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Abstract
We revisit the persistence and stability property of a stage-structured prey–predator
model with cannibalism and constant attacking rate. By using the differential
inequality theory and Bendixson–Dulac criterion, we show that if the system without
cannibalism is permanent, then the system with cannibalism is also permanent. By
developing some new analysis technique, we obtain a new set of sufficient
conditions which ensure the global asymptotic stability of the nonnegative
equilibrium, which means that, under some suitable assumption, prey cannibalism
has no influence on the stability property of the predator free equilibrium. Our results
essentially improve the corresponding results of Limin Zhang and Chaofeng Zhang.
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1 Introduction
During the last decades, mathematical biology has become one of the important research
areas [1–40]. Specially, many scholars investigated the dynamic behaviors of the stage-
structured ecosystem, see [1–21, 39, 40], and the references cited therein.

In constructing the stage-structured model, some scholars [1–12] argued that a suitable
stage-structured model should incorporate time delay, which reflects the period it takes
to immature species to grow up to mature species. For example, Chen et al. [1] and Chen
et al. [2] studied the persistence and extinction property of a stage-structured predator–
prey system (stage structure for both predator and prey, respectively), they found that due
to the influence of stage structure, the extinction of predator species could not directly
imply the permanence of the prey species; the extinction of prey species could not lead
to the extinction of predator species. Such a phenomenon could not be observed in the
predator–prey system without stage structure. They argued that the reason maybe due to
the assumption of the system that the predator species has another food resource. Also,
Chen et al. [4] showed that due to the influence of the stage structure, the cooperative
system could be driven to extinction.
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Some scholars [13–21, 39, 40] also proposed and studied the stage-structured ecosystem
without time delay, they assumed that there are proportional numbers of immature species
that become mature species at time t. For example, Lei[16] proposed the following stage-
structured commensalism system:

dx1

dt
= αx2 – βx1 – δ1x1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 + dx2y,

dy
dt

= y(b2 – a2y).

(1.1)

He found that if the stage-structured species (i.e., the first species) is extinct, then, depend-
ing on the intensity of cooperation, the species may still be extinct or become persistent. If
the stage-structured species is permanent, then the final system is always globally asymp-
totically stable. Thus, he drew the conclusion that increasing the intensity of cooperation
between the species is one of the very useful methods to avoid the extinction of the endan-
gered species. Xu, Chaplain, and Davidson [40] proposed the following stage-structured
prey–predator model:

ẋ1(t) = b1x2 – gx1 – d1x1,

ẋ2(t) = gx1 – d2x2
2 –

a1x2y
my + x2

,

ẏ(t) =
(

a2x2

my + x2
– d3

)
y,

(1.2)

where x1(t) represents the density of immature individual preys at time t and x2(t) denotes
the density of mature individual preys at time t, y(t) represents the density of the predator
at time t. One could refer to [40] for more details about the construction of the system.
Concerned with the persistence property of the system, the authors obtained the following
result.

Theorem A System (1.2) is uniformly persistent provided that
(H1)

a2 > d3, (1.3)

(H2)

b1g
g + d1

>
a1

m
. (1.4)

Cannibalism, which is the act of eating offspring, is observed to occur in some fish [41]
and in some spiders [42]. Thus, incorporating cannibalism in the stage-structured models
is more realistic and has more practical significance for some cannibals. Based on the
work of Xu et al. [40], Zhang and Zhang [39] proposed the following stage-structured
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prey–predator model with cannibalism for prey and constant attacking rate for predator:

ẋ1(t) = b1x2 – gx1 – b2x1x2 – d1x1,

ẋ2(t) = gx1 + sb2x1x2 – d2x2
2 –

a1x2y
my + x2

,

ẏ(t) =
(

a2x2

my + x2
– d3

)
y,

(1.5)

where all the coefficients have the same meaning as that of system (1.2). b2 denotes the
cannibalism attacking rate of the mature prey population; s is the conversion rate of the
immature prey into the mature prey due to cannibalism, according to the biological mean-
ing, s < 1. Concerned with the persistence property of system (1.5), the authors obtained
the following result.

