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Abstract
This article investigates a modified adaptive sliding-mode controller to achieve
synchronisation between two different fractional-order chaotic systems with fully
unknown parameters. A suitable parameter updating law is designed to tackle the
unknown parameters. For constructing the modified adaptive sliding-mode control, a
simple sliding surface is designed and the stability of the suggested method is
proved using Lyapunov stability theory. Finally, the proposed method is applied to
gain chaos synchronisation between two different pairs of fractional-order chaotic
systems with uncertain parameters. Numerical simulations are performed to
demonstrate the robustness and efficiency of the proposed method.
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1 Introduction
The essence of studying chaotic systems is to understand their structure and behaviour.
These systems are deemed important as their study links between science and nature. One
way to obtain a perspective glimpse of their complex dynamics is through their chaos con-
trol. However, chaos control is almost always an impossible task. This fact is due to the
systems’ unpredictable behaviour and sensitivity towards initial conditions. Hence, many
arbitrary assumptions are necessary to achieve control in practical engineering problems,
but this also implies a loss of important information. Systems characterised by a fractional
order have attracted much attention in recent years. The ability of fractional-order mod-
elling is to describe, mathematically and physically, phenomena of our real-world more
rationally and carefully than the classical integer-order calculus [1–3], which has made
them particularly well suited to research into nonlinear systems, particularly in physics
and biology. Many phenomena show fractional-order dynamics, such as viscoelasticity
and the polarisation of the dielectric as well as electrode-electrolyte [4, 5]. The synchroni-
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sation of fractional-order chaotic systems has been documented extensively and has been
the centre of interest in recent years, given its potential applicability to diverse fields of
physics and engineering sciences such as cryptography, information processing, chemical
reactions and biological systems [6].

Various control techniques have been proposed for controlling and synchronising
fractional-order chaotic systems; for instance in [7] the authors extended the applications
of adaptive control to anti-synchronise different fractional-order chaotic and hyperchaotic
dynamical systems. New results on adaptive synchronisation design for chaotic Arneodo
system of incommensurate fractional order with unknown parameters based on the Lya-
punov stability theory were introduced in [8]. The finite time robust synchronisation prob-
lem of a class of uncertain fractional chaotic/hyper-chaotic systems with a novel fractional
sliding mode control technique was investigated in [9]. A novel fractional-order fuzzy slid-
ing mode control strategy was developed to realise the deployment of the tethered satellite
system (TSS) with input saturation in [10]. A novel robust predictive control strategy was
proposed for the synchronisation of fractional-order time-delay chaotic systems in [11].
A new robust optimal control strategy was presented to synchronise a class of fractional-
order chaotic systems with unknown fractional orders and uncertain dynamics, and input
nonlinearities were proposed in [12]. A new technique using a recurrent non-singleton
type-2 sequential fuzzy neural network for synchronisation of the fractional-order chaotic
systems with time-varying delay and uncertain dynamics was presented in [13]. The ro-
bust stochastic stabilisation problem for a class of fuzzy Markovian jump systems with
time-varying delay and external disturbances via sliding mode control scheme was stud-
ied in [14]. The synchronisation issue for a family of time-delayed fractional-order com-
plex dynamical networks (FCDNs) with time delay, unknown bounded uncertainty and
disturbance was investigated in [15].

Fortunately, some existing methods for synchronising integer-order systems can be rig-
orously generalised to fractional-order systems. However, in practical engineering situa-
tions, system parameters are often unknown and variable. Therefore, there is much in-
terest in effectively synchronising two fractional-order chaotic systems of undetermined
parameters. This is very significant for both theoretical and practical research. Among
the aforementioned methods, the adaptive sliding-mode control strategy is an efficient
control method for synchronising fractional-order chaotic systems when some or all the
system parameters are unknown. The fundamental features of this strategy include its fast
response, robustness against perturbations, good transient performance and ease of im-
plementation in real applications. The main contributions of this paper are: a technique for
synchronising fractional-order chaotic systems which will serve the purpose of synchro-
nisation of fractional-order as well as integer-order chaotic systems; a modified adaptive
sliding-mode synchronisation approach that is relevant to fractional-order chaotic sys-
tems with unknown parameters; synchronisation controller and parameter-identification
technique are designed based on the Lyapunov stability method to achieve the synchro-
nisation of two different pairs of fractional-order chaotic systems using the proposed
method. Computer simulations based on the Adams–Bashforth–Moulton method sup-
port the theoretical findings.

