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Abstract
In this paper, we consider a Riemann–Liouville type two-term fractional differential
equation boundary value problem. Some positive properties of the Green’s function
are deduced by using techniques of analysis. As application, we obtain the existence
and multiplicity of positive solutions for a fractional boundary value problem under
conditions that the nonlinearity f (t, x) may change sign and may be singular at t = 0, 1
and x = 0, and we also obtain the uniqueness results of positive solution for a singular
problem by means of the monotone iterative technique.
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1 Introduction
In this paper, we study properties of the Green’s function of the following two-term frac-
tional differential equation boundary value problem (FBVP):

{
–Dα

0+u(t) + au(t) = y(t), 0 < t < 1,
u(0) = u′(0) = 0, u(1) = 0,

(1)

where 2 < α < 3, a > 0, Dα
0+ is the standard Riemann–Liouville derivative.

During the past decades, much attention has been paid to the study of fractional differ-
ential equations (FDEs) due to the more accurate effect in describing important phenom-
ena in biology, engineering, and so on. It has been proved that a multi-term FDE can be
used to describe various types of visco-elastic damping [1, 2]. Most of the model equations
proposed can be expressed by the linear form

[
DαN + aN–1DαN–1 + · · · + a1Dα1 + a0D0]x(t) = f (t),

where ai ∈ R, i = 0, 1, . . . , N – 1, equipped with initial conditions (see [3–7] and the refer-
ences therein). For example, Elshehawey et al. [5] considered the endolymph equation

D2x(t) + a1Dx(t) + a2D
1
2 x(t) + a3x(t) = –f (t),
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which can be used to describe the response of the semicircular canals to the angular ac-
celeration.

Recently, many authors have focused on the existence of solutions to nonlinear FBVPs by
using the techniques of nonlinear analysis such as fixed point theorems, Leray–Schauder
theory, etc. (see [8–32]). Since only positive solutions are meaningful in most practical
problems, the existence of positive solutions for FBVPs has particularly attracted a great
deal of attention, e.g., the nonlocal FBVPs [10, 22, 25], singular FBVPs [16, 21, 28], semi-
positone FBVPs [15, 18, 27].

It is known that the cone which usually depends on the positive properties of the Green’s
function plays a very important role in discussing positive solutions. When 1 < α < 2, Jiang
and Yuan [14] obtained some properties of the Green’s function for the FDE:

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 0 < t < 1, (2)

with Dirichlet type boundary value condition. Xu and Fei [30] investigated (2) with three-
point boundary value condition. In [19], we established some new positive properties of
the corresponding Green’s function for (2) with multi-point boundary value condition.
When α > 2, Zhang et al. [27, 28] obtained triple positive solutions for (2) with conjugate
type integral conditions by employing height functions on special bounded sets which
were derived from properties of the Green’s function.

While there are a lot of works dealing with multi-term FDEs with initial conditions, the
results dealing with boundary value problems of multi-term FDEs are relatively scarce. For
some recent literature on Caputo type multi-term FBVPs, we mention the papers [8, 9] and
the references therein. In [20], we established some new positive properties of the Green’s
function for the Riemann–Liouville type FBVP, in which the linear operator contains two
terms:

{
–Dα

0+u(t) + bu(t) = f (t, u(t)), 0 < t < 1,
u(0) = 0, u(1) = 0,

where 1 < α < 2, b > 0. As application, the existence and uniqueness of positive solution
are obtained under singular conditions.

Inspired by the above work, in this paper, we aim to deduce some positive properties of
the Green’s function for FBVP (1). As application, we investigate the existence and mul-
tiplicity of positive solutions for a singular FBVP with changing sign nonlinearity, and
we also consider the uniqueness results of positive solution for a singular FBVP. Com-
pared with the existing works, this paper has the following features. Firstly, the fractional
derivative discussed in this paper is the standard Riemann–Liouville derivative, which is
different from [8, 9], and the linear operator of the FBVP we are considered with contains
two terms, which is different from [14, 19, 27, 28, 30]; in other words, we discuss different
problem which has been seldom studied before. Secondly, some meaningful properties
of the Green’s function for the case that 2 < α < 3 are established; this is different from
[20] since Ref. [20] considered the case that 1 < α < 2. Thirdly, we consider a multiplicity
of positive solutions under conditions that the nonlinearity f (t, x) may change sign and
possess singularity at x = 0; this is different from [15, 18]. It should be noted that there
are relatively few results on multiple solutions for FBVPs under this circumstance, not to
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mention two-term FBVPs. Finally, we obtain the uniqueness results of positive solution
for a singular two-term FBVP by means of the monotone iterative technique, and the rate
of convergence for the iterative sequence is considered.