Theorem B System (1.5) is permanent provided that
(H3)

a2 > d3, (1.6)

(H4)

g
g + d1

> max

{
a1

b1m
, s

}
(1.7)

hold.

System (1.5) always admits a predator free equilibrium E1(x1, x2, 0), where

x1 =
b1x2

g + b2x2 + d1
, x2 =

–δ +
√

δ2 + 4b2d2gb1

2b2d2
, (1.8)

here δ = (g + d1)d2 – sb2.
Concerned with the stability property of the nonnegative equilibrium E1(x1, x2, 0), the

authors obtained the following result (Theorem 3.3 in [39]).

Theorem C Assume that
(H5)

a2 < d3, (1.9)

(H6)

g
g + d1

> max

{
a1

b1m
, s

}
(1.10)

hold, then the nonnegative equilibrium E1(x1, x2, 0) is globally asymptotically stable.

Here, several interesting issues are proposed as follows:
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1. Condition (1.7) is independent of coefficient b2; however, b2 denotes the
cannibalism attacking rate of the mature prey population. Hence, the condition of
Theorem B seems curious.

2. Comparing Theorems A and B, we found that to ensure permanence of system
(1.5), one needs to require

s <
g

g + d1
(1.11)

holds, what would happen if

s ≥ g
g + d1

(1.12)

holds?
3. Conditions (1.9) and (1.10) are independent of coefficient b2. Does b2 really have no

influence on the stability property of the nonnegative equilibrium?
4. In Theorem C, the authors only considered the case

s <
g

g + d1
, (1.13)

what would happen if

s ≥ g
g + d1

(1.14)

holds?
To find out the answer to the above issues, it seems better for us to consider some nu-

meric examples, which may give some hints.

Example 1.1 Consider the following system:

ẋ1(t) = 4x2 – 3x1 – 10x1x2 – x1,

ẋ2(t) = 3x1 +
1
2

10x1x2 – x2
2 –

2x2y
y + x2

,

ẏ(t) =
(

x2

y + x2
–

1
4

)
y.

(1.15)

Here, we choose b1 = 4, m = 1, s = 1
2 , d1 = 1, g = 3, a2 = 1, d3 = 1

4 , d2 = 1, b2 = 10. Hence,

a2 = 1 >
1
4

= d3,

g
g + d1

=
3

3 + 1
>

1
2

= max

{
a1

b1m
, s

}
.

(1.16)

That is, the conditions of Theorem B hold. Also, here we choose b2 = 10, which is very
large when compared to the other coefficients. Numeric simulations (Figs. 1–3) show that
in this case the system is permanent. Hence, we conjecture that the cannibalism attacking
rate of the mature prey population has no influence on the persistence property of the
system if the system without cannibalism is permanent.



Chen et al. Advances in Difference Equations         (2020) 2020:75 Page 5 of 20

Figure 1 Dynamic behaviors of the first species of system (1.10), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Figure 2 Dynamic behaviors of the second species of system (1.10), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Example 1.2 Consider the following system:

ẋ1(t) = 4x2 – x1 – x1x2 – x1,

ẋ2(t) = x1 +
3
4

x1x2 – x2
2 –

2x2y
2y + x2

,

ẏ(t) =
(

x2

2y + x2
–

1
4

)
y.

(1.17)
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Figure 3 Dynamic behaviors of the third species of system (1.10), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Here, we choose b1 = 4, m = 2, s = 3
4 , d1 = 1, g = 1, a2 = 1, d3 = 1

4 , d2 = 1, b2 = 1, a1 = 2,
hence

a2 = 1 >
1
4

= d3, (1.18)

g
g + d1

=
1

1 + 1
>

1
4

=
2

4 × 2
=

a1

b1m
. (1.19)

However,

g
g + d1

=
1

1 + 1
=

1
2

<
3
4

= s. (1.20)

That is, the conditions of Theorem A hold, while the second inequality in Theorem B
does not hold. Numeric simulations (Figs. 4–6) show that in this case the system is per-
manent.

Example 1.2 shows that maybe parameter s is not an essential coefficient to ensure the
permanence of system (1.5), while Example 1.1 shows that maybe parameter b2 is not an
essential coefficient to ensure the permanence of system (1.5). This leads us to making the
following conjecture.