This paper is organised as follows: Sect. 2 describes the fractional calculus and its prop-
erties. Section 3 presents a step-by-step methodology for the proposed modified adaptive
sliding-mode synchronisation controller design of fractional-order chaotic systems with
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unknown parameters. Two simulation examples are given to demonstrate the effective-
ness of the proposed synchronisation schemes in Sects. 4, 5. Finally, a conclusion in Sect. 6
closes the work.

2 Fractional calculus and its properties
The concept of an integer-order integro-differential operator can be extended by the
fractional-order integro-differential operator using a generalisable formulation, that is,

aDp
t =

⎧
⎪⎪⎨

⎪⎪⎩

dp

dtp p > 0,

1 p = 0,
∫ t

a (dτ )–p p < 0,

(1)

where p is the fractional order which could be a complex number, and a, t symbolise the
limits of the operation. There are many definitions of the fractional integral and derivative
which have been used in the recent literature, precisely, the following three definitions:
Grünwald–Letnikov, Riemann–Liouville and Caputo. The current study dealt with the
Riemann–Liouville definition [16, 17], which was given by

aDp
t f (t) =

dm

dtm Jm–p
t f (t), p > 0, (2)

where m = �p�, J is the fractional Riemann–Liouville integral and

Jϕ
t φ(t) =

1
Γ (ϕ)

∫ t

0

φ(υ)
(t – υ)1–ϕ

dυ, (3)

with 0 < ϕ ≤ 1 and Γ (·) is the gamma function. For r > n ≥ 0, p and q are integers such
that 0 ≤ p – 1 ≤ r < p and 0 ≤ q – 1 ≤ n < q. Then

aDr
t
(

aD–m
t f (t)

)
= aDr–m

t f (t). (4)

For r, m ≥ 0, there exist integers p and q such that 0 ≤ p – 1 ≤ r < p and 0 ≤ q – 1 ≤ m < q.
Then

aDr
t
(

aDm
t f (t)

)
= aDr+m

t f (t) –
m∑

j=1

[
aDm–j

t f (t)
]

t=a
(t – a)–r–j

Γ (1 – r – j)
. (5)

3 Modified adaptive sliding-mode synchronisation of fractional-order chaotic
systems with unknown parameters

Consider a drive system of the form

Dp
t x = f (x) + F(x)φ, (6)

where x ∈ Rn is the state vector of the drive system, f : Rn → Rn is a continuous vector
function, F : Rn → Rn×d is a matrix function, and φ ∈ Rd is a parameter vector. The con-
trolled response system is given by

Dp
t y = g(y) + G(y)θ + U , (7)
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where y ∈ Rn is the state vector of the response system, g : Rn → Rn is a continuous func-
tion, G : Rn → Rn×k is a matrix function, θ ∈ Rk is a parameter vector and U ∈ Rn is a
controller. The dynamics of the synchronisation errors can be expressed as

Dp
t e(t) = g(y) + G(y)θ – f (x) – F(x)φ + U , (8)

where e = y – x. Our aim is to design an adaptive sliding-mode controller U that makes
states of the response system follow those of the drive system asymptotically, so that

lim
t→∞‖e‖ = lim

t→∞
∥
∥y(t, y0) – x(t, x0)

∥
∥ = 0, (9)

where ‖·‖ denotes the Euclidean norm. In accordance with the design strategy for adaptive
sliding-mode control, we choose an input signal vector as follows:

U = f (x) + F(x)φ – g(y) – G(y)θ + Dp–1
t

[

F(x)(φ̂ – φ) – g(y) – G(y)(θ̂ – θ )

–
(
Dp–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))
– w(t)K

]

, (10)

where φ̂, θ̂ are the estimated system parameters and K > 0 is a positive gain vector. Sub-
stituting a particular expression for U into the error dynamics (8) yields a form that is
convenient for the forthcoming stability analysis:

Dp
t e(t) = Dp–1

t

[

F(x)(φ̂ – φ) – G(y)(θ̂ – θ ) –
(
Dp–1

t e(t)
)

