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Abstract
In this paper, bifurcations and chaotic behaviours of Kopel oligopoly model with
different adjustment speed are discussed. The results imply that the Kopel oligopoly
model undergoes flip bifurcation, Neimark–Sacker bifurcation, 1:3 and 1:4 resonances,
which could induce complex dynamics, especially global behaviours between
different orbits. The conditions for the occurrence of three different kinds of
bifurcation are derived. Furthermore, the numerical simulations provide us the case
study of theoretical analysis and the corresponding dynamical behaviours, especially
the occurrence of global orbits.
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1 Introduction
In theory, there exist three types of market structure: perfect competition, oligopoly and
monopoly; oligopoly is popular in practice, especially duopoly. As the earliest economist
of oligopoly theory, Cournot [8] constructed the famous oligopoly model based on some
idealised assumptions and described the influences on each other from the viewpoint of
competition in production. The early oligopoly is criticised for the over idealised assump-
tions, but oligopoly theory has already been perfected gradually. Taking the agents’ learn-
ing mechanism into account, Kopel [17] proposed a revised Cournot model (known as
Kopel oligopoly model in this paper) for more reasonable interpretation of actual com-
petition between two oligopolists. The Kopel oligopoly model can be described as that in
the following map:

(
x
y

)
�→

(
(1 – ρ1)x + ρ1μ1y(1 – y)
(1 – ρ2)y + ρ2μ2x(1 – x)

)
, (1)

where x and y are the quantities of two oligopolists X and Y, respectively. ρ1(2) is called the
adjustment coefficients to allocate the weight between the previous production and the
optimal production according to the logistic reaction functions. μ1(2) is chosen to measure
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the intensity of the effect that the rival imposed on itself. Moreover, the existence and sta-
bility of “Nash-equilibria” are proved and invariant curve and strange attractor are plotted
to show the complexity of competition between the rivals. Many economists and applied
mathematicians studied the interests and dynamics of the Kopel oligopoly model with dif-
ferent methods. More attention was paid to bifurcation and chaos of map (1) by Agiza [1],
and OGY method was introduced to control the chaos for improving the market’s per-
formance. With the help of MATCONTM, a set of package on the basis of MATLAB de-
veloping platform, Govaerts and Khoshsiar Ghaziani [12] used the method of bifurcation
continuation to study the one (two)-parameter bifurcations. A revised Kopel oligopoly
model with extrapolative foresight was constructed by Gao, Zhong and Mei [11], and
Neimark–Sacker bifurcation analysis showed the complex dynamics and the transitions
between different dynamical systems. See more research about Kopel oligopoly model in
[3, 5, 10, 30, 31, 35].

As presented above in the related research, dynamical system theory was introduced
as an important tool to explore the dynamics in oligopoly theory. Colomobo and Labrec-
ciosa [6] considered different competition cases between multiple oligopolists and differ-
ent feedbacks, which corresponds to different types of equilibria (Cournot equilibrium
and Stackelberg equilibrium); they were proved to be efficient differently, especially in
the short-run terms and at the steady-state. Matouk, Elsadany and Xin [24] established a
quadropoly Cournot game model with heterogeneous players and complex dynamics, es-
pecially chaos; they were analysed through supercritical Neimark–Sacker bifurcation and
flip bifurcation at the fixed point. In [14], the authors introduced a kind of evolutionary
competition of Cournot oligopoly game and discussed the relations between the instabil-
ity threshold and the number of firms involved. Complex dynamics of Cournot model with
asymmetric information were investigated by Yu and Yu [36]. Bifurcation and chaos were
studied with respect to probability parameter θ . Furthermore, chaos control was carried
out to improve the performance for specific market. Ma, Yang and Liu [23] introduced
the carbon emission reduction constraint and analysed the influence on oligopolists. The
results show us that the new environmental regulation is a chance for expressing its wel-
fare implications and changing competitive status. For more systematic introduction and
recent advances, one can refer to [2, 4–7, 9, 18, 25–28, 32, 39]. In fact, bifurcation theory,
as one of the most powerful analytical tools, can be applied in many applied sciences, such
as economic models, predator–prey models, neural networks. One can find more useful
information on bifurcation analysis and the applications in [15, 16, 20–22, 29, 37, 38].

In this paper, we suppose that the influences between each other are the same and get
the following map:

(
x
y

)
�→

(
(1 – ρ1)x + ρ1μy(1 – y)
(1 – ρ2)y + ρ2μx(1 – x)

)
. (2)

When ρ1 = ρ2, some research was carried out and the dynamics derived showed the com-
plex and interesting economic interests. Here, we consider the more general case and
the corresponding dynamics. In this paper, the aim is to show that map (2) possesses
Neimark–Sacker bifurcation, 1:3 and 1:4 resonances, from which different types of dy-
namics for two agents are derived and that means the complex competition between them,
such as the occurrence of homoclinic behaviours. When discussing the Neimark–Sacker
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bifurcation, μ is chosen to illustrate the changes of output between each other. As for 1:3
and 1:4 resonances, another parameter ρ1 is introduced to analyse the dynamics, espe-
cially describing the transitions between different types of dynamical behaviours for two
agents. One can show that the analysis process is similar as that for ρ1 when parameter ρ2

is introduced.
This paper is outlined as follows. The existence and local dynamics of fixed points for

map (2) are investigated as the general case of results in [12], especially the conditions
of Neimark–Sacker bifurcation, 1:3 and 1:4 resonances in Sect. 2. In Sects. 3, 4 and 5, we
presented the deductions and discuss the conditions of occurrence and the corresponding
dynamics for Neimark–Sacker bifurcation, 1:3 and 1:4 resonances, respectively. Three case
studies are provided for the bifurcation analysis and some new and interesting phenomena
are observed in Sect. 5. Finally, a brief discussion including economic interest and further
research concludes the paper in Sect. 6.