Conjecture A Maybe in system (1.5) cannibalism has no influence on the persistence
property of the system.
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Figure 4 Dynamic behaviors of the first species of system (1.13), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Figure 5 Dynamic behaviors of the second species of system (1.13), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Example 1.3 Consider the following system:

ẋ1(t) = 4x2 – x1 – x1x2 – x1,

ẋ2(t) = x1 +
3
4

x1x2 – x2
2 –

2x2y
2y + x2

,

ẏ(t) =
(

1
2

x2

2y + x2
– 1

)
y.

(1.21)
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Figure 6 Dynamic behaviors of the third species of system (1.13), the initial condition
(x1(0), x2(0), y(0)) = (0.1, 0.2, 2), (0.2, 1, 4), and (0.5, 2, 3), respectively

Here, we choose b1 = 4, m = 2, s = 3
4 , d1 = 1, g = 1, a2 = 1

2 , d3 = 1
4 , d2 = 1, b2 = 1, a1 = 2,

d3 = 1, hence

a2 =
1
2

< 1 = d3, (1.22)

g
g + d1

=
1

1 + 1
=

1
2

>
1
4

=
2

4 × 2
=

a1

b1m
. (1.23)

However,

g
g + d1

=
1

1 + 1
=

1
2

<
3
4

= s. (1.24)

That is, the first inequality in Theorem C holds, while the second inequality in Theorem C
does not hold. Numeric simulations (Figs. 7–9) show that in this case the nonnegative
equilibrium E1(2.246211251, 2.246211251, 0) is still globally asymptotically stable.

Example 1.3 shows that maybe parameter s is not an essential coefficient to ensure the
stability of the nonnegative equilibrium of system (1.1). This leads us to proposing the
following conjecture.

Conjecture B In Theorem C, inequality (1.13) is not an essential one, maybe it is redun-
dant and could be dropped.

The aim of this paper is to give an affirmative answer to the above two conjectures.
Indeed, we will establish the following results.

Theorem 1.1 Assume that (H1) and (H2) hold, then system (1.5) is permanent.
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Figure 7 Dynamic behaviors of the immature prey species of system (1.7), the initial condition
(x1(0), x2(0), y(0)) = (3, 0.2, 2), (0.2, 1, 4), and (1, 2, 3), respectively

Figure 8 Dynamic behaviors of the mature prey species of system (1.7), the initial condition
(x1(0), x2(0), y(0)) = (3, 0.2, 2), (0.2, 1, 4), and (1, 2, 3), respectively

Remark 1.1 Compared with Theorem A, B, and 1.1, Theorem 1.1 shows that if the system
without cannibalism is permanent, then cannibalism has no influence on the persistence
property of the system.

Theorem 1.2 Assume that (H5) and (H2) hold, then the nonnegative equilibrium E1(x1,
x2, 0) of system (1.5) is globally asymptotically stable.



Chen et al. Advances in Difference Equations         (2020) 2020:75 Page 10 of 20

Figure 9 Dynamic behaviors of the predator species of system (1.7), the initial condition
(x1(0), x2(0), y(0)) = (3, 0.2, 2), (0.2, 1, 4), and (1, 2, 3), respectively

Remark 1.2 Compared with Theorem C and Theorem 1.2, our result shows that under
assumptions (H1)and (H ′

2) cannibalism has no influence on the stability property of the
boundary equilibrium of system (1.5).

We prove Theorems 1.1 and 1.2 in the next section and Sect. 3, respectively. We end this
paper with a brief discussion.

2 Proof of Theorem 1.1
Before we begin the proof of Theorem 1.1, we need to establish some useful lemmas.

We first introduce lemmas from [39], which give the upper bound of the solutions of
system (1.5).

Lemma 2.1 Any solutions of system (1.5) with positive initial conditions are ultimately
bounded.