(t)–(p–1)–1

Γ (–(p – 1))
– w(t)K

]

, (11)

where the control input is defined as

w(t) =

⎧
⎨

⎩

w+(t) s(e) ≥ 0,

w–(t) s(e) < 0
(12)

and s = s(e) is a switching surface that forms the desirable sliding dynamics. The sliding
surface can be defined as

s(e) = Ce, (13)

where C is a positive constant. The following two conditions must be fulfilled on the sliding
surface:

s(e) = 0 and ṡ(e) = 0. (14)

The second condition is indispensable to constrain the state trajectory to remain on the
switching surface defined by s(e) = 0. According to sliding-mode control theory, the sliding
mode controller is designed as

w(t) =
[

s
|s| + γ

]

, (15)
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where γ is a positive real number. The resultant error dynamics then follows:

Dp
t e(t) = Dp–1

t

[

F(x)φ̃ – G(y)θ̃ –
(
Dp–1

t e(t)
)

(t)–(p–1)–1

Γ (–(p – 1))
– w(t)K

]

. (16)

The laws for updating parameters can be specified as follows:

˙̃α = –
[
F(x)

]T
λ,

˙̃
β =

[
G(y)T]

λ, (17)

where λ = sCT . The following theorem introduces the necessary conditions for verifying
the stability of the error system in (16).

Theorem 1 Consider the error dynamics (16) for a system controlled by U in (10) and
following the parameter-update laws in (17). The error system is then stabilised at its equi-
librium.

Proof Form a Lyapunov function as follows:

V =
1
2
[
s2 + φ̃T φ̃ + θ̃T θ̃

]
, (18)

where φ̃ = φ̂ – φ and θ̃ = θ̂ – θ . The time derivative of (18) is

V̇ =
[
sėT CT + φ̃T ˙̃

φ + θ̃T ˙̃
θ
]
. (19)

Using (5) in (19), we obtain

V̇ = s
[

Dp–1
t

(
Dp

t e
)

+
(
Dp–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))

]T

CT + φ̃T ˙̃
φ + θ̃T ˙̃

θ . (20)

From (16) and (19), we obtain

V̇ = s
[

Dp–1
t

(

Dp–1
t

[

F(x)φ̃ – G(y)θ̃ –
(
Dp–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))

–
s

|s| + γ
K

])

+
(
Dp–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))

]T

CT + φ̃T ˙̃
φ + θ̃T ˙̃

θ (21)

since ∀p ∈ [0, 1], (1 – p) > 0 and (p – 1) < 0. Now, using (4) and (17), (21) reduces to

V̇ = s
[(

F(x)φ̃ – G(y)θ̃ –
(
Dq–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))
–

s
|s| + γ

K
)

+
(
Dp–1

t e(t)
) (t)–(p–1)–1

Γ (–(p – 1))

]T

CT + φ̃T ˙̃
φ + θ̃T ˙̃

θ , (22)

V̇ = s
(

F(x)φ̃ – G(y)θ̃ –
s

|s| + γ
K

)T

CT – φ̃T F(x)Tλ + ˜θT G(y)Tλ. (23)
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Then (23) yields

V̇ = –CK
[

s2

|s| + γ

]

< 0. (24)

Since both s2 > 0 and |s| > 0, then, when e �= 0 and CK > 0, the inequality V̇ < 0 holds.
Hence, V is positive-definite and V̇ is negative-definite. Then the error system is stable in
the sense defined in Lyapunov stability theory [18] and the response system (7) is synchro-
nised with the drive system (6) globally and asymptotically. This completes the proof. �

4 Synchronisation between fractional-order Genesio–Tesi and Lü chaotic
systems using the modified adaptive sliding-mode control

In this section, we investigate the synchronisation behaviour between the fractional-order
Genesio–Tesi [19, 20] and Lü [21] systems using the modified adaptive sliding-mode con-
trol method. The fractional-order Genesio–Tesi system is assumed to drive the fractional-
order Lü system. Both systems are defined with unknown parameters:

Dp1
t x1 = y1,

Dp2
t y1 = z1,

Dp3
t z1 = –a1x1 – b1y1 – c1z1 + d1x2

1,

(25)

and

Dp1
t x2 = a2(y2 – x2) + u1,

Dp2
t y2 = –x2z2 + b2y2 + u2,

Dp3
t z2 = x2y2 – c2z2 + u3,

(26)

where (u1, u2, u3)T is the controller function to be designed. Let the vector error state be e =
y – x. Then the error dynamical system between the drive (25) and response (26) systems
can be written as

Dp1
t e1(t) = a2(y2 – x2) – y1 + u1,

Dp2
t e2(t) = –x2z2 + b2y2 – z1 + u2,

Dp3
t e3(t) = x2y2 – c2z2 + a1x1 + b1y1 + c1z1 – d1x2

1 + u3.

(27)

The aim of the modified adaptive sliding-mode control method is to formulate a controller
function U capable of synchronising the states of the response and drive systems with fully
unknown parameters. Then, the switching surface is described as follows:

s(e) = e1 + e2 + e3,

w(t) =
s

|s| + 0.01
,

(28)
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where the control parameters are set to C = (1, 1, 1), K = (3, 0, 11)T and γ = 0.01. The adap-
tive sliding-mode controller of (27) can be determined as follows:

u1 = –a2(y2 – x2) + y1 + Dp1–1
t

[

–â2(y2 – x2) –
(
Dp1–1

t e1(t)
)

(t)–(p1–1)–1

Γ (–(p1 – 1))
–

3s
|s| + 0.01

]

,

u2 = x2z2 – b2y2 + z1 + Dp2–1
t

[

–b̂2y2 –
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

, (29)

u3 = –x2y2 + c2z2 – a1x1 – b1y1 – c1z1 + d1x2
1 + Dp3–1

t

[

ĉ2z2 – â1x1

– b̂1y1 – ĉ1z1 + d̂1x2
1 –

(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))
–

11s
|s| + 0.01

]

,

and the estimates â1, b̂1, ĉ1, d̂1, â2, b̂2 and ĉ2 are updated, respectively, according to the
following algorithm:

˙̃a1 = x1s,

˙̃b1 = y1s,

˙̃c1 = z1s,

˙̃d1 = –x2
s s,

˙̃a2 = (y2 – x2)s,

˙̃b2 = y2s,

˙̃c2 = –z2s.

(30)

Theorem 2 Consider the error dynamics (27). If this system is controlled by ui = (u1, u2,
u3)T , i = 1, 2, 3, in (29) with the adaptive laws in (30), then the error system is stabilised at
its equilibrium.

Proof Inserting (29) in (27) yields the following error system:

Dp1
t e1(t) = Dp1–1

t

[

–ã2(y2 – x2) –
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

–
3s

|s| + 0.01

]

,

Dp2
t e2(t) = Dp2–1

t

[

–b̃2y2 –
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

, (31)

Dp3
t e3(t) = Dp3–1

t

[

c̃2z2 – ã1x1 – b̃1y1 – c̃1z1 + d̃1x2
1 –

(
Dp3–1

t e3(t)
)

(t)–(p3–1)–1

Γ (–(p3 – 1))
–

11s
|s| + 0.01

]

,
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where ã1 = â1 – a1, b̃1 = b̂1 – b1, c̃1 = ĉ1 – c1, d̃1 = d̂1 – d1, ã2 = â2 – a2, b̃2 = b̂2 – b2 and
c̃2 = ĉ2 – c2. Consider the following Lyapunov function candidate:

V =
1
2
(
s2 + ã2

1 + b̃2
1 + c̃2

1 + d̃2
1 + ã2

2 + b̃2
2 + c̃2

2
)
. (32)

Differentiating (32) with respect to time using (30) and (5) yields

V̇ = (sṡ + ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + d̃1

˙̃d1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2)

=
(

s
[

D1–p1
t

(
Dp1

t e1(t)
)

+
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

]

+ s
[

D1–p2
t

(
Dp2

t e2(t)
)

+
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

+ s
[

D1–p3
t

(
Dp3

t e3(t)
)

+
(
Dp3–1

t e3(t)
)

(t)–(p3–1)–1

Γ (–(p3 – 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + c̃2 ˙̃c2 + d̃1

˙̃d1 + ã2 ˙̃a2 + b̃2
˙̃b2

)

