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Abstract
The purpose of this paper was to investigate the dynamics of the option pricing in
the market through the two-dimensional time fractional-order Black–Scholes
equation for a European put option. The Liouville–Caputo derivative was used to
improve the ordinary Black–Scholes equation. The analytic solution is a powerful tool
for describing the behavior of the option price in the European style market. In this
study, analytic solution is carried out by the Laplace homotopy perturbation method.
Moreover, the obtained solution showed that the Laplace homotopy perturbation
method was an efficient method for finding an analytic solution of two-dimensional
fractional-order differential equation.
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1 Introduction
Fractional calculus is widely used to model many real-life problems in various fields such
as physics, engineering, biology, earth science, chemistry, finance, and so on [1–8]. The
fractional calculus was introduced more than 300 years ago [9]. In the beginning, it was
only in a theoretical sense. Recently, fractional calculus was wildly studied in many ways
[5, 9–14]. Moreover, the fractional calculus has shown to be more accurate for describing
real complicated phenomena than the ordinary calculus [15, 16]. There are many version
of fractional calculus such as Riemann–Liouville [5], Hadamard [17], Atangana–Baleanu
[18], Liouville–Caputo [19], Riesz [14], etc.

Actually, one cannot find exact solutions to most fractional-order differential equations,
so the approximate solutions are investigated to solve linear and nonlinear fractional-
order differential equations. There are many researches dealing with fractional order dif-
ferential equations in many different fields [20–23].

The main feature of fractional order differential equations is memory. The variables in
financial problems have long memories. Therefore, the fractional order differential equa-
tions are fitted to describe the financial problems. Many researches have been done to
investigate the fractional-order differential equations in financial problems [24–26].
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The Black–Scholes equation was proposed by Fisher Black and Myron Scholes in 1973
[27] to express the behavior of the option price in the European style market. Several
papers have investigated how the Black–Scholes equation describes the behavior of the
market [28–32]. Moreover, the Black–Scholes equation has been extended to express the
behavior in another market, such as the American-style market and Asian-style market
[33–36].

In general, the two-dimensional Black–Scholes equations for a European put option can
be written as follows:

∂P
∂τ

+
1
2

2∑

i=1

2∑

j=1

σiσjρijxixj
∂2P

∂xi ∂xj
+

2∑

i=1

(r – qi)xi
∂P
∂xi

– rP = 0,

x1, x2 ∈ [0,∞), τ ∈ [0, T]

with the terminal condition

P(x1, x2, T) = max

(
E –

2∑

i=1

β̃ixi, 0

)
,

where E = max{E1, E2}, and the boundary conditions:

P(x1, x2, τ ) = 0 as (x1, x2) → (0, 0),

P(x1, x2, τ ) =
2∑

i=1

β̃ixi – Ee–r(T–τ ) as x1 → ∞ or x2 → ∞,

where P denotes the value of a put option of the underlying stock prices {x1, x2} at time
τ , qi denotes the dividend yield on the ith underlying stock, ρij denotes the correlation
between the ith and jth underlying stock prices, T denotes the expiration date, r denotes
the risk-free interest rate, σi denotes the volatility of the ith underlying stock, Ei denotes
the strike price of the ith underlying stock, and β̃i denotes a coefficient so that prices of
all the risky assets are at the same level.

There are many researchers who investigated analytical and approximate solutions of
the Black–Scholes equation. Various effective methods have been used to solve the Black–
Scholes equation, for example, the finite difference method [37], finite element method
[15, 38], homotopy perturbation method [39, 40], the Mellin transform method [41], Ado-
mian decomposition method [42], the variational iteration method [43, 44], radial ba-
sis function partition of unity method (RBF-PUM) [45, 46], and adaptive moving mesh
method [47].

In this paper, we apply the Laplace homotopy perturbation method (LHPM) to get the
analytical solution of the fractional-order Black–Scholes equation. This method is a com-
bination of the Laplace transform and homotopy perturbation method [48]. It provides an
analytical solution in the form of a convergent series. From the mathematical point of view,
the analytical solution is a useful tool to describe the behavior of the solution, particularly
the financial behavior of the solution to fractional-order differential equations.