Lemma 2.2 Consider the following system:

du1

dt
= b1u2 – gu1 – b2u1u2 – d1u1

def= f (u1, u2),

du2

dt
= gu1 + sb2u1u2 – d2u2

2 –
a1

m
u2

def= g(u1, u2).
(2.1)

Under the assumption of Theorem 1.1, system (2.1) admits a boundary equilibrium E0(0, 0),
which is a saddle point, and a positive equilibrium E∗(u∗

1, u∗
2), which is locally asymptoti-

cally stable and globally asymptotically stable.
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Proof The equilibria of system (2.1) satisfy the equations

b1u2 – gu1 – b2u1u2 – d1u1 = 0,

gu1 + sb2u1u2 – d2u2
2 –

a1

m
u2 = 0.

(2.2)

Obviously, under the assumption of Theorem 1.1, the system admits the boundary equi-
librium E0(0, 0) and the unique positive equilibrium E∗(u∗

1, u∗
2), where

u∗
1 =

b1u∗
2

b2u2 + d1 + g
, u∗

2 =
–δ2 +

√
δ2

2 – 4δ1δ3

2δ2
, (2.3)

where

δ1 = b2d2m, δ2 = md2(d1 + g) + b2(a1 – b1ms), δ3 = a1(d1 + g) – b1gm < 0.

The variation matrix of the continuous-time system (2.1) at an equilibrium solution
(u1, u2) is

J(u1, u2) =

(
fu1 (u1, u2) fu2 (u1, u2)
gu1 (u1, u2) gu2 (u1, u2)

)

=

(
–b2u2 – d1 – g –b2u1 + b1

b2u2s + g sb2u1 – 2d2u2 – a1
m

)
. (2.4)

Thus, at E0(0, 0)

J(0, 0) =

(
–(d1 + g) b1

g – a1
m

)
. (2.5)

Consequently, the characteristic equation is

λ2 +
(

d1 + g +
a1

m

)
λ + (d1 + g)

a1

m
– b1g = 0. (2.6)

Note that from condition (H2) one has

(d1 + g)
a1

m
– b1g < 0,

hence, Eq. (2.6) has one positive solution, that is, J(0, 0) has one positive eigenvalue, hence
E0(0, 0) is unstable.

At E∗(u∗
1, u∗

2)

J
(
u∗

1, u∗
2
)

=

(
–b2u∗

2 – d1 – g –b2u∗
1 + b1

b2u∗
2s + g sb2u∗

1 – 2d2u∗
2 – a1

m

)
.

Note that

tr
(
J
(
u∗

1, u∗
2
))

= –
b1u∗

2
u∗

1
–

gu∗
1

u∗
2

– d2u∗
2 < 0, (2.7)
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and

det
(
J
(
u∗

1, u∗
2
))

= b1
u∗

2
u∗

1

(
gu∗

1
u∗

2
+ d2u∗

2

)
–

(
–b2u∗

1 + b1
)(

b2u∗
2s + g

)

= b1
u∗

2
u∗

1

(
gu∗

1
u∗

2
+ d2u∗

2

)
– (d1 + g)

u∗
1

u∗
2

d2(u∗
2)2 + a1

m u∗
2

u∗
1

= b1g +
b1d2(u∗

2)2

u∗
1

– (d1 + g)d2u∗
2 – (d1 + g)

a1

m
.

Since

b1g – (d1 + g)
a1

m
> 0,

b1d2(u∗
2)2

u∗
1

– (d1 + g)d2u∗
2

= u∗
2

(
b1d2u∗

2
u∗

1
– (d1 + g)d2

)

= u∗
2
((

g + b2u∗
2 + d1

)
d2 – (d1 + g)d2

)
= b2

(
u∗

2
)2u∗

1 > 0,

then

det
(
J
(
u∗

1, u∗
2
))

> 0. (2.8)

It follows from (2.7) and (2.8) that both eigenvalues of J(u∗
1, u∗

2) have negative real parts;
consequently, this steady-state solution is locally asymptotically stable.

In what follows, we will take the idea and method of Wu and Chen[38] to investigate the
global asymptotic stability property of the positive equilibrium. We need to determine the
existence or non-existence of the limit cycle in the first quadrant.

For E∗(u∗
1, u∗

2), which is the unique stable equilibrium in the first quadrant, let AB be the
line segment of L1 : u1 = p and BC be the line segment of L2 : u2 = q, where A(p, 0), B(p, q),
C(0, q), and p, q are positive constants which satisfy p > u∗

1, and

max

{
sb2

d2
,

spm
a1

}
< q <

gp + d1p
b1

.