= s
[

D1–p1
t

(

Dp1–1
t

[

–ã2(y2 – x2) –
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))
–

3s
|s| + 0.01

])

+
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

]

+ s
[

D1–p2
t

(

Dp2–1
t

[

–b̃2y2 –
(
Dp2–1

t e2(t)
)

(t)–(p2–1)–1

Γ (–(p2 – 1))

])

+
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

+ s
[

D1–p3
t

(

D1–p3
t

[

c̃2z2

– ã1x1 – b̃1y1 – c̃1z1 + d̃1x2
1 –

(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))
–

11s
|s| + 0.01

])

+
(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1c̃1 ˙̃c1 + d̃1

˙̃d1 + ã2 ˙̃a2 + b̃2
˙̃b2 + c̃2 ˙̃c2 (33)

since ∀p ∈ [0, 1], (1 – p) > 0 and (p – 1) < 0. Now, using (4) and (30), (33) reduces to

V̇ = s
(

–ã2(y2 – x2) –
3s

|s| + 0.01

)

+ s(–b̃2y2) + s
(

c̃2z2 – ã1x1

– b̃1y1 – c̃1z1 + d̃1x2
1 –

11s
|s| + 0.01

)

+ ã1(x1s) + b̃1(y1s) + c̃1(z1s)

+ d̃1
(
–x2

s s
)

+ ã2
(
(y2 – x2)s

)
+ b̃2(y2s) + c̃2(–z2s). (34)

Then (34) reduces to

V̇ = –
14s2

|s| + 0.01
. (35)

Since both s2 > 0 and |s| > 0, then, when e �= 0, V̇ < 0 and hence V is positive-definite while
V̇ is negative-definite, so the error system is stable according to the Lyapunov stability the-
ory [18], and the response system (26) is synchronised with the drive system (25) globally
and asymptotically. This completes the proof. �

For simulations, we use the Adams–Bashforth–Moulton method to solve systems for the
fractional order pi = 0.95, i = 1, 2, 3. The uncertain parameters are set to a1 = 6, b1 = 2.92,
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Figure 1 State trajectories of drive system (25) and response system (25): (a) signals x1 and x2; (b) signals y1
and y2; (c) signals z1 and z2; (d) evolution of the errors e1, e2, e3 with respect to time t

Figure 2 State trajectories of the adaptive parameters: (a) ã1, b̃1, c̃1, d̃1; (b) ã2, b̃2, c̃2

c1 = 1.2 and d1 := 1; and a2 = 36, b2 = 20, c2 = 3. The initial values of the fractional-order
drive and response systems (25)–(26) and the estimated parameters are respectively and
arbitrarily set in simulations to x1(0) = –3, y1(0) = 3, z1(0) = 5, x2(0) = 2, y2(0) = 7 and
z2(0) = 4; and ã1(0) = 1, b̃1(0) = 1, c̃1(0) = 1, d̃1(0) = 1, ã2(0) = 1 and b̃2(0) = 1. Figures 1–2
depict the modified adaptive sliding-mode synchronisation of systems (25)–(26) via the
adaptive control laws (29) and (30). Figure 1(a)–(c) displays the steady-state plane trajec-
tories of the drive (25) and response (26) systems. Figure 1(d) displays the synchronisation
errors e1, e2 and e3 as functions of time t. Figure 2(a)–(b) displays the temporal response
of the estimated parameter values ã1, b̃1, c̃1, d̃1, ã2 and b̃2 of the drive (25) and response
(26) systems.

5 Synchronisation of fractional-order Chen and Lü chaotic systems using the
modified adaptive sliding-mode control method

This section considers the synchronisation behaviour between the fractional-order Chen
[22] and Lü systems using the modified adaptive sliding-mode control method. Now let us
assume that the fractional-order Chen system is a drive system and the fractional-order
Lü system is considered as a response system. In terms of unknown parameters, the drive
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system is specified as

Dp1
t x1 = a1(y1 – x1),

Dp2
t y1 = (b1 – a1)x1 – x1z1 + b1y1,

Dp3
t z1 = x1y1 – c1z1,

(36)

and the response system as

Dp1
t x2 = a2(y2 – x2) + u1,

Dp2
t y2 = –x2z2 + b2y2 + u2,

Dp3
t z2 = x2y2 – c2z2 + u3,

(37)

where (u1, u2, u3)T is the controller to be specified. Let the vector error state be e = y – x.
Hence, the error dynamical system between the response system (26) and the drive system
(25) is given by

Dp1
t e1(t) = a2(y2 – x2) – a1(y1 – x1) + u1,

Dp2
t e2(t) = –x2z2 + b2y2 – (b1 – a1)x1 + x1z1 – b1y1 + u2,

Dp3
t e3(t) = x2y2 – c2z2 – x1y1 + c1z1 + u3.