The paper is structured as follows: the basic knowledge about fractional calculus is in-
troduced in Sect. 2, and the two-dimensional time-fractional Black–Scholes equation is
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presented in Sect. 3. In Sect. 4, the analytical solution of the model is obtained by LHPM,
followed by the conclusions in Sect. 5.

2 Mathematical background
2.1 Fractional calculus
In this section, we present the definitions of fractional calculus which are used in this
paper.

Definition 1 The Riemann–Liouville integral operator of the fractional order 0 < α < 1
for a function f : (0,∞) →R is defined as [5]:

Jα
t f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds, (1)

where Γ is the well-known Gamma function.

Riemann–Liouville fractional integral operator has some properties which are stated as
follows: for any α,β ≥ 0 and γ > –1,

JαJβ f (t) = Jα+β f (t),

JαJβ f (t) = Jβ Jαf (t),

Jαtβ =
Γ (γ + 1

Γ (γ + α + 1)
tα+β .

Definition 2 The Riemann–Liouville derivative of the fractional order 0 < α < 1 for a
function f : (0,∞) → R is defined as [5]:

RLDα
t f (t) =

1
Γ (1 – α)

d
dt

∫ t

0

f (s)
(t – s)α

ds. (2)

Definition 3 The Liouville–Caputo-type fractional derivative of order 0 < α ≤ 1 for a
function f : (0,∞) → R is defined as [19]:

Dα
τ f (τ ) =

{
1

Γ (1–α)
∫ τ

0
f ′(s)

(τ–θ )α dθ , 0 < α < 1,
df
dτ

, α = 1.

In this paper, we use Liouville–Caputo derivative as the time-fractional derivative be-
cause the initial condition for the fractional order derivation is similar to the traditional
derivative [49].

Definition 4 The Mittag-Leffler function is defined as [50]:

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, α ∈C, Re(α) > 0. (3)

Definition 5 The generalized Mittag-Leffler function is defined as [50]:

Eα,β (z) =
∞∑

k=0

zk

Γ (αk + β)
, α,β ∈C, Re(α) > 0, Re(β) > 0. (4)
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3 Generalized time fractional-order Black–Scholes model
The standard two-dimensional Black–Scholes equation for a European put option was
presented in Sect. 1. Throughout this paper, we assume that σ1, σ2, ρ , and r are constants.

By transforming coordinates and time to a forward time coordinate t = T – τ and ap-
plying the Liouville–Caputo fractional derivative to the two-dimensional Black–Scholes
equation, we obtain the following two-dimension time-fractional order Black–Scholes
equation with α ∈ (0, 1] and the initial and boundary conditions as follows:

Dα
t ω =

1
2
σ 2

1
∂2ω

∂x2 +
1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
∂2ω

∂x ∂y
, (x, y, t) ∈ R×R× [0, T], (5)

subject to the initial condition:

ω(x, y, 0) = max
(
E –

(
β1ex + β2ey), 0

)
, (6)

and the boundary conditions:

ω(x, y, t) = 0 as (x, y) → –∞, and

ω(x, y, t) = E –
(
β1ex+ 1

2 σ 2
1 t + β2ey+ 1

2 σ 2
2 t) as x → ∞ or y → ∞,

(7)

where β1 = β̃1e(r– 1
2 σ 2

1 )T and β2 = β̃2e(r– 1
2 σ 2

2 )T .

4 Solving two-dimensional time-fractional Black–Scholes equation by LHPM
In this section, we apply LHPM techniques for finding the solution of two-dimensional
time-fractional Black–Scholes model (5) subject to the initial condition (6) and the bound-
ary conditions (7).

Theorem 1 The analytical solution of two-dimensional time-fractional Black–Scholes
model (5) is given by

ω(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα

+ max
(
β1ex, 0

) tασ 2
1

2
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(
tασ 2

1
2

)
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(
β2ey, 0

) tασ 2
2

2
Eα,α+1

(
tασ 2

2
2

)

+
[

ex+y
(

σ 2
1

2
+

σ 2
2

2
+ ρσ1σ2

)
Γ (α + 1)t2αEα,2α+1

(
tα

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

))]

– ex+yΓ (α + 1)tαEα,α+1

(
tα

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

))
,

where Eγ ,η(z) =
∑∞

k=0
zk

Γ (γ k+η) is the generalized Mittag-Leffler function, in which γ and η

are constants.

