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Abstract
In this paper we study quantum (p,q)-difference equations with impulse and initial or
boundary conditions. We consider first order impulsive (p,q)-difference boundary
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1 Introduction and preliminaries
Let p, q be quantum constants satisfying 0 < q < p ≤ 1. The (p, q)-number, [n]p,q, is defined
by

[n]p,q =
pn – qn

p – q
.

If n is a positive integer, then

[n]p,q = pn–1 + pn–2q + · · · + pqn–2 + qn–1 and lim
(p,q)→(1,1)

[n]p,q = n.

The (p, q)-difference of a function f on [0,∞) is defined by

Dp,qf (t) =
f (pt) – f (qt)

(p – q)t
, t �= 0, (1.1)

and Dp,qf (0) = f ′(0). If f (t) = tα , α ≥ 0, then we have

Dp,qtα = [α]p,qtα–1. (1.2)

Note that if the function f is defined on [0, T], then the function Dp,qf (t) is defined on
[0, T/p]. For some details of the shifting property and nonlocal boundary value problems

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02555-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02555-7&domain=pdf
http://orcid.org/0000-0001-8185-3539
mailto:jessada.t@sci.kmutnb.ac.th


Nuntigrangjana et al. Advances in Difference Equations         (2020) 2020:98 Page 2 of 20

for first-order (p, q)-difference equations, we refer the reader to [1]. In addition, in [2], the
authors defined the second-order (p, q)-difference by

D2
p,qf (t) =

qf (p2t) – (p + q)f (pqt) + pf (q2t)
pq(p – q)2t2 .

Then we see that if f (t) is defined on [0, T] then the function D2
p,qf (t) is defined on [0, T/p2].

The (p, q)-integral of a function f on [0,∞) is defined by

∫ t

0
f (s) dp,qs = (p – q)t

∞∑
n=0

qn

pn+1 f
(

qn

pn+1 t
)

. (1.3)

If f (t) = tα , α > 0, then we have the formula

∫ t

0
sα dp,qs =

p – q
pα+1 – qα+1 tα+1. (1.4)

Now we observe that if the function f is defined on a finite interval [0, T] then the function∫ t
0 f (s) dp,qs is defined on [0, pT]. In [1], the authors gave the formula of the double (p, q)-

integral

∫ t

0

∫ s

0
f (r) dp,qr dp,qs =

1
p

∫ t

0
(t – qs)f

(
1
p

s
)

dp,qs

=
1
p

(p – q)t2
∞∑

n=0

qn

p2n+2

(
pn+1 – qn+1)f

(
qn

pn+2 t
)

,

which implies that if f is defined on [0, T], then the function
∫ t

0
∫ s

0 f (r) dp,qr dp,qs is defined
on [0, p2T].

The (p, q)-calculus was introduced in [3]. For some recent results, see [4–10] and ref-
erences cited therein. For p = 1, the (p, q)-calculus is reduced to the classical q-calculus
initiated by Jackson [11, 12]. See also [13, 14].

In [15, 16], M. Tunç and E. Göv defined the quantum (p, q)-difference of a function f on
the finite interval [a, b] by

aDp,qf (t) =
f (pt + (1 – p)a) – f (qt + (1 – q)a)

(p – q)(t – a)
, t �= a, (1.5)

and aDp,qf (a) = f ′(a). The (p, q)-difference of a power function f (t) = (t – a)α , α ≥ 0, is
given by

Dp,q(t – a)α = [α]p,q(t – a)α–1. (1.6)

Furthermore, they defined the (p, q)-integral of a function f on [a, b] as

∫ t

a
f (s) adp,qs = (p – q)(t – a)

∞∑
n=0

qn

pn+1 f
(

qn

pn+1 t +
(

1 –
qn

pn+1

)
a
)

. (1.7)
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As is customary, we put the following relation:

∫ t

a
(s – a)α adp,qs =

p – q
(pα+1 – qα+1)

(t – a)α+1, α ≥ 0. (1.8)

It is obvious that if a = 0, then equations (1.5)–(1.8) are reduced to (1.1)–(1.4), respectively.
The domain-shift properties of the (p, q)-difference and (p, q)-integral operators for a

function f (t), t ∈ [a, b] are respectively given by

aDp,qf (t), t ∈
[

a,
1
p

(b – a) + a
]

and
∫ t

a
f (s) adp,qs, t ∈ [

a, p(b – a) + a
]
.