2 Basic definitions and preliminaries
Definition 2.1 ([33]) The fractional integral of a function u : (0, +∞) → R is given by

Iα
0+u(t) =

1
Γ (α)

∫ t

0
(t – s)α–1u(s) ds

provided that the right-hand side is point-wise defined on (0, +∞).

Definition 2.2 ([33]) The Riemann–Liouville fractional derivative of a function u :
(0, +∞) → R is given by

Dα
0+u(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, [α]denotes the integer part of number α, provided that the right-hand
side is point-wise defined on (0, +∞).

For convenience, we introduce the following notations:

h(x) =
+∞∑
k=0

(kα + α – 2)(kα + α – 3)xk

Γ (kα + α)
,

k(s) = (1 – s)α–2 – s,

g(t) = tα–1Eα,α
(
atα

)
,

g1(t) = tα–2Eα,α
(
atα

)
,

where

Eα,α(x) =
+∞∑
k=0

xk

Γ ((k + 1)α)

is the Mittag-Leffler function.
It is clear that h(x) is strictly increasing on [0, +∞), h(0) < 0, and

lim
x→+∞ h(x) = +∞.

Therefore, h(x) has a unique positive root a∗, that is, h(a∗) = 0.
Throughout this paper, we always assume that the following assumption holds:
(H1) a ∈ (0, a∗] is a constant.

Lemma 2.1 Let y ∈ L1[0, 1] ∩ C(0, 1). Then the unique solution of the two-term FBVP (1)
is

u(t) =
∫ 1

0
G(t, s)y(s) ds,
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where

G(t, s) =
1

g(1)

{
g(t)g(1 – s), 0 ≤ t ≤ s ≤ 1,
g(t)g(1 – s) – g(t – s)g(1), 0 ≤ s ≤ t ≤ 1.

(3)

Proof It follows from [33] that the general solution of the equation

–Dα
0+u(t) + au(t) = y(t)

can be expressed by

u(t) = –
∫ t

0
g(t – s)y(s) ds + c1g(t) + c2g ′(t) + c3g ′′(t).

By direct calculation, we have

g ′(t) =
+∞∑
k=0

akt(k+1)α–2

Γ ((k + 1)α – 1)
> 0, ∀t > 0, (4)

g ′′(t) =
+∞∑
k=0

akt(k+1)α–3

Γ ((k + 1)α – 2)
> 0, ∀t > 0. (5)

By u(0) = u′(0) = 0, there is c3 = c2 = 0. Then we get

u(1) = –
∫ 1

0
g(1 – s)y(s) ds + c1g(1).

It follows from u(1) = 0 that

c1 =
∫ 1

0 g(1 – s)y(s) ds
g(1)

.

Therefore, the solution of (1) is

u(t) = –
∫ t

0
g(t – s)y(s) ds +

∫ 1
0 g(1 – s)y(s) ds

g(1)
g(t)

=
∫ 1

0 g(t)g(1 – s)y(s) ds –
∫ t

0 g(1)g(t – s)y(s) ds
g(1)

=
∫ 1

0
G(t, s)y(s) ds. �

Remark 2.1 The unique solution given in Lemma 2.1 satisfies u ∈ AC1[0, 1], where

ACn[0, 1] =
{

v : [0, 1] → R and
dn–1v
dtn–1 is absolutely continuous on [0, 1]

}
.

Proof In fact, we have

u(t) = –
∫ t

0
g(t – s)y(s) ds + c1g(t) = c1g(t) – Iα

0+y(t) –
+∞∑
k=1

I(k+1)α
0+ y(t).
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It follows from [32, Lemma 2.1] that Iα
0+y(t) ∈ AC1[0, 1] and

I(k+1)α
0+ y(t) ∈ AC[(k+1)α]–1[0, 1].

Notice that g(t) ∈ AC1[0, 1], we can get u ∈ AC1[0, 1]. �

3 Main results
Lemma 3.1 For 0 ≤ s ≤ t ≤ 1, we have

g1(t)g1(1 – s) ≥ g1(t – s)g1(1).