By simple calculation, we have

u̇1|AB = b1u2 – gp – b2pu2 – d1p|0≤u2≤q < 0,

u̇2|BC = gu1 + sb2u1q – d2q2 –
a1

m
q|0≤u1≤p < 0,

thus AB, BC are the transversals of system (2.1). It is not hard to check that OA, OC are
the transversals of system (1.1), and any trajectory enters region OABCO from its exterior
to interior.
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Let G = 1
u1u2

, it follows from (2.1) that

∂Gf
∂u1

+
∂Gg
∂u2

= –
d2u1u2

2 + b1u2
2 + gu2

1
u2

1u2
2

< 0.

By Poincare–Bendixson theorem, there are no limit cycles in the first quadrant, thus
E∗(x∗

1, x∗
2) is globally asymptotically stable if it exists. This ends the proof of Lemma 2.2. �

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Let (x1(t), x2(t), y(t)) be any positive solution of system (1.5), its ini-
tially condition is (x1(0), x2(0), y(0)). From system (1.5) it immediately follows that

ẋ1(t) = b1x2 – gx1 – b2x1x2 – d1x1,

ẋ2(t) ≥ gx1 + sb2x1x2 – d2x2
2.

(2.9)

Now let us consider the following auxiliary system:

du1

dt
= b1u2 – gu1 – b2u1u2 – d1u1,

du2

dt
= gu1 + sb2u1u2 – d2u2

2 –
a1

m
u2.

(2.10)

Let (u1(t), u2(t)) be the positive solution of system (2.10) that satisfies the initial condition
(u1(0), u2(0)) = (x1(0), x2(0)). Then, by the standard comparison argument, it follows that

x1(t) ≥ u1(t), x2(t) ≥ u2(t). (2.11)

It follows from Lemma 2.2 that under the assumption of Theorem 1.1 system (2.10) admits
a unique positive equilibrium E∗(u∗

1, u∗
2) which is globally asymptotically stable. That is,

lim
t→+∞ u1(t) = u∗

1, lim
t→+∞ u2(t) = u∗

2. (2.12)

Therefore, for ε > 0 small enough, without loss of generality, we may assume that

ε <
1
2

min
{

u∗
1, u∗

2
}

.

There exists T > 0 such that, for all t ≥ T ,

u1(t) ≥ u∗
1 –

ε

2
, u2(t) ≥ u∗

2 –
ε

2
. (2.13)

Combining with (2.11) and (2.13) leads to

x1(t) ≥ u∗
1 –

ε

2
, x2(t) ≥ u∗

2 –
ε

2
. (2.14)

Hence,

lim
t→+∞ x1(t) ≥ 1

2
u∗

1, lim
t→+∞ x2(t) ≥ 1

2
u∗

2. (2.15)
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It follows from (2.14) that, for T large enough, x2(t) ≥ 1
2 u∗

2. This, together with the third
equation of system (1.5), leads to

ẏ ≥
( a2

u∗
2

2

my + u∗
2

2

– d3

)
y, (2.16)

from (2.16) one could easily obtain that

lim inf
t→+∞ y(t) ≥ u∗

2(a2 – d3)
2md3

. (2.17)

Lemma 2.1, (2.15), and (2.17) show that system (1.5) is permanent under assumptions (H1)
and (H2), this ends the proof of Theorem 1.1. �

3 Proof of Theorem 1.2
We first establish several lemmas which will be used in the proof of Theorem 1.2.

Lemma 3.1 Consider the following system:

du1

dt
= b1u2 – gu1 – b2u1u2 – d1u1,

du2

dt
= gu1 + sb2u1u2 – d2u2

2 – γ u2.
(3.1)

Assume that

g
g + d1

>
γ

b1

holds, then system (3.2) admits a boundary equilibrium E0(0, 0), which is a saddle point,
and a positive equilibrium E∗(u∗

1, u∗
2), which is locally asymptotically stable and globally

asymptotically stable.