2 Existence and stability of fixed points of map (2)
To get the explicit expressions of fixed points for map (2), we need to solve the following
equations:

⎧⎨
⎩x = μy(1 – y),

y = μx(1 – x).
(3)

After complex computations, we get the following results about fixed points of map (2)
as those in [17].

Lemma 2.1
(i) If μ > 0, there always exists a trivial fixed point E0(0, 0) for map (2);

(ii) If μ≥1, there always exists a positive fixed point E1(x1, y1) for map (2), where
x1 = y1 = 1 – 1

μ
;

(iii) If 1 < μ ≤ 3, there exists a fixed point E2(x2, y2) and its symmetric point E3(y2, x2) for

map (2), where x2 = μ+1+
√

μ2–2μ–3
2μ

and y2 = μ+1–
√

μ2–2μ–3
2μ

.

See Fig. 1 for numerical solutions. The solutions in red, blue, green and yellow colours
are E0, E1, E2 and E3 presented in the above lemma, respectively.

Figure 1 The existing solution with respect to μ



Li et al. Advances in Difference Equations         (2020) 2020:72 Page 4 of 18

The trivial fixed point E0 is of no interest in economics and the dynamics of E3 is similar
to E2. In this research, the dynamics of E1 and E2 are explored in detail. To investigate the
stability of E1 and E2, the following Jacobian matrix is derived respectively:

J(x, y) =

(
1 – ρ1 ρ1μ(1 – 2y)

ρ2μ(1 – 2x) 1 – ρ2

)
, (4)

and the corresponding characteristic equation is

F(E) = F(x, y) = λ2 – (2 – ρ1 – ρ2)λ + (1 – ρ1)(1 – ρ2) – μ2ρ1ρ2(1 – 2x)(1 – 2y) = 0

at E(x, y).

Lemma 2.2 Define μ0 =
√

1 + 4–2ρ1–2ρ2
ρ1ρ2

and for E0 of map (2):
(i) if 0 < μ < 1 and 2(ρ1 + ρ2) – 4 < ρ1ρ2(1 – μ2) < ρ1 + ρ2, it is a sink;

(ii) if μ = 1, it is nonhyperbolic and a fold bifurcation occurs at E0;
(iii) if ρ1 + ρ2 < 2 and 1 < μ < μ0, it is a saddle;
(iv) if ρ1 + ρ2 < 2 and μ = μ0, it is nonhyperbolic and a flip bifurcation occurs at E0.

Lemma 2.3 Define μ11 = 2 +
√

1 + 4–2ρ1–2ρ2
ρ1ρ2

, μ12 = 2 –
√

1 + 4–2ρ1–2ρ2
ρ1ρ2

and for E1 of map
(2):

(i) if 1 < μ < 3 and 2(ρ1 + ρ2) – 4 < ρ1ρ2(4μ – μ2 – 3) < ρ1 + ρ2, it is a sink;
(ii) if 1 < μ < 3 and ρ1ρ2(4μ – μ2 – 3) < 2(ρ1 + ρ2) – 4, it is a saddle;

(iii) if 1 < μ < 3 and max{2(ρ1 + ρ2) – 4,ρ1 + ρ2} < ρ1ρ2(4μ – μ2 – 3), it is a source;
(iv) if μ = 3, it is nonhyperbolic and a fold bifurcation occurs at E1;
(v) if μ = μ11(μ12), it is nonhyperbolic and a flip bifurcation occurs at E1.

When μ becomes bigger, different types of stability for E0(E1) occur. For the case of
fold bifurcation, some facts can be found in Lemma 2.1, that is, there exist two newborn
fixed points when μ varies in the neighbourhood of 1 or 3, respectively. For the case of
flip bifurcation, theoretical analysis and numerical simulation can be carried out as those
done in [12].

Lemma 2.4 Define μ21 = 1 +
√

4 + 2(ρ1+ρ2–2)
ρ1ρ2

, μ22 = 1 +
√

4 + 1
ρ1

+ 1
ρ2

and for E2 of map (2):
(i) if μ = 3, it is nonhyperbolic and a fold bifurcation occurs at E2;

(ii) if max{3,μ21} < μ < μ22, it is a sink;
(iii) if 3 < μ < μ21, it is a saddle;
(iv) if μ > max{3,μ21,μ22}, it is a source;
(v) if μ = μ21, it is nonhyperbolic and a flip bifurcation occurs at E2;

(vi) if μ = μ22, it is nonhyperbolic and a Neimark–Sacker bifurcation occurs at E2.
Moreover,
(vi1) if μ = μ22 and ρ1 = ρ10 := 3 – ρ2, a 1:3 resonance occurs at E2;
(vi2) if μ = μ22 and ρ1 = ρ11 := 2 – ρ2, a 1:4 resonance occurs at E2.