Proof Let

Ñ
(
ω(x, y, t)

)
=

1
2
σ 2

1
∂2ω

∂x2 +
1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
∂2ω

∂x ∂y
,
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and represent Eq. (5) in the general form of

Dα
t ω(x, y, t) = Ñ

(
ω(x, y, t)

)
.

Applying the Laplace transform with respect to t, we obtain

L
{

Dα
t ω(x, y, t)

}
= L

{
Ñ

(
ω(x, y, t)

)}
. (8)

By the properties of Laplace transform of the Liouville–Caputo fractional derivative
[51], Eq. (8) becomes

L
{
ω(x, y, t)

}
=

1
s

max
(
E –

(
β1ex + β2ey), 0

)

+
1
sα

L

{
1
2
σ 2

1
∂2ω

∂x2 +
1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
∂2ω

∂x ∂y

}
. (9)

Taking the inverse Laplace transform of (9), we get

ω(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)

+ L–1
{

1
sα

L

{
1
2
σ 2

1
∂2ω

∂x2 +
1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
∂2ω

∂x ∂y

}}
.

Applying techniques of HPM, function ω can be constructed

ω(x, y, t; q) : R×R× [0, T] × [0, 1] →R

which satisfies the following equation:

(1 – q)
(
ω(x, y, t; q) – ω̃0(x, y, t)

)
+ q

[
ω(x, y, t; q) – max

(
E –

(
β1ex + β2ey), 0

)

–L–1
{

1
sα

L
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1
2
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1
∂2ω
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1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
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∂x ∂y

}}]
= 0,

or

ω(x, y, t; q) = ω̃0(x, y, t) – qω̃0(x, y, t) + q max
(
E –

(
β1ex + β2ey), 0

)

+ qL–1
{

1
sα

L

{
1
2
σ 2

1
∂2ω

∂x2 +
1
2
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2
∂2ω
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}}
, (10)

where q ∈ [0, 1] is an embedded parameter and ω̃0(x, y, t) is an initial approximation of
Eq. (10) which can freely be chosen [52]. For this case, we choose ω̃0(x, y, t) as

ω̃0(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα .

Then, we substitute ω̃0(x, y, t) into Eq. (10) to get

ω(x, y, t; q) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα

+ q
(

–ex+ytα + L–1
{

1
sα

L

{
1
2
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1
∂2ω

∂x2 +
1
2
σ 2

2
∂2ω

∂y2 + ρσ1σ2
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∂x ∂y

}})
. (11)
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For HPM, the solution of Eq. (5) can be assumed to be of the form

ω(x, y, t; q) =
∞∑

i=0

qnφn(x, y, t). (12)

Substituting Eq. (12) into Eq. (11), Eq. (11) becomes

∞∑

n=0

qnφn(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα

+ q

(
–ex+ytα + L–1

{
1
sα

L
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1
2
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1
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qn ∂2φn
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+
1
2
σ 2

2

∞∑

n=0

qn ∂2φn

∂y2 + ρσ1σ2

∞∑

n=0

qn ∂2φn

∂x ∂y

}})
. (13)

When we equate the corresponding powers of q of Eq. (13), we have

φ0(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα ,

φ1(x, y, t) = –ex+ytα + L–1
{

1
sα

L

{
1
2
σ 2

1
∂2φ0

∂x2 +
1
2
σ 2

2
∂2φ0

∂y2 + ρσ1σ2
∂2φ0

∂x ∂y

}}
,

φi(x, y, t) = –ex+ytα

+ L–1
{

1
sα

L

{
1
2
σ 2

1
∂2φi–1

∂x2 +
1
2
σ 2

2
∂2φi–1

∂y2 + ρσ1σ2
∂2φi–1

∂x ∂y

}}
for i ≥ 2.