Proof The proof of this lemma is similar to the proof of Lemma 2.2, with some minor
revision, and we omit the details here. �

Lemma 3.2 Consider the following system:

du1

dt
= b1u2 – gu1 – b2u1u2 – d1u1,

du2

dt
= gu1 + sb2u1u2 – d2u2

2.
(3.2)

System (3.2) admits a globally asymptotically stable positive equilibrium E∗(x1, x2), where
x1, x2 is defined by (1.2).

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2 Let (x1(t), x2(t), y(t)) be a positive solution of system (1.5) with initial
conditions x1(0) > 0, x2(0) > 0, y(0) > 0.
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It follows from the third equation of system (1.1) that

ẏ ≤ y(a2 – d3), (3.3)

hence

y(t) ≤ y(0) exp
{

(a2 – d3)t
}

.

Thus, under the assumption a2 < d3, we have

lim
t→+∞ y(t) = 0. (3.4)

From the first two equations of system (1.5), we have

ẋ1(t) = b1x2 – gx1 – b2x1x2 – d1x1,

ẋ2(t) ≤ gx1 + sb2x1x2 – d2x2
2.

(3.5)

Now let us consider the following auxiliary equation:

u̇1(t) = b1u2 – gu1 – b2u1x2 – d1u1,

u̇2(t) = gu1 + sb2u1u2 – d2u2
2.

(3.6)

By Lemma 3.2, system (3.6) has a unique globally attractive positive equilibrium E∗(x1, x2).
Let (u1(t), u2(t)) be the solution of system (3.6) with (u1(0), u2(0)) = (x1(0), x2(0)), by com-
parison theorem, we have

xi(t) ≤ ui(t). (3.7)

Moreover, from the global asymptotic stability of E2(x1, x2), for any small enough given ε

(0 < ε < 1), there exists T1 > 0 such that

∣∣ui(t) – xi
∣∣ < ε for all t ≥ T1. (3.8)

Equation (3.8) combined with (3.7) leads to

xi(t) ≤ xi + ε for all t ≥ T1. (3.9)

Hence,

lim sup
t→+∞

xi(t) ≤ xi + ε. (3.10)

Since ε is arbitrary small enough positive constant, setting ε → 0 in (3.10) leads to

lim sup
t→+∞

xi(t) ≤ xi. (3.11)
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From the first two equations of system (1.5), we also have

ẋ1(t) = b1x2 – gx1 – b2x1x2 – d1x1,

ẋ2(t) ≥ gx1 + sb2x1x2 – d2x2
2 –

a1x2

m
.

Now let us consider the following auxiliary equation:

v̇1(t) = b1v2 – gv1 – b2v1v2 – d1v1,

v̇2(t) = gv1 + sb2v1v2 – d2v2
2 –

a1v2

m
.

(3.12)

From (1.4) and Lemma 3.1, system (3.12) has a unique globally attractive positive equi-
librium E∗(v∗

1, v∗
2). Let (v1(t), v2(t)) be the solution of system (3.12) with (v1(0), v2(0)) =

(x1(0), x2(0)), by comparison theorem, we have

xi(t) ≥ vi(t). (3.13)

Moreover, from the global asymptotic stability of E∗(v∗
1, v∗

2), for any small enough given ε

(0 < ε < 1
2 v∗

i ), there exists T2 > T1 such that

∣∣vi(t) – v∗
i
∣∣ < ε for all t ≥ T2. (3.14)

Equation (3.14) combined with (3.13) leads to

xi(t) ≥ v∗
i – ε >

v∗
i

2
for all t ≥ T2. (3.15)

For any small enough positive constant ε1 (0 < ε1 < a1
m ), from (3.4) and (3.15), there exists

T3 > T2 such that, for all t ≥ T3,

a1y(t)
my(t) + x2(t)

< ε1 (3.16)

holds. From (3.16) and the first and second equations of system (1.5), we have

ẋ1(t) = b1x2 – gx1 – b2x1x2 – d1x1,

ẋ2(t) ≥ gx1 + sb2x1x2 – d2x2
2 – ε1x2.