(38)

The aim of the modified adaptive sliding-mode control method is to design a controller
U such that the states of the response and the drive systems are synchronised with fully
unknown parameters. Then the switching surface is described as

s(e) = e1 + e2 + e3,

w(t) =
s

|s| + 0.01
,

(39)

with the control parameters set to C = (1, 1, 1), K = (0, 0, 15)T and γ = 0.01. The adaptive
sliding-mode controller of (38) can be determined as follows:

u1 = a1(y1 – x1) – a2(y2 – x2) + Dp1–1
t

[

â1(y1 – x1) – â2(y2 – x2))

–
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

]

,

u2 = x2z2 – b2y2 + (b1 – a1)x1 – x1z1 + b1y1 + Dp2–1
t

[

–b̂2y2 + (b̂1 – â1)x1

+ b̂1y1 –
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

,

(40)

u3 = –x2y2 + c2z2 + x1y1 – c1z1 + Dp3–1
t

[

ĉ2z2 – ĉ1z1 –
(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))

–
15s

|s| + 0.01

]

,
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and the estimates â1, b̂1, ĉ1, â2, b̂2 and ĉ2 are updated according to the following algorithm:

˙̃a1 = –(y1 – x1)s + x1s,

˙̃b1 = –(x1 + y1)s,

˙̃c1 = z1s,

˙̃a2 = (y2 – x2)s,

˙̃b2 = y2s,

˙̃c2 = –z2s.

(41)

Theorem 3 Consider the error dynamics (38). If this system is controlled by ui = (u1, u2,
u3)T , i = 1, 2, 3, in (40) with the adaptive laws in (41), then the error system is stabilised at
its equilibrium.

Proof Inserting (40) in (38) yields the following error system:

Dp1
t e1(t) = Dp1–1

t

[

ã1(y1 – x1) – ã2(y2 – x2) –
(
Dp1–1

t e1(t)
)

(t)–(p1–1)–1

Γ (–(p1 – 1))

]

,

Dp2
t e2(t) = Dp2–1

t

[

–b̃2y2 + (b̃1 – ã1)x1 + b̃1y1 –
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

, (42)

Dp3
t e3(t) = Dp3–1

t

[

c̃2z2 – c̃1z1 –
(
Dp3–1

t e3(t)
)

(t)–(p3–1)–1

Γ (–(p3 – 1))
–

15s
|s| + 0.01

]

,

where ã1 = â1 – a1, b̃1 = b̂1 – b1, c̃1 = ĉ1 – c1, ã2 = â2 – a2, b̃2 = b̂2 – b2 and c̃2 = ĉ2 – c2.
Considering the Lyapunov function candidate

V =
1
2
(
s2s + ã2

1 + b̃2
1 + c̃2

1 + ã2
2 + b̃2

2 + c̃2
2
)
, (43)

differentiating (43) with respect to time using (41) and (5) yields

V̇ = (sṡ + ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2)

=
(

s
[

D1–p1
t

(
Dp1

t e1(t)
)

+
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

]

+ s
[

D1–p2
t

(
Dp2

t e2(t)
)

+
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

+ s
[

D1–p3
t

(
Dp3

t e3(t)
)

+
(
Dp3–1

t e3(t)
)

(t)–(p3–1)–1

Γ (–(p3 – 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + c̃2 ˙̃c2 + ã2 ˙̃a2 + b̃2

˙̃b2

)

= s
[

D1–p1
t

(

Dp1–1
t

[

ã1(y1 – x1) – ã2(y2 – x2) –
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

])
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+
(
Dp1–1

t e1(t)
) (t)–(p1–1)–1

Γ (–(p1 – 1))