The occurrence of fold (flip) bifurcation of Lemma 2.4 is similar as the corresponding
cases of Lemma 2.3. Neimark–Sacker bifurcation is extremely interesting in economics,
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because that means the stable periodic behaviours for agents. We will pay more atten-
tion to Neimark–Sacker bifurcation and two important degenerate types, 1:3 and 1:4 res-
onances.

3 Neimark–Sacker bifurcation for E2

Based on case (vi) in Lemma 2.4, μ is chosen as a bifurcation parameter to analyse
Neimark–Sacker bifurcation and related dynamics at E2.

In what follows, we investigate the Neimark–Sacker bifurcation of E2 if the parameter
μ varies in the neighbourhood of μ22. We consider map (2) as follows:

(
x
y

)
�→

(
(1 – ρ1)x + ρ1μ22y(1 – y)
(1 – ρ2)y + ρ2μ22x(1 – x)

)
. (5)

Choosing μ̄ as a parameter for bifurcation analysis, we consider the following perturba-
tion map:

(
x
y

)
�→

(
(1 – ρ1)x + ρ1(μ22 + μ̄)y(1 – y)
(1 – ρ2)y + ρ2(μ22 + μ̄)x(1 – x)

)
, (6)

where |μ̄| � 1.
Let x̆ = x – x2 and y̆ = y – y2, (x2, y2) be transformed to the origin. Then we get the fol-

lowing map, which is topological equivalent to map (6):

(
x̆
y̆

)
�→

(
(1 – ρ1)x̆ + a20(μ̄)y̆ + ρ1y2(1 – y2)μ̄ – ρ1(μ22 + μ̄)y̆2

(1 – ρ2)y̆ + a21(μ̄)x̆ + ρ2x2(1 – x2)μ̄ – ρ2(μ22 + μ̄)x̆2

)
, (7)

where

a20(μ̄) = ρ1(1 – 2y2)(μ22 + μ̄),

a21(μ̄) = ρ2(1 – 2x2)(μ22 + μ̄).

The corresponding characteristic polynomial of Jacobian matrix for map (7) at the origin
is

λ2 + p(μ̄)λ + q(μ̄),

where

p(μ̄) = –2 + ρ1 + ρ2,

q(μ̄) = (1 – ρ1)(1 – ρ2) – ρ1ρ2(μ22 + μ̄)2(1 – 2x2)(1 – 2y2).

It is clear that the corresponding eigenvalues at the origin are λ and its conjugate λ̄,
where

λ, λ̄ = 1 –
ρ1 + ρ2

2
± i

2
√

4q(μ̄) – p2(μ̄),
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and there exist

|λ| =
√

q(μ2) = 1, l =
d|λ|
dμ̄

∣∣∣∣
μ̄=0

= –
ρ1 + ρ2

2
< 0.

Clearly, p(μ̄) = –2 + ρ1 + ρ2 < 0 �= 0, 1, then we have λn(μ2) �= 1, n = 1, 2, 3, 4.
Let

(
x̆
y̆

)
=

(
a20 0

3ρ1+ρ2
2

√
(ρ1+ρ2)(4–ρ1–ρ2)

2

)(
u
v

)
,

then map (7) becomes

(
u
v

)
�→

(
Re(λ) Im(λ)

– Im(λ) Re(λ)

)(
u
v

)
+

(
f (u, v)
g(u, v)

)
, (8)

where

Re(λ) = 1 –
ρ1 + ρ2

2
,

Im(λ) =
√

(ρ1 + ρ2)(4 – ρ1 – ρ2)
2

,

f (u, v) =
[
(3ρ1 + ρ2)u + 2 Im(λ)v

]2hns,

g(u, v) = –
(3ρ1 + ρ2)

2 Im(λ)
[
(3ρ1 + ρ2)u + 2 Im(λ)v

]2hns –
ρ2a2

20
Im(λ)

u2,

hns = –
μ22ρ1

4a20
,

and

fuu = (3ρ1 + ρ2)2hns, fvv = 4h Im2(λ), fuv = 4h(3ρ1 + ρ2) Im(λ),

guu = –
(3ρ1 + ρ2)3hns + 2ρ2a2

20
2 Im(λ)

, guv = –2(3ρ1 + ρ2)2hns,

gvv = –2hns(3ρ1 + ρ2) Im(λ),

fuvv = fvvv = fuuv = fvvv = guuu = guuv = guvv = gvvv = 0.

In order to undergo Neimark–Sacker bifurcation for map (2), the critical discriminatory
quantity is not zero [13, 34]:

ϑ =
[

– Re

(
(1 – 2λ)λ̄2

1 – λ
ξ20ξ11

)
–

1
2
|ξ11|2 – |ξ02|2

]∣∣∣∣
μ̄=0

, (9)

where

ξ20 =
1
8
[
fuu – fvv + 2guv + i(guu – gvv – 2fuv)

]
,
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ξ11 =
1
4
[
fuu + fvv + i(guu + gvv)

]
,

ξ02 =
1
8
[
fuu – fvv – 2guv + i(guu – gvv + 2fuv)

]
.

From the above analysis and the theorems in [13, 34], we get the following results.

Theorem 3.1 If μ = μ22 and ϑ �= 0, then map (2) undergoes a Neimark–Sacker bifurcation
at E2(x2, y2) when μ varies in the neighbourhood of μ22. Moreover, if ϑ < 0 (resp., ϑ > 0),
then an attracting (resp., repelling) invariant closed circle bifurcates from the fixed point
for μ > μ22 (resp., μ < μ22).

