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1 Introduction
For any integer n ≥ 0, the famous Chebyshev polynomial of the first kind {Tn(x)} is defined
as follows:

Tn+2(x) = 2xTn+1(x) – Tn(x) for all integers n ≥ 0, with T0(x) = 1, T1(x) = x.

Let α = x +
√

x2 – 1 and β = x –
√

x2 – 1 be two characteristic roots of the equation λ2 –
2xλ + 1 = 0, then we have (see [1] and [2])

Tn(x) =
1
2
(
αn + βn), Un(x) =

αn+1 – βn+1

δ – β
, n = 0, 1, 2, . . . , (1)

where {Un(x)} is Chebyshev polynomial of the second kind with U0(x) = 1 and U1(x) = 2x.
The generating functions of Tn(x) and Un(x) are

1 – xt
1 – 2xt + t2 =

∞∑

n=0

Tn(x) · tn and
1

1 – 2xt + t2 =
∞∑

n=0

Un(x) · tn. (2)

For convenience, we also extend the recursive properties of Tn(x) and Un(x) in (1) to all
negative integers.

We all know that the polynomials Tn(x) and Un(x) play important roles in the study of
orthogonality of functions and approximation theory, so many scholars have studied their
properties and obtained a series of valuable research results. In particular, in the references
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we have seen that Kim and his team have done a lot of important research work (see [3–
11]), and Cesarano (see [12–14]) has also made a lot of contributions. Some other papers
related to these polynomials and sequences can be found in references [2, 15–29]. For
example, Zhang Wenpeng [17] studied the calculating problem of the convolution sums
of Tn(x) and proved the following:

∑

a1+a2+···+ak+1=n+k+1

Ta1 (x) · Ta2 (x) · Ta3 (x) · · ·Tak+1 (x)

=
1

2k · k!

k+1∑

h=0

(–x)h
(

k + 1
h

)
U (k)

n+2k+1–h(x),

where
∑

a1+a2+···+ak+1=n denotes that the summation is taken over all (k + 1)-dimension
nonnegative integer coordinates (a1, a2, . . . , ak+1) such that a1 + a2 + · · · + ak + ak+1 = n,
U (k)

n (x) denotes the kth derivative of Un(x) with respect to x.
Zhang Yixue and Chen Zhuoyu [18] proved the following result:

∑

a1+a2+···+ah+1=n
Ua1 (x)Ua2 (x) · · ·Uah+1 (x)

=
1

2h · h!
·

h∑

j=1

C(h, j)
x2h–j

n∑

i=0

(n – i + j)!
(n – i)!

·
(

2h + i – j – 1
i

)
· Un–i+j(x)

xi ,

where C(h, i) is a second-order nonlinear recurrence sequence defined by C(h, 0) = 0,
C(h, h) = 1, C(h + 1, 1) = 1 · 3 · 5 · · · (2h – 1) = (2h – 1)!!, and C(h + 1, i + 1) = (2h – 1 –
i) · C(h, i + 1) + C(h, i) for all 1 ≤ i ≤ h – 1.

Obviously the results in [17, 18], and [21] do not look very concise and clear. It is even
harder to calculate their exact values. Inspired by these papers, we also became interested
in such problems and used different methods to come up with simpler, more beautiful
identities. That is, we use the elementary methods and the properties of the power series
to prove the following conclusions:

Theorem 1 For any integers k ≥ 2 and n ≥ 0, we have the identity

∑

a1+a2+···+ak =n
Ta1 (x) · Ta2 (x) · Ta3 (x) · · ·Tak (x)

=
1

2k–1

(
n + k – 1

k – 1

)
Tn(x)

+
1
2k

n∑

i=0

( k–1∑

h=1

(
k
h

)(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

))

· Tn–2i(x).

Theorem 2 For any integer k ≥ 2 and integer n ≥ 0, we have

∑

a1+a2+···+ak =n
Ua1 (x) · Ua2 (x) · Ua3 (x) · · ·Uak (x)

=
n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· Tn–2i(x).
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For Lucas polynomials Ln+2(x) = xLn+1(x) + Ln(x) with L0(x) = 2, L1(x) = x and Fibonacci
polynomials Fn+2 = xFn+1 + Fn(x) with F0(x) = 0 and F1(x) = 1, we can also deduce the fol-
lowing corresponding results:

Theorem 3 For any positive integer k ≥ 2 and integer n ≥ 0, we have

∑

a1+a2+···+ak =n
La1 (x) · La2 (x) · · ·Lak (x)

=
(

n + k – 1
k – 1

)
· Ln(x)

+
1
2

n∑

i=0

(–1)i ·
( k–1∑

h=1

(
k
h

)(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

))

Ln–2i(x).

Theorem 4 For any positive integer k ≥ 2 and integer n ≥ 0, we have

∑

a1+a2+···+ak =n
Fa1 (x) · Fa2 (x) · Fa3 (x) · · ·Fak (x)

=
n∑

i=0

(–1)i
(

i + k – 1
k – 1

)(
n – i + k – 1

k – 1

)
Ln–2i(x).

