.548726 14.154784 19 2.853224 4.921879 8.474597
3 2.870699 5.222330 11.819974 20 2.853224 4.921877 8.473234
4 2.859031 5.069033 10.537540 21 2.853224 4.921876 8.472325
5 2.855157 4.994707 9.782069 22 2.853224 4.921876 8.471719
6 2.853868 4.958107 9.317265 23 2.853224 4.921875 8.471315
7 2.853438 4.939945 9.023265 24 2.853224 4.921875 8.471046
8 2.853295 4.930899 8.833940 25 2.853224 4.921875 8.470866
9 2.853247 4.926384 8.710584 26 2.853224 4.921875 8.470747
10 2.853232 4.924129 8.629588 27 2.853224 4.921875 8.470667
11 2.853226 4.923002 8.576133 28 2.853224 4.921875 8.470614
12 2.853224 4.922438 8.540736 29 2.853224 4.921875 8.470578
13 2.853224 4.922157 8.517243 30 2.853224 4.921875 8.470555
14 2.853224 4.922016 8.501627 31 2.853224 4.921875 8.470539
15 2.853224 4.921945 8.491237 32 2.853224 4.921875 8.470529
16 2.853224 4.921910 8.484320 33 2.853224 4.921875 8.470522
17 2.853224 4.921893 8.479713 34 2.853224 4.921875 8.470517

Table 3 Some numerical results for calculation of Γq(x) with x = 8.4, q = 1
3 ,

1
2 ,

2
3 and n = 1, 2, . . . , 40 of

Algorithm 2

n q = 1
3 q = 1

2 q = 2
3 n q = 1

3 q = 1
2 q = 2

3

1 11.909360 63.618604 664.767669 21 11.257063 49.065390 260.033372
2 11.468397 55.707508 474.800503 22 11.257063 49.065384 260.011354
3 11.326853 52.245122 384.795341 23 11.257063 49.065381 259.996678
4 11.280255 50.621828 336.326796 24 11.257063 49.065380 259.986893
5 11.264786 49.835472 308.146441 25 11.257063 49.065379 259.980371
6 11.259636 49.448420 290.958806 26 11.257063 49.065379 259.976023
7 11.257921 49.256401 280.150029 27 11.257063 49.065379 259.973124
8 11.257349 49.160766 273.216364 28 11.257063 49.065378 259.971192
9 11.257158 49.113041 268.710272 29 11.257063 49.065378 259.969903
10 11.257095 49.089202 265.756606 30 11.257063 49.065378 259.969044
11 11.257074 49.077288 263.809514 31 11.257063 49.065378 259.968472
12 11.257066 49.071333 262.521127 32 11.257063 49.065378 259.968090
13 11.257064 49.068355 261.666471 33 11.257063 49.065378 259.967836
14 11.257063 49.066867 261.098587 34 11.257063 49.065378 259.967666
15 11.257063 49.066123 260.720833 35 11.257063 49.065378 259.967553
16 11.257063 49.065751 260.469369 36 11.257063 49.065378 259.967478
17 11.257063 49.065564 260.301890 37 11.257063 49.065378 259.967427
18 11.257063 49.065471 260.190310 38 11.257063 49.065378 259.967394
19 11.257063 49.065425 260.115957 39 11.257063 49.065378 259.967371
20 11.257063 49.065402 260.066402 40 11.257063 49.065378 259.967357
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Example 1 Let J = [0, 1], τ1 and τ2 belongs to Lκ (J) and τ1(t) higher than or equal to posi-
tive real number m for all t ∈ J . Also, let

w(t, x1, x2, x3) = τ1(t) +
1

x2/5
1 – r

+
1

x1/4
2

+
1

x1/4
3

+
∣
∣τ2(t)

∣
∣
(
x2/5

1 + x1/4
2 + x1/4

3
)
,

on J × A with A = [0,∞) × [0,∞) × [0,∞), g1(u) = 1
u2/5–r whenever u2/5 ≥ r and g1(u) = 0

whenever u2/5 < r, g2(u) = 1
u1/4 , g3(u) = 1

u1/4 ,

w(x1, x2, x3) = x2/5
1 + x1/4

2 + x1/4
3 + 1

and γ (t) = τ1(t) + |τ2(t)|, where r = (af (1))2/5. Since w satisfies conditions (H1) and (H2),
Theorem 10 guarantees that problem (1) has a positive solution.