Then, we can write φ0,φ1,φ2,φ3, . . . in the general form, i.e.,

φ0(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα ,

φn(x, y, t) =
tnα

Γ (nα + 1)

(
1
2n σ 2n

1 max
(
β̃1ex, 0

)
+

1
2n σ 2n

2 max
(
β̃2ey, 0

))

+ ex+y t(n+1)αΓ (α + 1)
Γ ((n + 1)α + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)n

– ex+y tnαΓ (α + 1)
Γ (nα + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)(n–1)

when n ≥ 1.

From Eq. (12), the solution ω(x, y, t) of the fractional order Black–Scholes equation (5)
can be written as

ω(x, y, t; q) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα

+
∞∑

n=0

qn+1
{

t(n+1)α

Γ ((n + 1)α + 1)

(
1

2(n+1) σ
2(n+1)
1 max

(
β1ex, 0

)

+
1

2(n+1) σ
2(n+1)
2 max

(
β2ey, 0

))

+ ex+y t(n+2)αΓ (α + 1)
Γ ((n + 2)α + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)(n+1)

– ex+y t(n+1)αΓ (α + 1)
Γ ((n + 1)α + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)n}
.
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The solution can be obtained by letting q → 1, and then we have

ω(x, y, t; 1) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα +

∞∑

n=0

{
t(n+1)α

Γ ((n + 1)α + 1)

×
(

1
2(n+1) σ

2(n+1)
1 max

(
β1ex, 0

)
+

1
2(n+1) σ

2(n+1)
2 max

(
β2ey, 0

))

+ ex+y t(n+2)αΓ (α + 1)
Γ ((n + 2)α + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)(n+1)

– ex+y t(n+1)αΓ (α + 1)
Γ ((n + 1)α + 1)

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

)n}
.

Therefore, the solution of Eq. (5) will be

ω(x, y, t) = max
(
E –

(
β1ex + β2ey), 0

)
+ ex+ytα

+ max
(
β1ex, 0

) tασ 2
1

2
Eα,α+1

(
tασ 2

1
2

)
+ max

(
β2ey, 0

) tασ 2
2

2
Eα,α+1

(
tασ 2

2
2

)

+
[

ex+y
(

σ 2
1

2
+

σ 2
2

2
+ ρσ1σ2

)
Γ (α + 1)t2αEα,2α+1

(
tα

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

))]

– ex+yΓ (α + 1)tαEα,α+1

(
tα

(
σ 2

1
2

+
σ 2

2
2

+ ρσ1σ2

))
, (14)

where Eγ ,η(z) =
∑∞

k=0
zk

Γ (γ k+η) is the generalized Mittag-Leffler function, in which γ and η

are constants. �

5 Conclusions
In this paper, we have found the analytical solution of the two-dimensional time-fractional
Black–Scholes equation for a European put option using the Liouville–Caputo derivative.
The Laplace homotopy perturbation method has been used to obtain the solution which
can be written in the form of the generalized Mittag-Leffer function. The main feature of
the analytical solution is that it is convenient for finding the option price.
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23. Jain, S., Agarwal, P., Kıymaz, İ.O., Çetinkaya, A.: Some composition formulae for the MSM fractional integral operator
with the multi-index Mittag-Leffler functions. AIP Conf. Proc. 1926, Article ID 020020 (2018).
https://doi.org/10.1063/1.5020469

24. Sweilam, N.H., Hasan, M.M.A., Baleanu, D.: New studies for general fractional financial models of awareness and trial
advertising decisions. Chaos Solitons Fractals 104, 772–784 (2017). https://doi.org/10.1016/j.chaos.2017.09.013

25. Hajipour, A., Hajipour, M., Baleanu, D.: On the adaptive sliding mode controller for a hyperchaotic fractional-order
financial system. Phys. A, Stat. Mech. Appl. 497, 139–153 (2018). https://doi.org/10.1016/j.physa.2018.01.019

26. Jajarmi, A., Hajipour, M., Baleanu, D.: New aspects of the adaptive synchronization and hyperchaos suppression of a
financial model. Chaos Solitons Fractals 99(9), 285–296 (2017). https://doi.org/10.1016/j.chaos.2017.04.025

27. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973).
https://doi.org/10.1086/260062

28. Osborne, M.F.M.: Brownian motion in the stock market. Oper. Res. 7(2), 145–173 (1959)
29. Kleinert, H., Korbel, J.: Option pricing beyond Black–Scholes based on double-fractional diffusion. Phys. A, Stat. Mech.