In the section of numerical simulations, some parameter values are chosen to show the
complex dynamics derived from the occurrence of Neimark–Sacker bifurcation. To un-
derstand the dynamics of Kopel oligopoly model fully, some two-parameter bifurcation
analysis is introduced as follows.

4 1:3 resonance for E2

In order to analyse the degenerate case of Neimark–Sacker bifurcation at E2, another pa-
rameter should be considered. Without loss of generality, we choose ρ1 as one of bifur-
cation parameters. Similarly, the following results about ρ1 can be gotten with respect to
ρ2. In this section, we choose ρ1 and μ as bifurcation parameters to present 1:3 resonance
analysis at E2(x2, y2). In the rest of the paper, inner product method is introduced to sim-
plify the transformation for normal form of different types of bifurcation.

Taking bifurcation parameters (ρ1,ρ2,μ2) arbitrarily from (ρ10,ρ2,μ2), we consider map
(2) with (ρ10,ρ2,μ2), which can be written as the following map:

(
x
y

)
�→

(
(1 – ρ10)x + ρ10μ22y(1 – y)
(1 – ρ2)y + ρ2μ22x(1 – x)

)
. (10)

There exist the eigenvalues λ1,2 = ±√
3i–1
2 , at E2(x2, y2) of map (10).

Now, we consider the perturbation map as follows:

(
x
y

)
�→

(
(1 – ρ1)x + ρ1μy(1 – y)
(1 – ρ2)y + ρ2μx(1 – x)

)
, (11)

where |ρ1 – ρ10|, |μ – μ22| � 1.
Let u = x – x2 and v = y – y2. Then we transform E2(x2, y2) to the origin (0, 0), and map

(11) becomes
(

u
v

)
�→

(
(1 – ρ1)u + ρ1(1 – 2y2)μv – ρ1μv2

(1 – ρ2)v + ρ2(1 – 2x2)μu – ρ2μu2

)
. (12)

In the following, we introduce coordinates transformation and the inner product
method to present our analysis in the critical case. Let b20 = ρ10(1 – 2y2)μ22 and use the
following transformation:

(
u
v

)
=

(
–b20 0

3
2 – ρ10 –

√
3

2

)(
x̃
ỹ

)
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for (12); then map (12) will be transformed to that as follows:

(
x̃
ỹ

)
�→

(
– 1

2

√
3

2
–

√
3

2 – 1
2

)(
x̃
ỹ

)

+
ρ10μ22

12b20

(
3[(3 – 2ρ10)x̃ –

√
3ỹ)]2

√
3(3 – 2ρ10)[(3 – 2ρ10)x̃ –

√
3ỹ)]2 + 8

√
3

ρ10
ρ2μ22b3

20x̃2

)
. (13)

The eigenvalues of linearization matrix of map (13) are ±√
3i–1
2 and their correspond-

ing eigenvector q(ρ10,μ22) = (1, i) ∈C
2. Furthermore, the adjoint eigenvector p(ρ10,μ22) =

( 1
2 , i

2 ) ∈C2, satisfying 〈p(ρ10,μ22), q(ρ10,μ22)〉 = 1, where 〈p, q〉 = p1q1 + p2q2.
Now arbitrary vector x ∈R

2 can be decomposed as the following form:

x = zq(ρ10,μ22) + zq(ρ10,μ22),

and map (13) can be rewritten as

z �−→
√

3i – 1
2

z +
∑
j+k=2

1
j!k!

gjk(ρ10,μ22)zjzk , (14)

where

g20 =
[

3(3 – 2ρ10)2 –
√

3(3 – 2ρ10)3i –
8
√

3i
ρ10

ρ2μ22b3
20

]
h,

g11 = 3h
(
(3 – 2ρ10)i –

√
3
)
(3 – 2ρ10),

g02 = 3h
(
3 –

√
3(3 – 2ρ10)i

)
,

h =
ρ10μ22

4b20
.

Here, we denote gjk(ρ11,μ22) with j + k = 2 by gjk with j+k = 2 for simplicity.
According to transformation analysis as in [20], map (14) finally becomes the following

normal form of 1:3 resonance:

ζ �→
√

3i – 1
2

ζ + B(ρ10,μ22)ζ 2 + C(ρ10,μ22)ζ ζ
2 + O

(|ζ |4), (15)

where

B(ρ10,μ22) =
g02

2
,

C(ρ10,μ22) =
g20g11(3 + 2

√
3i)

6
+

(3 –
√

3i)|g11|2
6

.

If B1(ρ10,μ22) = – 3
2 (

√
3i + 1)B(ρ10,μ22), C1(ρ10,μ22) = –3|B(ρ10,μ22)|2 – 3(1+

√
3i)

2 C(ρ10,
μ22), a similar argument as in Lemma 9.13 in [19] can be obtained.

Theorem 4.1 If B1(ρ10,μ22) Re(C1(ρ10,μ22)) �= 0, then there exist the following local and
global dynamics in the neighbourhood of E2 for map (15):
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(a) There exists a Neimark–Sacker bifurcation curve at the origin of map (15).
(b) There exists a saddle cycle of period-3 corresponding to three saddle fixed points of

map (15).
(c) There exists a homoclinic structure induced by the above period-3 cycle.

In Sect. 6, some parameter values are chosen to show the occurrence of 1:3 resonance
bifurcation. Local and global dynamics in the neighbourhood of 1:3 resonant point are
illustrated in a two-parameter plane.