Proof For t > 0, we have

g ′
1(t) =

+∞∑
k=0

(kα + α – 2)aktkα+α–3

Γ (kα + α)
> 0.

Therefore, g1(t) is strictly increasing on [0, 1]. By direct calculation, we have

g ′′
1 (t) = tα–4h

(
atα

)
< tα–4h

(
a∗) = 0, t ∈ (0, 1),

which implies g ′
1(t) is strictly decreasing on (0, 1]. Thus

∂

∂s
[
g1(t)g1(1 – s) – g1(t – s)g1(1)

]
= g ′

1(t – s)g1(1) – g1(t)g ′
1(1 – s)

≥ g ′
1(1 – s)

[
g1(1) – g1(t)

] ≥ 0.

Therefore we can get

g1(t)g1(1 – s) – g1(t – s)g1(1) ≥ 0,

that is,

g1(t)g1(1 – s) ≥ g1(t – s)g1(1). �

Lemma 3.2 Assume that s� ∈ (0, 1) satisfies s� = (1 – s�)α–2, then

min
{

s, (1 – s)α–2} ≤ s(1 – s)α–2

s�
, s ∈ [0, 1]. (6)

Proof It is clear that k(s) is strictly decreasing on [0, 1]. Notice that k(0) = 1 and k(1) = –1,
we know k(s) has a unique root s� on (0, 1), that is, s� = (1 – s�)α–2. Therefore,

min
{

s, (1 – s)α–2} =

{
s, s ∈ [0, s�],
(1 – s)α–2, s ∈ [s�, 1].

Thus

min
{

s, (1 – s)α–2} ≤ s(1 – s)α–2

s�
, s ∈ [0, 1]. �
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Theorem 3.1 The Green’s function G(t, s) satisfies the following properties:
(p1) G(t, s) > 0,∀t, s ∈ (0, 1);
(p2) G(t, s) = G(1 – s, 1 – t), ∀t, s ∈ [0, 1];
(p3) G(t, s) ≥ M1s(1 – s)α–1(1 – t)tα–1, ∀t, s ∈ [0, 1];
(p4) G(t, s) ≤ M2s(1 – s)α–1, ∀t, s ∈ [0, 1], where

M1 =
1

g(1)[Γ (α)]2 , M2 =
[g ′(1)]2

g(1)s�
.

Proof Since (p2) is trivially true and (p1) can be derived from (p3), it remains to verify (p3)
and (p4).

For t ∈ [0, 1], it is easy to check that

g(t) =
+∞∑
k=0

aktkα+α–1

Γ ((k + 1)α)
≥ tα–1

Γ (α)
(7)

and

g(t) ≤ tα–1
+∞∑
k=0

ak

Γ ((k + 1)α)
= tα–1g(1). (8)

Combining the notations of g and g ′ with

Γ
(
(k + 1)α

)
> Γ

(
(k + 1)α – 1

)
, k = 0, 1, 2, . . . ,

one has

g(1) < g ′(1). (9)

Case (I): 0 ≤ t ≤ s ≤ 1.
By (6), one has

G(t, s) =
g(t)g(1 – s)

g(1)
≥ tα–1(1 – s)α–1

g(1)[Γ (α)]2

≥ M1s(1 – s)α–1(1 – t)tα–1. (10)

By (7), one has

G(t, s) ≤ g(1)tα–1(1 – s)α–1

≤ g(1)s(1 – s)α–1

≤ M2s(1 – s)α–1. (11)

Case (II): 0 < s < t < 1.
It is obvious that

g(t) = tg1(t).
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Therefore, it follows from Lemma 3.1 and (7) that

G(t, s) =
g(t)g(1 – s) – g(t – s)g(1)

g(1)

=
t(1 – s)g1(t)g1(1 – s) – (t – s)g1(t – s)g1(1)

g(1)

≥ g1(t)g1(1 – s)[t(1 – s) – (t – s)]
g(1)

=
g1(t)g1(1 – s)s(1 – t)

g(1)

≥ tα–2(1 – s)α–2s(1 – t)
g(1)[Γ (α)]2

≥ M1s(1 – s)α–1(1 – t)tα–1. (12)

By the monotonicity of g ′(t), we have

∂

∂s
G(t, s) =

g ′(t – s)g(1) – g(t)g ′(1 – s)
g(1)

≤ g ′(1 – s)[g(1) – g(t)]
g(1)

.