Note the identity Ln(x) = Fn+1(x) + Fn–1(x), it is clear that our Theorem 4 is much simpler
than the corresponding identity in Ma Yuankui and Zhang Wenpeng [20]. Taking k = 3, 4
or k = 5 with x = 1, from Theorems 2 and 4 we can deduce the following four corollaries:

Corollary 1 For any integer n ≥ 0, we have the identity

∑

a+b+c+d=n

Ua(x) · Ub(x) · Uc(x) · Ud(x)

=
1

36

n∑

i=0

(i + 1)(i + 2)(i + 3)(n – i + 1)(n – i + 2)(n – i + 3) · Tn–2i(x).

Corollary 2 For any integer n ≥ 0, we have the identity

∑

a+b+c=n

Fa(x) · Fb(x) · Fc(x)

=
1
4

n∑

i=0

(–1)i(i + 1)(i + 2)(n – i + 1)(n – i + 2) · Ln–2i(x).

Corollary 3 For any integer n ≥ 0, we have the identity

∑

a+b+c+d=n

Fa(x) · Fb(x) · Fc(x) · Fd(x)

=
1

36

n∑

i=0

(–1)i(i + 1)(i + 2)(i + 3)(n – i + 1)(n – i + 2)(n – i + 3)Ln–2i(x).
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Corollary 4 For any integer n ≥ 0, we have the identity

∑

a+b+c+d+e=n

Fa+1 · Fb+1 · Fc+1 · Fd+1 · Fe+1 =
n∑

i=0

(–1)i
(

i + 4
4

)(
n – i + 4

4

)
Ln–2i.

For any nonnegative integers m and n, note that Tm(Tn(x)) = Tmn(x). From Theorem 1
we can also deduce the following:

Corollary 5 For any integers k ≥ 2 and m ≥ 0, we have the identity

∑

a1+a2+···+ak =n
Tma1 (x) · Tma2 (x) · Tma3 (x) · · ·Tmak (x)

=
1

2k–1

(
n + k – 1

k – 1

)
Tmn(x)

+
1
2k

n∑

i=0

( k–1∑

h=1

(
k
h

)(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

))

· Tm(n–2i)(x).

Some notes: It is worth noting that Theorem 1 has been obtained by different methods
in equation (29) of [9], but the expression is different from our result. In fact equation (29)
in [9] involved the Gauss hypergeometric function, so it looks a little bit more compli-
cated, and our Theorem 1 is simple and straightforward. Theorem 2 has been obtained by
different methods in (1.30) of [3].

2 Proofs of the theorems
Now we prove our main results directly. First, we will prove Theorem 1. From the gener-
ating function (2) of Tn(x), we have

1
2

[
1

1 – αt
+

1
1 – βt

]
=

1 – xt
1 – 2xt + t2 =

∞∑

n=0

Tn(x) · tn. (3)

So, for any positive integer k ≥ 2, from (3) and the properties of the power series, we have
the identity

1
2k

[
1

1 – αt
+

1
1 – βt

]k

=
∞∑

n=0

( ∑

a1+a2+···+ak =n
Ta1 (x) · Ta2 (x) · · ·Tak (x)

)
· tn. (4)

On the other hand, note the power series

1
(1 – x)k =

∞∑

n=0

(
n + k – 1

k – 1

)
· xn, |x| < 1. (5)

For any positive integers r and h, we have

1
(1 – αt)r(1 – βt)h

=

( ∞∑

n=0

(
n + r – 1

r – 1

)
αntn

)( ∞∑

n=0

(
n + h – 1

h – 1

)
βntn

)
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=
∞∑

n=0

( n∑

i=0

(
i + r – 1

r – 1

)(
n – i + h – 1

h – 1

)
· αi · βn–i

)

· tn

=
∞∑

n=0

( n∑

i=0

(
i + r – 1

r – 1

)(
n – i + h – 1

h – 1

)
· βn–2i

)

· tn, (6)

where α · β = 1.
From (6) and the definition of Tn(x), we have

1
2

[
1

(1 – αt)r(1 – βt)h +
1

(1 – αt)h(1 – βt)r

]

=
∞∑

n=0

( n∑

i=0

(
i + r – 1

r – 1

)(
n – i + h – 1

h – 1

)
· 1

2
(
αn–2i + βn–2i)

)

· tn

=
∞∑

n=0

( n∑

i=0

(
i + r – 1

r – 1

)(
n – i + h – 1

h – 1

)
· Tn–2i(x)

)

· tn. (7)

From (5), (7), the definition and properties of the binomial, we have

(
1

1 – αt
+

1
1 – βt

)k

=
k∑

h=0

(
k
h

)
1

(1 – αt)h · 1
(1 – βt)k–h

=
1

(1 – αt)k +
1

(1 – βt)k

+
1
2

k–1∑

h=1

( (k
h
)

(1 – αt)h(1 – βt)k–h +
(k

h
)

(1 – αt)k–h(1 – βt)h

)

=
k–1∑

h=1

(
k
h

) ∞∑

n=0

( n∑

i=0

(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

)
· Tn–2i(x)