5 1:4 resonance for E2

In this section, specific conditions for parameters derived to show that map (2) may
undergo 1:4 strong resonance [13, 34]. Taking parameters (ρ1,ρ2,μ) arbitrarily from
(ρ11,ρ2,μ22), we consider map (2) with (ρ11,ρ2,μ22), which is described by

(
x
y

)
�→

(
(1 – ρ11)x + ρ11μ22y(1 – y)
(1 – ρ2)y + ρ2μ22x(1 – x)

)
, (16)

and the eigenvalues of map (16) at E2(x2, y2) are λ1,2 = ±i.
Let u = x – x2 and v = y – y2, without confusion. Then we get the following map at the

origin, map (16) becomes

(
u
v

)
�→

(
(1 – ρ11)u + c20v – ρ11μ22v2

(1 – ρ2)v + c21u – ρ2μ22u2

)
, (17)

where

c20 = ρ11(1 – 2y2)μ22,

c21 = ρ2(1 – 2x2)μ22.

Let

(
u
v

)
=

(
–c20 0

1 – ρ11 –1

)(
x̃
ỹ

)
;

then map (17) becomes

(
x̃
ỹ

)
�→

(
0 –1
1 0

)(
x̃
ỹ

)
+

ρ11μ2

c20

(
[(1 – ρ11)x̃ – ỹ)]2

[(1 – ρ11)x̃ – ỹ)]2 – ρ2b3
20

ρ11
x̃2

)
. (18)

We have that the Jacobian matrix of map (18) at the origin has the eigenvalues λ1,2 =
±i and eigenvectors q1,2 = (1,∓i), respectively. As above, any vector (x, y)T ∈ R2 can be
rewritten as the complex form (x, y)T = zq + zq.

Then map (18) can be transformed to the complex form as follows:

z �→ iz + G(z, z,ρ11,μ22), (19)
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where

G(z, z,ρ11,μ22) =
∑

k+l=2

1
k!l!

ğklzkzl

and

ğ20 = –
c2

20μ22ρ2i
2

+
μ22ρ11(ρ11 – 1 – i)2(1 + i)

2c20
,

ğ11 = –c2
20μ22ρ2i +

μ22ρ11(ρ11 – 1 – i)(ρ11 – 1 + i)(1 + i)
c20

,

ğ02 = –
c2

20μ22ρ2i
2

+
μ22ρ11(ρ11 – 1 + i)2(1 + i)

2c20
.

Here, we denote ğij(ρ11,μ22) with i + j = 2, 3 by ğij with i + j = 2, 3 for simplicity, too.
According to transformation analysis as in [22], map (19) can be finally transformed to

the following form:

ζ �→ iζ + �21(ρ11,μ22)ζ 2ζ + �03(ρ11,μ22)ζ 3 + O
((|ζ | + |ζ |)4), (20)

where

�21(ρ11,μ22) =
1 + 3i

4
ğ20ğ11 +

1 – i
2

|ğ11|2 –
1 + i

4
|ğ02|2,

�03(ρ11,μ22) =
i – 1

4
ğ02ğ11 –

1 + i
4

ğ11ğ20.

Let C1(ρ11,μ22) = –4i�21(ρ11,μ22), D1(ρ11,μ22) = –4i�03(ρ11,μ22). If D1(ρ11,μ22) �= 0, we
denote A = C1(ρ11,μ22)

|D1(ρ11,μ22)| . By a similar argument as in Lemma 9.15 in [19], we can obtain the
following result.

Theorem 5.1 If D1(ρ11,μ22) �= 0, Re A(ρ11,μ22) �= 0 and Im A(ρ11,μ22) �= 0, then map (20)
contains four different types of bifurcation curves as follows:

(a) There exists a Neimark–Sacker bifurcation curve at the origin of map (20).
(b) There exist bifurcation curves of saddle-node and Neimark–Sacker at eight

nontrivial fixed points of map (20).
(c) There is a “square” heteroclinic cycle around the origin of map (20).

6 Numerical analysis
With the help of MATLAB, the critical coefficients of three kinds of bifurcations are com-
puted and different kinds of figures are plotted for map (2) in this section.

When ρ1 = 0.3, ρ2 = 0.8, μ = 1 +
√

1236
12 , we obtain a nontrivial positive fixed point

(0.899629235032409, 0.354841003016974) for map (2) from the third case of Lemma 2.1.
When μ = 1 +

√
1236
12 , Neimark–Sacker bifurcation occurs at (0.899629235032409,

0.354841003016974) and its eigenvalues are λ1,2 = 9
20 ±

√
319
20 i. Hence, there are |λ| = 1,

l = d|λ|
dμ

= –0.55 > 0 and ϑ = –9.7875.
From Figs. 2(a)–(d), complex dynamics are observed, such as fixed points, multi-period

orbits, (multiple) invariant closed orbits and chaotic orbits. See Fig. 3 for more informa-
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Figure 2 (a) Bifurcation diagram of map (2) in (μ, x) plane for ρ1 = 0.3, ρ2 = 0.8 and μ ∈ [3.8, 4.6]. The initial
point is (0.899, 0.354). (b) Bifurcation diagram of map (2) in (μ, x) plane corresponding to (a). (c) Local
amplification corresponding to (a) for μ ∈ [4.54.56]. (d) Local amplification corresponding to (b) for
μ ∈ [4.5, 4.56]. (e) Maximum Lyapunov exponents (MLE for short) corresponding to (a) and (b). (f) Local
amplification corresponding to (e)