By Lagrange’s mean value theorem, there exist ζ ∈ (1 – s, 1) and η ∈ (t, 1) such that

G(t, s) =
∫ s

0

∂

∂τ
G(t, τ ) dτ

≤
∫ s

0

g ′(1 – τ )[g(1) – g(t)]
g(1)

dτ

=
[g(1) – g(1 – s)][g(1) – g(t)]

g(1)

=
g ′(ζ )sg ′(η)(1 – t)

g(1)

≤ [g ′(1)]2s(1 – s)
g(1)

. (13)

On the other hand, it follows from (8) that

G(t, s) ≤ g(t)g(1 – s)
g(1)

≤ g(1)tα–1(1 – s)α–1 ≤ g(1)(1 – s)α–1. (14)

Combining (13) and (14) with (6), we have

G(t, s) ≤ min

{
[g ′(1)]2s(1 – s)

g(1)
, g ′(1)(1 – s)α–1

}

= min

{
g ′(1)s
g(1)

, (1 – s)α–2
}

× g ′(1)(1 – s)

≤ min
{

s, (1 – s)α–2} × max

{
1,

g ′(1)
g(1)

}
× g ′(1)(1 – s)
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≤ s(1 – s)α–2

s�
× g ′(1)

g(1)
× g ′(1)(1 – s)

= M2s(1 – s)α–1. (15)

It follows from (10) and (12) that (p3) holds. On the other hand, (11) and (15) yield (p4)
holds. �

Corollary 3.1 It follows from (p2) and (p4) of Theorem 3.1 that

G(t, s) ≤ M2(1 – t)tα–1, ∀t, s ∈ [0, 1].

4 Applications
4.1 Semipositone problem
In this section, we consider the existence and multiplicity of positive solutions to the semi-
positone FBVP:

{
–Dα

0+u(t) + au(t) = λf (t, u(t)), 0 < t < 1,
u(0) = u′(0) = 0, u(1) = 0.

(16)

For convenience, we list here the hypotheses to be used in this section:
(H2) f ∈ C((0, 1) × (0, +∞), (–∞, +∞)) and satisfies

f (t, x) ≥ –e(t), (t, x) ∈ (0, 1) × (0, +∞),

where e ∈ L1[0, 1] ∩ C(0, 1) is nonnegative and
∫ 1

0 e(s) ds > 0.
(H3) For any R ≥ r > 0, there exists Ψr,R ∈ L1[0, 1] ∩ C(0, 1) such that

f (t, x) + e(t) ≤ Ψr,R(t), ∀t ∈ (0, 1), x ∈ [
r(1 – t)tα–1, R

]
.

(H4) There exists [c1, d1] ⊂ (0, 1) such that

lim inf
x→0+

min
t∈[c1,d1]

f (t, x) = +∞.

(H5) There exists [c2, d2] ⊂ (0, 1) such that

lim inf
x→+∞ min

t∈[c2,d2]

f (t, x)
x

= +∞.

Remark 4.1 Condition (H4) implies that f (t, x) is singular at x = 0.

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1 |u(t)|. Define a
cone

P =
{

u ∈ E : u(t) ≥ M1‖u‖
M2

(1 – t)tα–1, t ∈ [0, 1]
}

.

Denote Br = {u(t) ∈ E : ‖u(t)‖ < r} and

Pr = P ∩ Br .
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Lemma 4.1 The unique solution of the FBVP

{
–Dα

0+u(t) + au(t) = e(t), 0 < t < 1,
u(0) = u′(0) = u(1) = 0

is

ω(t) =
∫ 1

0
G(t, s)e(s) ds

with

ω(t) ≤ M2(1 – t)tα–1
∫ 1

0
e(s) ds.

Proof The lemma can be deduced from Lemma 2.1 and Corollary 3.1, so we omit it. �

Next we consider the auxiliary FBVP:

{
–Dα

0+u(t) + au(t) = λ[f (t, [u(t) – λω(t)]+) + e(t)] = 0, 0 < t < 1,
u(0) = u′(0) = u(1) = 0,

(17)

where [u(t) – λω(t)]+ = max{u(t) – λω(t), 0}.
Let

Au(t) =
∫ 1

0
G(t, s)

[
f
(
s,

[
u(s) – λω(s)

]+)
+ e(s)

]
ds.