Also we remark that if p = 1, then both domains are reduced to [a, b]. For the shifting of
the second order (p, q)-difference and integral domains, we consider the following result.

Lemma 1.1 Let f be a function defined on an interval [a, b] with a ≥ 0. The domains of
aD2

p,qf and
∫ t

a
∫ r

a f (s) adp,qs adp,qr are

[
a,

1
p2 (b – a) + a

]
and

[
a, p2(b – a) + a

]
,

respectively.

Proof We have

aD2
p,qf (t) = aDp,q(aDp,qf )(t) = aDp,q

(
f (pt + (1 – p)a) – f (qt + (1 – q)a)

(p – q)(t – a)

)

=
{

f (p(pt + (1 – p)a) + (1 – p)a) – f (q(pt + (1 – p)a) + (1 – q)a)
(p – q)((pt + (1 – p)a) – a)

–
f (p(qt + (1 – q)a) + (1 – p)a) – f (q(qt + (1 – q)a) + (1 – q)a)

(p – q)((qt + (1 – q)a) – a)

}

/(p – q)(t – a)

=
qf (p2t + (1 – p2)a) – (p + q)f (pqt + (1 – pq)a) + pf (q2t + (1 – q2)a)

pq(p – q)2(t – a)2 .

Setting p2t + (1 – p2)a = b, we have

t =
1
p2 (b – a) + a.

Then aD2
p,qf is defined on [a, (b – a)/p2 + a].

Next we write the double (p, q)-integral in the form of an infinite sum of a function f
defined on [a, b]. We have

∫ t

a

∫ s

a
f (r) adp,qr adp,qs =

∫ t

a

[
(p – q)(s – a)

∞∑
n=0

qn

pn+1 f
(

qn

pn+1 s +
{

1 –
qn

pn+1

}
a
)

adp,qs

]

= (p – q)
∞∑

n=0

qn

pn+1

[∫ t

a
(s – a)f

(
qn

pn+1 s +
{

1 –
qn

pn+1

}
a
)

adp,qs
]

.
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Now we consider

∫ t

a
(s – a)f

(
qn

pn+1 s +
{

1 –
qn

pn+1

}
a
)

adp,qs

= (p – q)(t – a)
∞∑

m=0

qm

pm+1

(
qm

pm+1 t +
{

1 –
qm

pm+1

}
a – a

)

× f
(

qn

pn+1

[
qm

pm+1 t +
{

1 –
qm

pm+1

}
a
]

+
{

1 –
qn

pn+1

}
a
)

= (p – q)(t – a)2
∞∑

m=0

q2m

p2m+2 f
(

qm+n

pm+n+2 t +
{

1 –
qm+n

pm+n+2

}
a
)

,

which leads to the expression

∫ t

a

∫ s

a
f (r) adp,qr adp,qs

= (p – q)2(t – a)2
∞∑

n=0

∞∑
m=0

q2m+n

p2m+n+3 f
(

qm+n

pm+n+2 t +
{

1 –
qm+n

pm+n+2

}
a
)

. (1.9)

For m = n = 0 and setting

1
p2 t +

{
1 –

1
p2

}
a = b,

we obtain t = p2(b – a) + a, which implies that
∫ t

a
∫ r

a f (s) adp,qs adp,qr is valid on
[a, p2(b – a) + a]. The proof is completed. �

Before going to the next result, we would like to recall the operator aΦr defined by

aΦr(m) = rm + (1 – r)a,

where m, a ∈ R and r ∈ [0, 1]. Some properties of this operator can be found in [17].