tion. Especially, there exist “period bubbling” phenomena [33] when μ ∈ (4.4, 4.517) ∪
(4.537, 4.543) in Figs. 2(c)–(d). To show the stability clearly, we computed the maximum
Lyapunov exponents (MLE for short) and plotted them in Figs. 2(e) and (f ). The selected
phase portraits are displayed in Fig. 3, which illustrates the evolving process of closed
invariant circle. When μ = 4.347186, there exist a series of “small” closed orbits. When
μ = 4.4386, the closed invariant circle changes to a period-6 orbit, and the “period bub-
bling” phenomenon occurs.
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Figure 3 Phase portraits for different values of μ. (a) μ = 3.9517; (b) μ = 4.2863; (c) μ = 4.3091;
(d) μ = 4.3243; (e) μ = 4.3471; (f) μ = 4.3851; (g) μ = 4.4079; (h) μ = 4.4383; (i) μ = 4.3547; (j) μ = 4.5068;
(k) μ = 4.5220; (l) μ = 4.5600

When ρ1 = 1.2, ρ2 = 1.8, μ = 1 +
√

194
6 , we get a nontrivial positive fixed point

(0.827950951929977, 0.473127083912457) for map (2) from the third case of Lemma 2.1.
After computation, we obtain that the eigenvalues of Jacobian matrix of map (2) are
λ1,2 = –1±√

3i
2 with B1 = –50.2365 – 43.506i �= 0 and C1 = –1653.3 – 27.329i �= 0. There exist

1:3 resonance phenomena emerging from (0.827950951929977, 0.473127083912457).
When ρ1 = 1.2, ρ2 = 1.8, Fig. 4(a) shows the 2D bifurcation diagrams with the change

of μ. As the local amplification of 4(a), 4(b) is presented to show the occurrence of 1:3
resonance accurately. Corresponding MLE are illustrated in Fig. 4(c), and the red points
are computed when μ = 1 +

√
194
6 . When ρ1 = 1.5, ρ2 = 1.8, different dynamics appear, such

as the period-3 closed orbits, see Fig. 4(d). Related numerical results are showed through
the following analysis of phase diagrams in Fig. 5.
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Figure 4 (a) Bifurcation diagram of map (2) in (μ, y) space for ρ1 = 1.2, ρ2 = 1.8, the initial point is
(0.82795095, 0.47312708). (b) Local amplification for μ ∈ [3.321398, 3.3214] (c) MLE corresponding to (a).
(d) Bifurcation diagram of map (2) in (μ, x) space for ρ1 = 1.5, ρ2 = 1.8 the initial point is (0.82, 0.47).
(e) Bifurcation diagram of map (2) in (μ,ρ1, x) space for ρ2 = 1.8. (f) MLE corresponding to (e)

When ρ2 = 1.8 and (ρ1,μ) varies near (1.2, 3.3214), 3D bifurcation diagrams for map
(2) are displayed in Fig. 4(e). Because of the sensitive dependence on initial points for
map (2), 3D figures would not be provided as in the following case of 1:4 resonance.
The corresponding MLE presented in Fig. 4(f ) shows the complexity of dynamics clearly,
such as the onset of chaos and periodic orbits. We observe that the stable region of
corresponding fixed points shrinks when ρ1 increases. From Fig. 5(a), we can see that
(0.827950951929977, 0.473127083912457) becomes three fixed points through 1:3 res-
onance, and these three fixed points evolve to three stable invariant circles plotted in
Fig. 5(b), which eventually lead to chaotic orbits. When ρ1 = 1.05, μ = 3.3486, there exists
a saddle cycle of period-3 in Fig. 5(k). Furthermore, the corresponding saddle fixed points
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Figure 5 Phase portraits for different values of (ρ1,μ). (a) ρ1 = 1.2, μ = 3.3118; (b) ρ1 = 1.2, μ = 3.3148;
(c) ρ1 = 1.2, μ = 3.321495; (d) ρ1 = 1.2, μ = 3.3202; (e) ρ1 = 1.5, μ = 3.2964; (f) ρ1 = 1.5, μ = 3.2974;
(g) ρ1 = 1.5, μ = 3.2980; (h) ρ1 = 1.5, μ = 3.2990; (i) ρ1 = 1.35, μ = 3.3073; (j) ρ1 = 1.05, μ = 3.3475;
(k) ρ1 = 1.05, μ = 3.3486; (l) ρ1 = 0.9, μ = 3.3768

are three vertices of the triangle. In fact, a series of stable closed orbits are observed in
Fig. 5 when ρ1 = 0.9, μ = 3.3768. Homoclinic structure is illustrated in Fig. 5, which means
that different evolve direction leads to the same results.

When ρ1 = 1.4, ρ2 = 0.6, μ = 1+
√

2814
21 , we get a positive fixed point (0.860606075514091,

0.422997011561125) for map (2) from the third case of Lemma 2.1. After computation,
we obtain that the eigenvalues of Jacobian matrix of map (2) are λ1,2 = ±i when ρ1 = 1.4,
ρ2 = 0.6, and μ = 1+

√
2814
21 with C1 = –158.09–337.25i �= 0 and D1 = 72.9470–91.0586i �= 0.