Example 2 In this example, we choose a problem similar to (1),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD9/4
q f (t) = t + 1 + 1

(f (t))2/5–λ
+ 1

(f ′(t))1/4 + 1
[(cD1/4

q f )(t)]1/4

+ 2(f (t)2/5 + f ′(t)1/4 + [(cD1/4
q f )(t)]1/4 + 1),

f (0) = 1
4 f (1),

f ′(0) = 1
3 (cD1/4

q f )(1),

f ′′(0) = f ′′′(0) = · · · = f (n–1)(0) = 0,

where λ = ( 1
4 f (1))1/3. here α = 9

4 ∈ (2, 3), with n = 3, β = 1
4 ∈ (0, 1), c1 = 1

4 ∈ (0, 1), c2 = 1
3 ∈

(0,Γq( 7
4 )) for all q ∈ (0, 1) and κ( 9

4 – 1) = 4
5 > 1. Then

w
(
t, f (t), f ′(t),

(cD1/4
q f

)
(t)

)
= t + 1 +

1
f (t)1/3 – λ

+
1

f ′(t)1/4

+
1

[(cD1/4
q f )(t)]1/4

+ 2
(
f (t)1/3 + r′(t)1/4 +

[cD1/4
q f (t)

]1/4 + 1
)
,

and w may be singular at t = 0 and satisfies conditions (H1) and (H2), for g1(h) = 1
h1/3–λ

whenever h1/3 – k ≥ 0 and g1(h) = 0 whenever h1/3 – λ < 0, g2(h) = 1
h1/4 , g3(h) = 1

h1/4 ,

w(x1, x2, x3) = x1/3
1 + x1/4

2 + x1/4
3 + 1

and τ1(t) = t + 1 > 1 = m, τ2(t) = 2 and γ (t) = τ1(t) + |τ2(t)|, Theorem 10 guarantees that
problem (1) has a positive solution. Now, we investigate the computational complexity of
Example 2 of Algorithm 6 and 7. Note that n in Algorithms 6 and 7 is used for calculating
Γq(x). Tables 4, 5 and 6 show the values of Λ1 and Λ2 for q = 1

3 , 1
2 and 3

4 , respectively, an
approximate result is obtained with less than four decimal places indicated by underlin-
ing.
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Algorithm 3 The proposed method for calculating (Dqf )(x)
Input: q ∈ (0, 1), f (x), x

1: syms z
2: if x = 0 then
3: g ← lim((f (z) – f (q ∗ z))/((1 – q)z), z, 0)
4: else
5: g ← (f (x) – f (q ∗ x))/((1 – q)x)
6: end if

Output: (Dqf )(x)

Algorithm 4 The proposed method for calculating (Iα
q f )(x)

Input: q ∈ (0, 1), α, n, f (x), x
1: s ← 0
2: for i = 0 to n do
3: pf ← (1 – qi+1)α–1

4: s ← s + pf ∗ qi ∗ f (x ∗ qi)
5: end for
6: g ← (xα ∗ (1 – q) ∗ s)/(Γq(x))

Output: (Iα
q f )(x)

Algorithm 5 The proposed method for calculating
∫ b

a f (r) dqr
Input: q ∈ (0, 1), α, n, f (x), a, b

1: s ← 0
2: for i = 0 : n do
3: s ← s + qi ∗ (b ∗ f (b ∗ qi) – a ∗ f (a ∗ qi))
4: end for
5: g ← (1 – q) ∗ s

Output:
∫ b

a f (r) dqr

Algorithm 6 The proposed method for calculating Λ1

Input: n, q ∈ (0, 1), c1, c2, α,β
1: for k = 0 to n do
2: s1 ← Γq(α – β) ∗ (B – c2) + c2 ∗ Γq(α) ∗ Γq(2 – β)
3: s2 ← (1 – c1) ∗ Γq(α) ∗ Γq(α – β) ∗ (Γq(2 – β) – c2)
4: s ← s1/s2

5: end for
Output: Λ1 = s

Algorithm 7 The proposed method for calculating Λ2

Input: n, q ∈ (0, 1), c1, c2, α,β
1: for k = 0 to n do
2: s1 ← c1 ∗ c2 ∗ Γq(2 – β)
3: s2 ← (1 – c1) ∗ Γq(α – β) ∗ (Γq(2 – β) – c2)
4: s ← s1/s2

5: end for
Output: Λ2 = s
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Table 4 Some numerical results for calculation of Λ1 and Λ2 with q = 1
3 and n = 1, 2, . . . , 12 of