)

· tn

+ 2
∞∑

n=0

(
n + k – 1

k – 1

)
· Tn(x) · tn

=
∞∑

n=0

( k–1∑

h=1

(
k
h

)( n∑

i=0

(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

)
· Tn–2i(x)

))

· tn

+ 2
∞∑

n=0

(
n + k – 1

k – 1

)
· Tn(x) · tn. (8)

Combining (4) and (8) and then comparing the coefficients of the power series, we have
the identity

∑

a1+a2+a3+···+ak =n
Ta1 (x) · Ta2 (x) · Ta3 (x) · · ·Tak (x)

=
1

2k–1 ·
(

n + k – 1
k – 1

)
· Tn(x)
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+
1
2k

n∑

i=0

( k–1∑

h=1

(
k
h

)(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

))

· Tn–2i(x).

This proves Theorem 1.
To prove Theorem 2, note that, for any positive integer k,

1
(1 – 2xt + t2)k =

∞∑

n=0

( ∑

a1+a2+···+ak =n
Ua1 (x) · Ua2 (x) · · ·Uak (x)

)
· tn. (9)

From (5) and (9) we have

∞∑

n=0

( ∑

a1+a2+···+ak =n
Ua1 (x) · Ua2 (x) · · ·Uak (x)

)
· tn

=
1

(1 – αt)k · (1 – βt)k

=

( ∞∑

n=0

(
n + k – 1

k – 1

)
· αn · tn

)

·
( ∞∑

n=0

(
n + k – 1

k – 1

)
· βn · tn

)

=
∞∑

n=0

( n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· αi · βn–i

)

· tn

=
∞∑

n=0

( n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· βn–2i

)

· tn

=
1
2

∞∑

n=0

( n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· (αn–2i + βn–2i)

)

· tn

=
∞∑

n=0

( n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· Tn–2i(x)

)

· tn. (10)

Comparing the coefficients of tn in (10), we have the identity

∑

a1+a2+···+ak =n
Ua1 (x) · Ua2 (x) · Ua3 (x) · · ·Uak (x)

=
n∑

i=0

(
i + k – 1

k – 1

)(
n – i + k – 1

k – 1

)
· Tn–2i(x).

This proves Theorem 2.
Let γ = x+

√
x2+4
2 and δ = x–

√
x2+4
2 , then from the definition of Ln(x) we have Ln(x) = γ n +δn

and

2 – xt
1 – xt – t2 =

1
1 – γ t

+
1

1 – δt
=

∞∑

n=0

Ln(x) · tn. (11)

Note that γ · δ = –1, from (5), (6), and the methods of proving Theorem 1, we have

∞∑

n=0

( ∑

a1+a2+···+ak =n
La1 (x) · La2 (x) · · ·Lak (x)

)
· tn
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=
(

1
1 – γ t

+
1

1 – δt

)k

=
1

(1 – γ t)k +
1

(1 – δt)k +
1
2

k–1∑

h=1

( (k
h
)

(1 – γ t)h(1 – δt)k–h +
(k

h
)

(1 – γ t)k–h(1 – δt)h

)

=
1
2

∞∑

n=0

( k–1∑

h=1

(
k
h

) n∑

i=0

(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

)
· (–1)i · Ln–2i(x)

)

· tn

+
∞∑

n=0

(
n + k – 1

k – 1

)(
γ n + δn) · tn. (12)

Comparing the coefficients of tn in (12), we have

∑

a1+a2+···+ak =n
La1 (x) · La2 (x) · · ·Lak (x)

=
(

n + k – 1
k – 1

)
· Ln(x)

+
1
2

n∑

i=0

(–1)i ·
( k–1∑

h=1

(
k
h

)(
i + h – 1

h – 1

)(
n – i + k – h – 1

k – h – 1

))

Ln–2i(x).

This proves Theorem 3.
Similarly, from the methods of proving Theorem 2, we can also deduce

∑

a1+a2+···+ak =n
Fa1 (x) · Fa2 (x) · Fa3 (x) · · ·Fak (x)

=
n∑

i=0

(–1)i
(

i + k – 1
k – 1

)(
n – i + k – 1

k – 1

)
Ln–2i(x).

This completes the proofs of all our theorems.

3 Conclusion
The main results of this paper are four theorems and five corollaries. Theorem 1 estab-
lished an identity for the convolution sums of Chebyshev polynomials of the first kind.
This improved an early result in [17] and [21]. Theorem 2 simplified the identity in [18]
and made it look more concise and beautiful. It must be noted that Theorem 1 and Theo-
rem 2 appear in different forms in other references, such as [3] and [9]. From Theorem 3
and Theorem 4, we can get two corresponding results for Fibonacci polynomials and Lu-
cas polynomials. In addition, in Theorem 4 we have improved a new result in [20]. The
five corollaries are just some special cases of our four theorems. These results are actually
new contributions to the study of the properties of Chebyshev polynomials and Fibonacci
polynomials. Of course, the methods adopted in this paper have some good reference for
further study of the properties of general second-order linear recursive sequences.
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