When ρ1 = 1.4, ρ2 = 0.6, Fig. 6(a) is 2D bifurcation diagrams with the change of μ. When
ρ2 = 0.6 and ρ1, μ vary near (1.4, 3.5260), 3D bifurcation diagrams for map (2) are pre-
sented in Fig. 6(c). The corresponding MLE are presented in Figs. 6(b) and (d) to explore
the different kinds of stability at the fixed points of map (2). Moreover, 3D figures are pro-
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Figure 6 (a) Bifurcation diagram of map (2) in (μ, x) space for ρ1 = 1.4, ρ2 = 0.6 the initial value is (0.87, 0.4).
(b) MLE corresponding to (a). (c) Bifurcation diagram of map (2) in (μ,ρ1, x) space for ρ2 = 0.6 (d) MLE
corresponding to (b). (e) MLE corresponding to (b). (f) MLE corresponding to (e)

vided to show different kinds of stability when (ρ1,μ) ∈ [1.3, 1.5]× [3.55, 3.67]. White hole
in Fig. 6(f ) implies that MLE are smaller than 0.6, and orbits emerging from the hole will
converge to the corresponding fixed point. See related phase portraits are plotted in Fig. 7
for more information.

Figure 7 shows the phase portraits of map (2) induced by 1:4 resonance. From Fig. 7(a)–
(g), (0.860606075514091, 0.422997011561125) becomes period-4n (n = 1, 2, 4, 8) and
eventually becomes different shapes of a chaotic set, such as the shape of boots. In fact,
further investigation reveals that it is impossible for the points inside the chaotic region
to escape, see Fig. 7(h). Different types of strange attractors are presented to illustrate
complex dynamics in Fig. 7(i)–(l).
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Figure 7 Phase portraits for various values of (ρ1,μ) corresponding to Fig. 6. (a) ρ1 = 1.4, μ = 3.615;
(b) ρ1 = 1.4, μ = 3.639; (c) ρ1 = 1.4, μ = 3.667; (d) ρ1 = 1.4, μ = 3.668; (e) ρ1 = 1.6, μ = 3.5673; (f) ρ1 = 1.6,
μ = 3.5948; (g) ρ1 = 1.6, μ = 3.6448; (h) ρ1 = 1.2, μ = 3.6723; (i) ρ1 = 1.2, μ = 3.6873; (j) ρ1 = 1.2, μ = 3.7099;
(k) ρ1 = 1.2, μ = 3.7249; (l) ρ1 = 1, μ = 3.7224

7 Conclusion
In this research, we investigated complex dynamics of map (2) and concluded that Kopel
oligopoly model could undergo Neimark–Sacker bifurcation and the general cases, that is,
1:3 and 1:4 resonances. The critical normal form of bifurcation was introduced to carry out
bifurcation analysis for map (2). Complex dynamics observed from the presented phase
portraits implied that outputs of two oligopolists can oscillate in the multiple-period and
quasi-period or chaotic orbits.

Some symmetric phenomena and global orbits are observed in the case of 1:3 and 1:4
resonances. It is important to note that the symmetry illustrated by phase portraits is topo-
logically equivalent to that for the normal form of 1:3 resonance. The occurrence of ho-
moclinic orbits makes us believe that different ways and speeds of response may lead to
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the same state of oligopolist competition between two rivals. Map (2) is invariant under
the rotation P (P4 = I2) through the angle π

2 because of 1:4 resonance. In future, the cases
of different responses between oligopolists should be considered to explore the complex
dynamics, such as different competitive strategies, timing of play. Based on extensive data
collection and super computing power, empirical analysis will be potential research direc-
tion.

Acknowledgements
Not applicable.

Funding
This work was supported by the Tianyuan Fund for Mathematics of National Natural Science Foundation of China (Grant
No. 11626029), the National Science Foundation for Young Scientists of China (Grant No. 71804001), and the Planning
Project of Philosophy and Social Science Researches in Anhui Province (Grant No. AHSKQ2017D03).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally in this article. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 October 2019 Accepted: 6 February 2020

References
1. Agiza, H.N.: On the analysis of stability, bifurcation, chaos and chaos control of Kopel map. Chaos Solitons Fractals

10(11), 1906–1916 (1999)
2. Andaluz, J., Jarne, G.: Stability of vertically differentiated Cournot and Bertrand-type models when firms are

boundedly rational. Ann. Oper. Res. 238, 1–25 (2016)
3. Anderson, D.R., Myran, N.G., White, D.L.: Basin of attraction in Cournot duopoly model of Kopel. J. Differ. Equ. Appl.

11(10), 879–887 (2005)
4. Baiardi, L.C., Naimzada, A.K.: An oligopoly model with best response and imitation rules. Appl. Math. Comput. 336,

193–205 (2018)
5. Cánovas, J.S., Muñoz-Guillermo, M.: On the dynamics of Kopel’s Cournot duopoly model. Appl. Math. Comput. 330,

292–306 (2018)
6. Colombo, L., Labrecciosa, P.: Consumer surplus-enhancing cooperation in a natural resource oligopoly. J. Environ.

Econ. Manag. 92 185–193 (2018)
7. Colombo, L., Labrecciosa, P.: Stackelberg versus Cournot: a differential game approach. J. Econ. Dyn. Control 101,

239–261 (2019)
8. Cournot, A.: Researches into the Principles of the Theory of Wealth (Irwin Paper Back Classics in Economics).

Hachette, Paris (1963) (in English)
9. Elsadany, A.A.: Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization.