Lemma 1.2 Let f be a function defined on [a, b]. Then the double (p, q)-integral of f can
be written as a single one by

∫ t

a

∫ s

a
f (r) adp,qr adp,qs =

1
p

∫ t

a

(
t – aΦq(s)

)
f
(

aΦ 1
p

(s)
)

adp,qs, t ∈ [
a, p2(b – a) + a

]
.

(1.10)

Proof The double summation in (1.9) can be formulated by a single summation as

∞∑
n=0

∞∑
m=0

q2m+n

p2m+n+3 f
(

qm+n

pm+n+2 t +
{

1 –
qm+n

pm+n+2

}
a
)

=
∞∑

n=0

[
qn

pn+3 f
(

qn

pn+2 t +
{

1 –
qn

pn+2

}
a
)

+
qn+2

pn+5 f
(

qn+1

pn+3 t +
{

1 –
qn+1

pn+3

}
a
)
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+
qn+4

pn+7 f
(

qn+2

pn+4 t +
{

1 –
qn+2

pn+4

}
a
)

+
qn+6

pn+9 f
(

qn+3

pn+5 t +
{

1 –
qn+3

pn+5

}
a
)

+ · · ·
]

=
1
p3 f

(
1
p2 t +

{
1 –

1
p2

}
a
)

+
q
p4

(
1 +

q
p

)
f
(

q
p3 t +

{
1 –

q
p3

}
a
)

+
q2

p5

(
1 +

q
p

+
q2

p2

)
f
(

q2

p4 t +
{

1 –
q2

p4

}
a
)

+ · · ·

=
∞∑

n=0

qn

pn+3

(
pn+1 – qn+1

pn(p – q)

)
f
(

qn

pn+2 t +
{

1 –
qn

pn+2

}
a
)

=
1

p – q

∞∑
n=0

qn

pn+1

(
1
p

–
qn+1

pn+2

)
f
(

qn

pn+2 t +
{

1 –
qn

pn+2

}
a
)

.

Substituting into (1.9) yields

∫ t

a

∫ s

a
f (r) adp,qr adp,qs

=
1
p

(p – q)(t – a)
∞∑

n=0

qn

pn+1

(
t –

[
qn+1

pn+1 t +
{

1 –
qn+1

pn+1

}
a
])

× f
(

qn

pn+2 t +
{

1 –
qn

pn+2

}
a
)

=
1
p

(p – q)(t – a)
∞∑

n=0

qn

pn+1

(
t – aΦq

([
qn

pn+1 t +
{

1 –
qn

pn+1

}
a
]))

× f
(

aΦ 1
p

(
qn

pn+1 t +
{

1 –
qn

pn+1

}
a
))

=
1
p

∫ t

a

(
t – aΦq(s)

)
f
(

aΦ 1
p

(s)
)

adp,qs,

which is completed the proof. �

Remark 1.3 If a = 0, then (1.10) is reduced to a result of Theorem 3 in [1].

The following theorem has been proved in [16].

Theorem 1.4 The fundamental relations of (p, q)-calculus can be stated as
(i) aDp,q

∫ t
a f (s) adp,qs = f (t);

(ii)
∫ t

a aDp,qf (s) adp,qs = f (t) – f (a).

In this paper we study the impulsive (p, q)-difference equations with initial and boundary
conditions. We consider four types of problems, two impulsive (p, q)-difference equations
of type I and two impulsive (p, q)-difference equations of type II (explained in the next
section). Existence and uniqueness results are proved via Banach’s contraction mapping
principle. Examples illustrating the obtained results are also constructed.