Example 2

n Γq(2 – β) Γq(α – β) Γq(α) Λ1 Λ2

1 0.988977 1.038462 1.105539 –1.110973 –0.871523
2 0.968078 1.0125 1.074674 –1.146096 –0.90379
3 0.961333 1.004132 1.064736 –1.15789 –0.914692
4 0.959108 1.001374 1.061461 –1.16183 –0.918342
5 0.958369 1.000457 1.060373 –1.163145 –0.919561
6 0.958123 1.000152 1.060011 –1.163583 –0.919967
7 0.958041 1.000051 1.059891 –1.16373 –0.920103
8 0.958014 1.000017 1.05985 –1.163778 –0.920148
9 0.958005 1.000006 1.059837 –1.163794 –0.920163
10 0.958002 1.000002 1.059832 –1.1638 –0.920168
11 0.958001 1.000001 1.059831 –1.163802 –0.92017
12 0.958 1 1.05983 –1.163802 –0.92017

Table 5 Some numerical results for calculation of Λ1 and Λ2 with q = 1
2 and n = 1, 2, . . . , 19 of

Example 2

n Γq(2 – β) Γq(α – β) Γq(α) Λ1 Λ2

1 1.05421 1.142857 1.261962 –0.97516 –0.76776
2 0.996499 1.066667 1.165469 –1.062079 –0.845235
3 0.970276 1.032258 1.122114 –1.106468 –0.885437
4 0.957751 1.015873 1.101521 –1.128899 –0.905919
5 0.951628 1.007874 1.09148 –1.140174 –0.916256
6 0.9486 1.003922 1.086522 –1.145827 –0.921449
7 0.947094 1.001957 1.084058 –1.148657 –0.924052
8 0.946343 1.000978 1.08283 –1.150073 –0.925354
9 0.945968 1.000489 1.082217 –1.150782 –0.926006
10 0.945781 1.000244 1.081911 –1.151136 –0.926332
11 0.945687 1.000122 1.081758 –1.151313 –0.926495
12 0.945641 1.000061 1.081681 –1.151401 –0.926577
13 0.945617 1.000031 1.081643 –1.151446 –0.926618
14 0.945606 1.000015 1.081624 –1.151468 –0.926638
15 0.9456 1.000008 1.081614 –1.151479 –0.926648
16 0.945597 1.000004 1.081609 –1.151485 –0.926653
17 0.945595 1.000002 1.081607 –1.151487 –0.926656
18 0.945595 1.000001 1.081606 –1.151489 –0.926657
19 0.945594 1.000000 1.081605 –1.151489 –0.926658
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Table 6 Some numerical results for calculation of Λ1 and Λ2 with q = 3
4 and n = 1, 2, . . . , 30 of

Example 2

n Γq(2 – β) Γq(α – β) Γq(α) Λ1 Λ2

2 1.253179 1.462857 1.751525 –0.705095 –0.558789
3 1.149887 1.31114 1.536689 –0.807011 –0.644426
4 1.084407 1.216513 1.40468 –0.886016 –0.712105
5 1.040678 1.154047 1.318456 –0.946732 –0.764915
6 1.010469 1.111251 1.259837 –0.993102 –0.805725
7 0.989113 1.08118 1.218879 –1.028354 –0.83703
8 0.973772 1.059674 1.189708 –1.055062 –0.860912
9 0.962624 1.044098 1.168644 –1.075245 –0.879054
10 0.954455 1.032713 1.153282 –1.090469 –0.892792
11 0.948434 1.024335 1.141999 –1.101936 –0.903171
12 0.943976 1.018141 1.133666 –1.110563 –0.910997
13 0.940664 1.013544 1.127488 –1.117049 –0.916891
14 0.938198 1.010124 1.122894 –1.121923 –0.921325
15 0.936358 1.007574 1.119471 –1.125583 –0.924658
16 0.934984 1.00567 1.116915 –1.12833 –0.927162
17 0.933956 1.004246 1.115006 –1.130393 –0.929043
18 0.933187 1.003181 1.113578 –1.13194 –0.930455
19 0.932611 1.002384 1.112509 –1.133102 –0.931514
20 0.93218 1.001787 1.111708 –1.133973 –0.932309
21 0.931857 1.00134 1.111109 –1.134627 –0.932906
22 0.931615 1.001004 1.110659 –1.135117 –0.933354
23 0.931433 1.000753 1.110322 –1.135485 –0.933689
24 0.931297 1.000565 1.11007 –1.13576 –0.933941
25 0.931195 1.000423 1.10988 –1.135967 –0.93413
26 0.931118 1.000318 1.109738 –1.136122 –0.934272
27 0.931061 1.000238 1.109632 –1.136239 –0.934378
28 0.931018 1.000179 1.109552 –1.136326 –0.934458
29 0.930986 1.000134 1.109492 –1.136392 –0.934518
30 0.930961 1.0001 1.109447 –1.136441 –0.934562
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