Lemma 4.2 Suppose that (H2) and (H3) hold. Then, for any λ > 0 and

r >
λM2

2
∫ 1

0 e(s) ds
M1

,

A : P \ Pr → P is completely continuous.

Proof For any u ∈ P with ‖u‖ ≥ r, one has

u(t) – λω(t) ≥
[

M1r
M2

– λM2

∫ 1

0
e(s) ds

]
(1 – t)tα–1 > 0, ∀t ∈ (0, 1).

The rest of the proof is similar to Lemma 2.6 in [21], we omit it here. �

By the extension theorem of completely continuous operator (see [34]), there exists an
extension operator Ã : P → P, which is still completely continuous. Without loss of gen-
erality, we still write it as A.

Lemma 4.3 ([34]) Let E be a real Banach space, P ⊂ E be a cone. Assume that Ω1 and
Ω2 are two bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, A : P ∩ (Ω2 \ Ω1) → P is a
completely continuous operator such that either
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(1) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2; or
(2) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \ Ω1).

Theorem 4.1 Assume that (H2)–(H5) hold. Then there exists λ∗ > 0 such that FBVP (16)
has at least two positive solutions for any λ ∈ (0,λ∗).

Proof For

M′ =:
2α+1M2

2
∫ 1

0 e(s) ds

M2
1
∫ d1

c1
s(1 – s)α–1 ds

,

(H4) guarantees there exists X1 ∈ (0, 1) such that

f (t, x) > M′, ∀(t, x) ∈ [c1, d1] × (0, X1].

Let

λ∗ = min

{
M1X1

2M2
2
∫ 1

0 e(s) ds
,

1 + M2

M2
∫ 1

0 ΨM1,1+M2 (s) ds

}
.

For any λ ∈ (0,λ∗), let

r1 =
2λM2

2
∫ 1

0 e(s) ds
M1

.

It is clear that r1 < X1 < 1.
∀u ∈ ∂Pr1 , one has

u(t) – λω(t) ≤ r1 < X1

and

u(t) – λω(t) ≥
[

M1r1

M2
– λM2

∫ 1

0
e(s) ds

]
(1 – t)tα–1

= λM2

∫ 1

0
e(s) ds(1 – t)tα–1.

Then

Au(t) = λ

∫ 1

0
G(t, s)

[
f
(
s,

[
u(s) – λω(s)

]+)
+ e(s)

]
ds

≥ λM1(1 – t)tα–1
∫ d1

c1

s(1 – s)α–1M′ ds

=
2α+1λM2

2
∫ 1

0 e(s) ds
M1

(1 – t)tα–1

= 2αr1(1 – t)tα–1,
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which implies

‖Au‖ > ‖u‖, ∀u ∈ ∂Pr1 . (18)

Let r2 = 1 + M2. For any u ∈ ∂Pr2 , one has

u(t) – λω(t) ≤ r2

and

u(t) – λω(t) ≥
[

M1r2

M2
– λM2

∫ 1

0
e(s) ds

]
(1 – t)tα–1

≥ M1(1 – t)tα–1.

This and (H3) yield

f
(
t,

[
u(t) – λω(t)

]+)
+ e(t) ≤ ΨM1,1+M2 (t).

Then

Au(t) = λ

∫ 1

0
G(t, s)

[
f
(
s,

[
u(s) – λω(s)

]+)
+ e(s)

]
ds

≤ λM2(1 – t)tα–1
∫ 1

0
ΨM1,1+M2 (s) ds

< λ∗M2

∫ 1

0
ΨM1,1+M2 (s) ds

≤ 1 + M2 = r2.

Therefore

‖Au‖ < ‖u‖, ∀u ∈ ∂Pr2 . (19)

For

M′′ =:
2α+1M2

λM2
1cα

2 (1 – d2)α(d2 – c2)
,

(H5) guarantees there exists X2 > r2 such that

f (t, x) > M′′x, ∀(t, x) ∈ [c2, d2] × [X2, +∞).

Let

r3 = 1 +
LM2

M1
,

where

L =
X2

cα–1
2 (1 – d2)

.
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It is easy to see that

r2 < r3 <
2LM2

M1
.