Appl. Math. Comput. 294, 253–263 (2017)
10. Elsadany, A.A., Awad, A.M.: Dynamical analysis and chaos control in a heterogeneous Kopel duopoly game. Indian J.

Pure Appl. Math. 47(4), 617–639 (2016)
11. Gao, X., Zhong, W.J., Mei, S.: Equilibrium stability of a nonlinear heterogeneous duopoly game with extrapolative

foresight. Math. Comput. Simul. 8, 2069–2078 (2012)
12. Govaerts, W., Khoshsiar Ghaziani, R.: Stable cycles in a Cournot duopoly model of Kopel. J. Comput. Appl. Math. 218,

247–258 (2008)
13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer,

Berlin (1983)
14. Hommes, C.H., Ochea, M.I., Tuinstra, J.: Evolutionary competition between adjustment processes in Cournot

oligopoly: instability and complex dynamics. Dyn. Games Appl. 8, 822–843 (2018)
15. Jiang, X.W., Ding, L., Guan, Z.H., Yuan, F.S.: Bifurcation and chaotic behavior of a discrete-time Ricardo–Malthus model.

Nonlinear Dyn. 71(3), 437–446 (2013)
16. Jiang, X.W., Zhang, X.S.: Stability and Neimark–Sacker bifurcation analysis for a discrete single genetic negative

feedback autoregulatory system with delay. Nonlinear Dyn. 76(2), 1031–1039 (2014)
17. Kopel, M.: Simple and complex adjustment dynamics in Cournot duopoly model. Chaos Solitons Fractals 7(12),

2031–2048 (1996)



Li et al. Advances in Difference Equations         (2020) 2020:72 Page 18 of 18

18. Kopel, M.: Improving the performance of an economic system: controlling chaos. J. Evol. Econ. 7, 269–289 (1997)
19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
20. Li, B., He, Q.Z.: Bifurcation analysis of a two-dimensional discrete Hindmarsh–Rose type model. Adv. Differ. Equ. 2019,

124 (2019)
21. Li, B., He, Z.M.: Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn. 76(1),

697–715 (2014)
22. Li, B., He, Z.M.: 1:2 and 1:4 resonances in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn. 79(1),

705–720 (2015)
23. Ma, J.H., Yang, W.H., Lou, W.D.: Research on bifurcation and chaos in a dynamic mixed game system with oligopolies

under carbon emission constraint. Int. J. Bifurc. Chaos 27(10), 1750158 (2017)
24. Matouk, A.E., Elsadany, A.A., Xin, B.G.: Neimark–Sacker bifurcation analysis and complex nonlinear dynamics in a

heterogeneous quadropoly game with an isoelastic demand function. Nonlinear Dyn. 89, 2533–2552 (2017)
25. Panchuk, A., Puu, T.: Oligopoly model with recurrent renewal of capital revisited. Math. Comput. Simul. 108, 119–128

(2015)
26. Pecora, N.: Analysis of 1:4 resonance in a monopoly model with memory. Chaos Solitons Fractals 110, 95–104 (2018)
27. Puu, T.: Oligopoly: Old Ends–New Means. Springer, Berlin (2011)
28. Puu, T.: Disequilibrium Economics. Springer, Cham (2018)
29. Ren, J.L., Yu, L.P.: Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J.

Nonlinear Sci. 26(6), 1895–1931 (2016)
30. Rionero, S., Torcicollo, I.: Stability of a continuous reaction-diffusion Cournot–Kopel duopoly game model. Acta Appl.

Math. 132, 505–513 (2014)
31. Torcicollo, I.: On the dynamics of a non-linear duopoly game model. Int. J. Non-Linear Mech. 57, 31–38 (2013)
32. Tremblay, C.H., Tremblay, V.J.: Oligopoly games and the Cournot–Bertrand model: a survey. J. Econ. Surv. 33(5),

1555–1577 (2019)
33. Vandermeer, J.: Period ‘bubbling’ in simple ecological models: pattern and chaos formation in a quartic model. Ecol.

Model. 95(2–3), 311–317 (1997)
34. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)
35. Wu, W.J., Chen, Z.Q., Ip, W.H.: Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic

model. Nonlinear Anal., Real World Appl. 11, 4363–4377 (2010)
36. Yu, W.S., Yu, Y.: The stability of Bayesian Nash equilibrium of dynamic Cournot duopoly model with asymmetric

information. Commun. Nonlinear Sci. Numer. Simul. 63, 101–116 (2018)
37. Yue, D.D., Guan, Z.H., Chen, J., Ling, G., Wu, Y.H.: Bifurcations and chaos of a discrete-time in genetic regulatory

networks. Nonlinear Dyn. 87, 567–586 (2017)
38. Yuri, A.K., Hil, G.E.M.: Numerical Bifurcation Analysis of Maps. Cambridge University Press, Cambridge (2019)
39. Zhang, Y.F., Gao, X.: Equilibrium selection of a homogeneous duopoly with extrapolative foresight. Commun.

Nonlinear Sci. Numer. Simul. 67, 366–374 (2019)


	Neimark-Sacker bifurcation and the generate cases of Kopel oligopoly model with different adjustment speed
	Abstract
	Keywords

	Introduction
	Existence and stability of ﬁxed points of map (2)
	Neimark-Sacker bifurcation for E2
	1:3 resonance for E2
	1:4 resonance for E2
	Numerical analysis
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Authors' information
	Publisher's Note
	References