]

+ s
[

D1–p2
t

(

Dp2–1
t

[

–b̃2y2 + (b̃1 – ã1)x1 + b̃1y1

–
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

])

+
(
Dp2–1

t e2(t)
) (t)–(p2–1)–1

Γ (–(p2 – 1))

]

+ s
[

D1–p3
t

(

D1–p3
t

[

c̃2z2 – c̃1z1 –
(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))
–

15s
|s| + 0.01

])

+
(
Dp3–1

t e3(t)
) (t)–(p3–1)–1

Γ (–(p3 – 1))

]

+ ã1 ˙̃a1 + b̃1
˙̃b1 + c̃1 ˙̃c1 + ã2 ˙̃a2 + b̃2

˙̃b2 + c̃2 ˙̃c2, (44)

since ∀p ∈ [0, 1], (1 – p) > 0 and (p – 1) < 0. Now, using (4), (33) reduces to

V̇ = s
(
ã1(y1 – x1) – ã2(y2 – x2)

)
+ s

(
–b̃2y2 + (b̃1 – ã1)x1 + b̃1y1

)

+ s
(

c̃2z2 – c̃1z1 –
15s

|s| + 0.01

)

+ ã1
(
–(y1 – x1)s + x1s

)
+ b̃1

(
–(x1 + y1)s

)

+ c̃1(z1s) + ã2
(
(y2 – x2)s

)
+ b̃2(y2s) + c̃2(–z2s). (45)

Then (45) reduces to

V̇ = –
15s2

|s| + 0.01
. (46)

Since both s2 > 0 and |s| > 0, then, when e �= 0, we have V̇ < 0, hence V is positive-definite
while V̇ is negative-definite. Recall the Lyapunov stability theory [18], then the response
system (37) and the drive system (36) are synchronised globally and asymptotically. This
completes the proof. �

For simulations, the Adams–Bashforth–Moulton method is applied to solve the systems
for the fractional order pi = 0.95, i = 1, 2, 3, and the uncertain parameters are set to a1 =
35, b1 = 28, c1 = 3, a2 = 36, b2 = 20 and c2 = 3. In the simulations, the initial values of
the fractional-order drive and response systems (36)–(37), respectively, were arbitrarily
set to x1(0) = 6, y1(0) = 3, z1(0) = 7, x2(0) = 2, y2(0) = 7 and z2(0) = 4; and the estimated
parameters were set to ã1(0) = 1, b̃1(0) = 1, c̃1(0) = 1, d̃1(0) = 1, ã2(0) = 1 and b̃2(0) = 1. The
modified adaptive sliding-mode synchronisation of the systems (36)–(37), obtained via
the adaptive control laws (40) and (41), is shown in Figs. 3–4. Figures 3(a)–(c) display the
steady-state plane trajectories of the drive (36) and response (37) systems, while Fig. 3(d)
displays the synchronisation errors e1, e2 and e3 as functions of time t. Figures 4(a)–(b)
display the temporal response of the estimated parameter values ã1, b̃1, c̃1, ã2 and b̃2 of
the drive (36) and response (37) systems.

6 Conclusion
In this article, we have proposed a modified adaptive sliding-mode controller to realise
chaos synchronisation between two different fractional-order chaotic systems with fully
unknown parameters. The Lyapunov stability theory proved the asymptotic stability of the
error system at the origin. The design of a suitable adaptive sliding-mode controller en-
sures target synchronisation. This work provides parameter update laws that estimate the
true values of the unknown parameters. This paper also presents two numerical examples
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Figure 3 State trajectories of drive system (36) and response system (37): (a) signals x1 and x2; (b) signals y1
and y2; (c) signals z1 and z2; (d) evolution of the errors e1, e2, e3 with respect to time t

Figure 4 State trajectories of the adaptive parameters: (a) ã1, b̃1, c̃1; (b) ã2, b̃2, c̃2

of different unknown fractional-order chaotic systems. Simulation results validate the effi-
ciency and performance of the proposed modified adaptive sliding-mode synchronisation
strategy. For future study, designing a modified adaptive sliding-mode controller to realise
chaos synchronisation in drive-response dynamical networks is worth considering.
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