For any u ∈ ∂Pr3 , one has

u(t) – λω(t) ≥ L(1 – t)tα–1.

Hence

u(t) – λω(t) > L(1 – d2)cα–1
2 = X2, t ∈ [c2, d2].

Thus

Au(t) = λ

∫ 1

0
G(t, s)

[
f
(
s,

[
u(s) – λω(s)

]+)
+ e(s)

]
ds

≥ λM1(1 – t)tα–1
∫ d2

c2

s(1 – s)α–1M′′X2 ds.

Then

‖Au‖ ≥ λM1

(
1
2

)α

M′′X2

∫ d2

c2

s(1 – s)α–1 ds

> λM1

(
1
2

)α

M′′X2c2(1 – d2)α–1(d2 – c2)

=
2LM2

M1
> r3,

that is,

‖Au‖ > ‖u‖, ∀u ∈ Pr3 . (20)

Combining (18)–(20) with Lemma 4.3, we get A has at least two fixed points u1, u2 with
r1 < ‖u1‖ < r2 < ‖u2‖ < r3, that is, u1 and u2 are solutions of the auxiliary FBVP (17). It is
clear that ui(t) – λω(t) > 0 on (0, 1), i = 1, 2. Let ūi(t) = ui(t) – λω(t), i = 1, 2. Then ū1(t) and
ū2(t) are two positive solutions of the semipositone FBVP (16). �

Corollary 4.1 Suppose that either (H2)–(H4) or (H2), (H3), and (H5) hold. Then FBVP (16)
has at least one positive solution provided λ is small enough.

Example 4.1 Consider the following problem:

{
–D

5
2
0+u(t) + 1

4 u(t) = λf (t, u(t)), 0 < t < 1,
u(0) = u′(0) = 0, u(1) = 0,

(21)

with

f (t, x) = x2 + x– 1
2 – t– 1

2 (1 – t)– 1
3 .
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It is clear that f (t, x) is singular at t = 0, 1, and x = 0. For x ∈ [0, +∞), notice that Γ (·) is
strictly increasing on [2, +∞), we have

h(x) = –
1

3Γ ( 1
2 )

+
+∞∑
k=1

xk

( 5k
2 + 3

2 )Γ ( 5k
2 – 1

2 )

≤ –
1

3Γ ( 1
2 )

+
+∞∑
k=1

xk

3Γ ( 5k
2 – 1

2 )

≤ –
1

3
√

π
+

1
3

+∞∑
k=1

xk

Γ (2k)

= –
1

3
√

π
+

√
x

6
[
e
√

x – e–
√

x].

By direct calculation, we have

e 1
2 – e– 1

2

12
–

1
3
√

π
≈ –0.1012136 < 0,

that is, h( 1
4 ) < 0. This yields a∗ > 1

4 , so (H1) holds.
Let

e(t) = t– 1
2 (1 – t)– 1

3 ,

Ψr,R(t) = R2 + r– 1
2 (1 – t)– 1

2 t– 3
4 ,

[c1, d1] = [c2, d2] =
[

1
4

,
3
4

]
.

It is easy to check that (H2)–(H5) hold. Therefore Theorem 4.1 ensures that FBVP (21) has
at least two positive solutions provided λ is small enough.

4.2 Uniqueness results
In this section, we consider the uniqueness results of positive solution to the singular
FBVP:

{
–Dα

0+u(t) + au(t) = f (t, u(t), u(t)), 0 < t < 1,
u(0) = u′(0) = 0, u(1) = 0.

(22)

For convenience, we assume that the following assumptions hold in the rest of this paper:
(H6) f ∈ C((0, 1) × [0, +∞) × (0, +∞) → [0, +∞)), f (t, x, y) is nondecreasing on x, non-

increasing on y, and there exists μ ∈ (0, 1) such that

f
(

t, rx,
y
r

)
≥ rμf (t, x, y), ∀x, y > 0, r ∈ (0, 1). (23)

(H7) 0 <
∫ 1

0 f (s, (1 – s)sα–1, (1 – s)sα–1) ds < +∞.
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Remark 4.2 Inequality (23) is equivalent to

f
(

t,
x
r

, ry
)

≤ r–μf (t, x, y), ∀x, y > 0, r ∈ (0, 1). (24)

Define a cone Q by

Q =
{

u ∈ E : ∃lu > 0, such that lu(1 – t)tα–1 ≥ u(t) ≥ M1‖u‖
M2

(1 – t)tα–1
}

.