(3.17)

Now let us consider the following auxiliary equation:

ẇ1(t) = b1w2 – gw1 – b2w1w2 – d1w1,

ẇ2(t) = gw1 + sb2w1w2 – d2w2
2 – ε1w2.

(3.18)

Condition (1.4) implies that

g
g + d1

>
ε1

b1
. (3.19)
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Hence, by Lemma 3.1, system (3.18) has a unique globally attractive positive equilibrium
Eε1 (wε1

1 , wε1
2 ), where

w∗ε1
1 =

b1wε1
2

b2wε1
2 + d1 + g

, w∗ε1
2 =

–δ1 +
√

δ2
1 – 4b2d2(–b1g + ε1(d1 + g))

2b2d2
, (3.20)

where δ1 = –b1b2s + b2ε1 + d2(d1 + g). Obviously,

δ1 → δ as ε1 → 0, (3.21)

where δ is defined by (1.8), and

–4b2d2
(
–b1g + ε1(d1 + g)

) → 4b2d2b1g as ε1 → 0. (3.22)

Hence, it follows from (3.20)–(3.22) that

w∗ε1
1 → x1, w∗ε1

2 → x2 as ε1 → 0, (3.23)

where x1, x2 are defined by (1.8).
Let (w1(t), w2(t)) be the solution of system (3.18) with (w1(0), w2(0)) = (x1(0), x2(0)). By

the comparison theorem, we have

xi(t) ≥ wi(t). (3.24)

Moreover, from the global asymptotic stability of Eε1 (w∗ε1
1 , w∗ε1

2 ), for above ε1, there exists
T3 > T2 such that

∣∣wi(t) – w∗ε1
i

∣∣ < ε1 for all t ≥ T3. (3.25)

Equation (3.24) combined with (3.25) leads to

xi(t) ≥ w∗ε1
i – ε1 for all t ≥ T3. (3.26)

Hence,

lim inf
t→+∞ xi(t) ≥ w∗ε1

i – ε1. (3.27)

Since ε1 is arbitrary small enough positive constant, setting ε1 → 0 in (3.27), it follows
from (3.23) that

lim inf
t→+∞ xi(t) ≥ xi. (3.28)

Equation (3.11) together with (3.27)leads to

xi ≤ lim inf
t→+∞ xi(t) ≤ lim sup

t→+∞
xi(t) ≤ xi.
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That is,

lim
t→+∞ xi(t) = xi, i = 1, 2. (3.29)

Equation (3.4) and (3.29) show that the nonnegative equilibrium E1(x1, x2, 0) of system
(1.5) is globally asymptotically stable. This ends the proof of Theorem 1.2. �

4 Conclusion
Based on the work of Xu et al. [40], Zhang and Zhang [39] tried to incorporate the can-
nibalism to system (1.1), and they proposed system (1.5). By constructing some suitable
Lyapunov function, they obtained the conditions (Theorem B) which ensure the perma-
nence of system (1.5). The condition is independent of b2, which leads us to finding out
the reason behind this phenomenon. By numeric simulations (Example 1.1 and 1.2), we
found that maybe both coefficients b2 and s have no influence on the persistence property
of the system. Indeed, we propose a conjecture (Conjecture A). Obviously, one could not
prove this conjecture by directly applying the method of [39, 40]. By developing the anal-
ysis technique of Wu et al. [13], we finally give a strict proof of Theorem 1.1. Obviously,
Theorem 1.1 essentially improves the main result of [39] since our condition is cannibal-
ism independent, which means that if the original system is permanent, then cannibalism
has no influence on the persistence property of the system.

Concerned with the stability property of the predator free equilibrium, Zhang and
Zhang[39] obtained Theorem C, which is cannibalism dependent. However, numeric sim-
ulations (Example 1.3) show that their result still has room to improve. We first propose
a conjecture (Conjecture B), then, by developing the analysis technique of differential in-
equality theory, we finally establish some new result about the stability property of the
predator free equilibrium, some unnecessary restriction of Theorem C is dropped. Ob-
viously, Theorem 1.2 essentially improves the main result of [39] since our condition is
cannibalism independent, which means that if inequalities (H5)and (H2) hold, cannibal-
ism has no influence on the persistence property of the system.
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