Appl. 449, 200–214 (2016). https://doi.org/10.1016/j.physa.2015.12.125
30. Al-Zhoura, Z., Barfeieb, M., Soleymanic, F., Tohidi, E.: A computational method to price with transaction costs under

the nonlinear Black–Scholes model. Chaos Solitons Fractals 127, 291–301 (2019).
https://doi.org/10.1016/j.chaos.2019.06.033

31. David, C.: Control of the Black–Scholes equation. Comput. Math. Appl. 73(7), 1566–1585 (2017).
https://doi.org/10.1016/j.camwa.2017.02.007

32. Sheraza, M., Predaab, V.: Implied volatility in Black–Scholes model with GARCH volatility. Proc. Econ. Finance 8,
658–663 (2014). https://doi.org/10.1016/S2212-5671(14)00141-5

https://doi.org/10.3906/fiz-1811-16
https://doi.org/10.1186/s13662-014-0348-8
https://doi.org/10.22436/jnsa.008.05.01
https://doi.org/10.1007/s12591-015-0239-9
https://doi.org/10.1016/j.chaos.2017.04.025
https://doi.org/10.1134/S106192081704001X
https://doi.org/10.3390/math7090830
https://doi.org/10.1186/s13662-018-1500-7
https://doi.org/10.1063/1.4968819
https://doi.org/10.1016/j.jksus.2015.08.004
https://doi.org/10.1007/s00780-004-0144-5
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1016/j.physa.2019.02.018
https://doi.org/10.1007/s40819-018-0549-z
https://doi.org/10.1016/j.physa.2019.123806
https://doi.org/10.1063/1.5020469
https://doi.org/10.1016/j.chaos.2017.09.013
https://doi.org/10.1016/j.physa.2018.01.019
https://doi.org/10.1016/j.chaos.2017.04.025
https://doi.org/10.1086/260062
https://doi.org/10.1016/j.physa.2015.12.125
https://doi.org/10.1016/j.chaos.2019.06.033
https://doi.org/10.1016/j.camwa.2017.02.007
https://doi.org/10.1016/S2212-5671(14)00141-5


Prathumwan and Trachoo Advances in Difference Equations        (2020) 2020:146 Page 9 of 9

33. Alghalith, M.: Pricing the American options using the Black–Scholes pricing formula. Phys. A, Stat. Mech. Appl. 507,
443–445 (2018). https://doi.org/10.1016/j.physa.2018.05.087

34. Geske, R., Roll, R.: On valuing American call options with the Black–Scholes European formula. J. Finance 39(2),
443–455 (1984). https://doi.org/10.2307/2327870

35. Vecer, J.: Black–Scholes representation for Asian options. Math. Finance 24(3), 598–626 (2012).
https://doi.org/10.1111/mafi.12012

36. Pirjol, D., Zhu, L.: Sensitivities of Asian options in the Black–Scholes model. Int. J. Theor. Appl. Finance 21(1), Article ID
1850008 (2018). https://doi.org/10.1142/S0219024918500085

37. Lesmana, D.C., Wang, S.: An upwind finite difference method for a nonlinear Black–Scholes equation governing
European option valuation under transaction costs. J. Appl. Math. Comput. 219(16), 8811–8828 (2013).
https://doi.org/10.1016/j.amc.2012.12.077

38. Liu, S., Zhou, Y., Wu, Y., Ge, X.: Option pricing under the jump diffusion and multifactor stochastic processes. J. Funct.
Spaces 2019, Article ID 9754679 (2019). https://doi.org/10.1155/2019/9754679

39. Prathumwan, D., Trachoo, K.: Application of the Laplace homotopy perturbation method to the Black–Scholes model
based on a European put option with two assets. Mathematics 7(4), Article ID 310 (2019).
https://doi.org/10.3390/math7040310

40. Fall, A.N., Ndiaye, S.N., Sene, N.: Black–Scholes option pricing equations described by the Caputo generalized
fractional derivative. Chaos Solitons Fractals 125, 108–118 (2019). https://doi.org/10.1016/j.chaos.2019.05.024