Define a mixed monotone operator T by

T(u, v) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds.

Set Q1 = Q \ {θ}, where θ is the zero element of E.

Lemma 4.4 T : Q1 × Q1 → Q1.

Proof For u, v ∈ Q1, ∃lu, lv > 0 such that

lu(1 – t)tα–1 ≥ u(t) ≥ M1‖u‖
M2

(1 – t)tα–1,

lv(1 – t)tα–1 ≥ v(t) ≥ M1‖v‖
M2

(1 – t)tα–1.

Denote

δ = min

{
1
lu

,
M1‖v‖

M2
,

1
2

}
.

It follows from Corollary 3.1 and Remark 4.2 that

T(u, v) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds

≤ M2(1 – t)tα–1
∫ 1

0
f
(
s, u(s), v(s)

)
ds

≤ M2(1 – t)tα–1
∫ 1

0
f
(

s, lu(1 – s)sα–1,
M1‖v‖

M2
(1 – s)sα–1

)
ds

≤ M2(1 – t)tα–1
∫ 1

0
f
(

s,
(1 – s)sα–1

δ
, δ(1 – s)sα–1

)
ds

≤ δ–μM2(1 – t)tα–1
∫ 1

0
f
(
s, (1 – s)sα–1, (1 – s)sα–1)ds

< +∞. (25)

By (p3) and (p4) of Theorem 3.1, we have

T(u, v)(t) ≥ M1(1 – t)tα–1
∫ 1

0
s(1 – s)α–1f

(
s, u(s), v(s)

)
ds
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and

T(u, v)(t) ≤ M2

∫ 1

0
s(1 – s)α–1f

(
s, u(s), v(s)

)
ds,

which implies

T(u, v)(t) ≥ M1‖T(u, v)‖
M2

(1 – t)tα–1.

This and (25) yield T : Q1 × Q1 → Q1 is well defined. �

Theorem 4.2 The singular FBVP (22) has a unique positive solution.

Proof Let w ∈ Q1, it follows from Lemma 4.4 that T(w, w) ∈ Q1. Then we can select r0 ∈
(0, 1) such that

r1–μ
0 w ≤ T(w, w) ≤ r–(1–μ)

0 w. (26)

Set

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . , (27)

where

u0 = r
1
2
0 w, v0 = r– 1

2
0 w.

It is easy to see that ui, vi ∈ Q1, i = 0, 1, . . . , and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (28)

It follows from (23) and (24) that

u1 = T
(
r

1
2
0 w, r– 1

2
0 w

) ≥ r
μ
2

0 T(w, w),

v1 = T
(
r– 1

2
0 w, r

1
2
0 w

) ≤ r– μ
2

0 T(w, w).

Then we have

u1 ≥ rμ
0 v1.

By induction, we can get

un ≥ rμn

0 vn, n = 1, 2, . . . . (29)

Therefore, (28) and (29) yield

0 ≤ un+m – un ≤ vn – un ≤ (
1 – rμn

0
)
vn ≤ (

1 – rμn

0
)
v0.
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Then {un} is a Cauchy sequence. Similarly, we can get {vn} is a Cauchy sequence. It fol-
lows from (28) that there exist u∗, v∗ ∈ Q1 such that {un} and {vn} converge to u∗ and v∗

respectively. Moreover,

un ≤ u∗ ≤ v∗ ≤ vn, n = 1, 2, . . . . (30)

This and (29) imply that

∥∥v∗ – u∗∥∥ ≤ ‖vn – un‖ ≤ (
1 – rμn

0
)‖v0‖, n = 1, 2, . . . .

Hence

u∗ = v∗.

By (30), we have

un+1 = T(un, vn) ≤ T
(
u∗, v∗) = T

(
v∗, u∗) ≤ T(vn, un) = vn+1.

Let n → +∞, we get

u∗ ≤ T
(
u∗, v∗) = T

(
v∗, u∗) ≤ v∗.

Then we have u∗ = T(u∗, u∗), that is, u∗ is a positive fixed point of T .
Next, we will show that the positive fixed point of T is unique. In fact, if u �= u∗ is a

positive fixed point of T , by Lemma 4.4, we have u ∈ Q1. Denote

r1 = sup
{

r ∈ (0, 1) : ru∗ ≤ u ≤ r–1u∗}.

It is clear that r1 ∈ (0, 1) and

r1u∗ ≤ u ≤ r–1
1 u∗.

Then

u = T(u, u) ≥ T
(
r1u∗, r–1

1 u∗) ≥ rμ
1 T

(
u∗, u∗) = rμ

1 u∗

and

u = T(u, u) ≤ T
(
r–1

1 u∗, r1u∗) ≤ r–μ
1 T

(
u∗, u∗) = r–μ

1 u∗.

Therefore,

rμ
1 u∗ ≤ u ≤ r–μ

1 u∗.

This contradicts with the definition of r1 since rμ
1 > r1. Consequently, the positive fixed

point of T is unique, that is, FBVP (22) has a unique positive solution. �
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Remark 4.3 The iterative sequence {un} defined by (27) converges uniformly to the unique
positive solution u∗. Moreover, we have the error estimation

∥∥un – u∗∥∥ ≤ (
1 – rμn

0
)‖v0‖

with the rate of convergence

∥∥un – u∗∥∥ = O
(
1 – rμn

0
)

= O
(
μn).

Example 4.2 Consider the following problem:

{
–D

5
2
0+u(t) + 1

4 u(t) = f (t, u(t), u(t)), 0 < t < 1,
u(0) = u′(0) = 0, u(1) = 0,

(31)

with

f (t, x, y) = x
1
3 + y– 1

3 .

It follows from Example 4.1 that h( 1
4 ) < 0, that is, (H1) holds. Clearly, (H5) and (H6) hold.

Then Theorem 4.2 ensures that FBVP (31) has a unique positive solution u∗.
By direct calculation, we have

s� =
√

5 – 1
2

,

g(1) =
1

Γ ( 5
2 )

+
+∞∑
k=1

( 1
4 )k

Γ ( 5
2 k + 5

2 )
<

1
Γ ( 5

2 )
+

1
4

Γ (5)
+

+∞∑
k=2

( 1
4 )k

Γ (2k + 2)

≈ 0.76339,

g(1) >
1

Γ ( 5
2 )

+
1
4

Γ (5)
≈ 0.76286,

g ′(1) =
1

Γ ( 3
2 )

+
+∞∑
k=1

( 1
4 )k

Γ ( 5
2 k + 3

2 )
<

1
Γ ( 3

2 )
+

+∞∑
k=1

( 1
4 )k

Γ (2k + 2)

≈ 1.17086.

Therefore,

M1 > 0.741278, M2 < 2.90772.

Let

w(t) = (1 – t)t
3
2 .
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By Theorem 3.1 and Corollary 3.1, we have

T(ω,ω) ≤ M2

[
B
(

4
3

,
3
2

)
+ B

(
2
3

,
1
2

)]
× w ≤ 8.8541 × w,

T(ω,ω) ≥ M1

[
B
(

17
6

,
5
2

)
+ B

(
13
6

,
3
2

)]
× w ≥ 0.2196 × w.

Set

r0 =
1

27
, u0 =

w
3
√

3
, v0 = 3

√
3w,

un = T(un–1, vn–1), vn = T(vn–1, un–1), n = 1, 2, . . . .

Then (26) holds and ‖v0‖ = 54
25

√
5

≈ 0.966. Moreover,

∥∥un – u∗∥∥ ≤ 0.966 × (
1 – 3–31–n)

, n = 1, 2, . . . .

Then we have the rate of convergence

∥∥un – u∗∥∥ = O
((

1
3

)n)
,

and the error estimation

∥∥u1 – u∗∥∥ < 0.643999,∥∥u2 – u∗∥∥ < 0.296213,∥∥u3 – u∗∥∥ < 0.111005,∥∥u4 – u∗∥∥ < 0.038517,∥∥u5 – u∗∥∥ < 0.013014,∥∥u6 – u∗∥∥ < 0.004358,

· · ·

5 Conclusions
In this paper, we establish some positive properties of the Green’s function for a class of
FBVPs. The interesting point is that the linear operator of the FBVPs contains two terms.
As application of the main results, we investigate the existence and multiplicity results of
positive solutions for an FBVP under conditions that the nonlinearity may change sign
and possess singularity, and we also consider the uniqueness results of positive solution
for a singular FBVP.
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