41. Yoon, J.H.: Mellin transform method for European option pricing with Hull–White stochastic interest rate. J. Appl.
Math. 2014, Article ID 759562 (2014). https://doi.org/10.1155/2014/759562

42. González-Gaxiola, O., de Chávez, J.R., Santiago, J.A.: A nonlinear option pricing model through the Adomian
decomposition method. Int. J. Appl. Comput. Math. 2(4), 453–467 (2016). https://doi.org/10.1007/s40819-015-0070-6

43. Safari, M., Ganji, D.D., Moslemi, M.: Application of He’s variational iteration method and Adomian’s decomposition
method to the fractional KdV–Burgers–Kuramoto equation. Comput. Math. Appl. 58(11–12), 2091–2097 (2009).
https://doi.org/10.1016/j.camwa.2009.03.043

44. He, J.H.: A short remark on fractional variational iteration method. Phys. Lett. A 375(38), 3362–3364 (2011).
https://doi.org/10.1016/j.physleta.2011.07.033

45. Shcherbakov, V., Larsson, E.: Radial basis function partition of unity methods for pricing vanilla basket options.
Comput. Math. Appl. 71(1), 185–200 (2016). https://doi.org/10.1016/j.camwa.2015.11.007

46. Mollapourasl, R., Fereshtian, A., Vanmaele, M.: Radial basis functions with partition of unity method for American
options with stochastic volatility. Comput. Econ. 53(1), 259–287 (2019). https://doi.org/10.1007/s10614-017-9739-8

47. Huang, J., Cen, Z., Zhao, J.: An adaptive moving mesh method for a time-fractional Black–Scholes equation. Adv.
Differ. Equ. 2019, Article ID 516 (2019). https://doi.org/10.1186/s13662-019-2453-1

48. Madani, M., Fathizadeh, M., Khan, Y., Yildirim, A.: On the coupling of the homotopy perturbation method and Laplace
transformation. Finance Stoch. 53(9–10), 1937–1945 (2011). https://doi.org/10.1016/j.mcm.2011.01.023

49. Kumar, S., Kumar, D., Singh, J.: Numerical computation of fractional Black–Scholes equation arising in financial market.
Egypt. J. Basic Appl. Sci. 1(3–4), 177–183 (2014). https://doi.org/10.1016/j.ejbas.2014.10.003

50. Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)
51. Miller, K.S., Ross, B.: An Introduction Fractional Calculus Functional Differential Equations. Willey, New York (2003)
52. Baholian, E., Azizi, A., Saeidian, J.: Some notes on using the homotopy perturbation method for solving

time-dependent differential equations. Math. Comput. Model. 50(1–2), 213–224 (2009).
https://doi.org/10.1016/j.mcm.2009.03.003

https://doi.org/10.1016/j.physa.2018.05.087
https://doi.org/10.2307/2327870
https://doi.org/10.1111/mafi.12012
https://doi.org/10.1142/S0219024918500085
https://doi.org/10.1016/j.amc.2012.12.077
https://doi.org/10.1155/2019/9754679
https://doi.org/10.3390/math7040310
https://doi.org/10.1016/j.chaos.2019.05.024
https://doi.org/10.1155/2014/759562
https://doi.org/10.1007/s40819-015-0070-6
https://doi.org/10.1016/j.camwa.2009.03.043
https://doi.org/10.1016/j.physleta.2011.07.033
https://doi.org/10.1016/j.camwa.2015.11.007
https://doi.org/10.1007/s10614-017-9739-8
https://doi.org/10.1186/s13662-019-2453-1
https://doi.org/10.1016/j.mcm.2011.01.023
https://doi.org/10.1016/j.ejbas.2014.10.003
https://doi.org/10.1016/j.mcm.2009.03.003

	On the solution of two-dimensional fractional Black-Scholes equation for European put option
	Abstract
	Keywords

	Introduction
	Mathematical background
	Fractional calculus

	Generalized time fractional-order Black-Scholes model
	Solving two-dimensional time-fractional Black-Scholes equation by LHPM
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