2 Impulsive (p, q)-difference equations
In this section, we consider the first and second order (p, q)-difference equations with
initial or boundary conditions and also prove the existence and uniqueness of solutions
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for impulsive problems. Firstly, let tk , k = 1, . . . , m, be the impulsive points such that 0 = t0 <
t1 < · · · < tk < · · · < tm < tm+1 = T and Jk = (tk , tk+1], k = 1, . . . , m, J0 = [0, t1] be the intervals
such that

⋃m
k=0 Jk = [0, T] := J . The investigations are based on (p, q)-calculus introduced

in the previous section by replacing a point a by tk , quantum numbers p by pk and q by qk ,
k = 0, 1, . . . , m, and also applying the (pk , qk)-difference and (pk , qk)-integral operators only
on a finite subinterval of J . In addition, the consecutive subintervals can be related with
jump conditions which provide a meaning of quantum difference equations with impulse
effects. There are two types of impulsive problems which will be established in the next
two subsections. The consecutive domains of impulsive (p, q)-difference equations of type
I are overlapped, while the unknown functions of impulsive equations of type II are defined
on disconnected consecutive domains.

2.1 Impulsive (p, q)-difference equations of type I
Consider the first-order impulsive (p, q)-difference impulsive boundary value problem of
the form

⎧⎪⎪⎨
⎪⎪⎩

tk Dpk ,qk x(t) = f (t, x(t)), t ∈ (tk , 1
pk

(tk+1 – tk) + tk], k = 0, 1, . . . , m,

�x(tk) = ϕk(x(tk)), k = 1, 2, . . . , m,

αx(0) + βx(T) = γ ,

(2.1)

where α, β , and γ are real constants with α �= –β , the quantum numbers pk , qk satisfy
0 < qk < pk ≤ 1, k = 0, 1, . . . , m, f : [0, ((T – tm)/pm) + tm] × R → R and ϕk : R → R, k =
1, 2, . . . , m, are given functions, and tk Dpk ,qk is the quantum (pk , qk)-difference operator
starting at a point tk , k = 0, 1, . . . , m.

We remark that there are some overlapped intervals of domains of the first equation in
(2.1). For example, if the unknown function x(t) is defined on J = [0, 2] and if there is an
impulse point t1 = 1, that is, x(1+) �= x(1–), with p0 = 1/2, q0 = 1/3, p1 = 1/4, and q1 = 1/5.
Then we have the (p, q)-difference equations

0D 1
2 , 1

3
x(t) = f

(
t, x(t)

)
, t ∈ (0, 2] and 1D 1

4 , 1
5

x(t) = f
(
t, x(t)

)
, t ∈ (1, 5].

However, by the shifting property of (p, q)-integration applied to the two above equations,
we have

x(t) = x(0) +
∫ t

0
f
(
s, x(s)

)
0d 1

2 , 1
3

s t ∈ (0, 1],

and

x(t) = x
(
1+)

+
∫ t

1
f
(
s, x(s)

)
1d 1

4 , 1
5

s, t ∈ (1, 2],

respectively.
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Theorem 2.1 The nonlinear first-order (p, q)-difference boundary value problem (2.1) can
be transformed into an integral equation

x(t) =
γ

(α + β)
–

β

(α + β)

( m∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(tj)

))

+
k–1∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

k∑
j=1

ϕj
(
x(tj)

)
+

∫ t

tk

f
(
s, x(s)

)
tk dpk ,qk s, t ∈ J , (2.2)

with
∑b

a(·) = 0, if b < a.

Proof From t0 Dp0,q0 x(t) = f (t, x(t)), t ∈ (t0, (1/p0)(t1 –t0)+t0], by taking the (p0, q0)-integral,
we obtain

x(t) = x(0) +
∫ t

t0

f
(
s, x(s)

)
t0 dp0,q0 s, t ∈ (t0, t1],

by using Theorem 1.4 and the shifting property. Next, for t1 Dp1,q1 x(t) = f (t, x(t)), t ∈
(t1, (1/p1)(t2 – t1) + t1], where t1 is the first impulsive point in J , we also obtain by applying
the (p1, q1)-integration,

x(t) = x
(
t+
1
)

+
∫ t

t1

f
(
s, x(s)

)
t1 dp1,q1 s, t ∈ (t1, t2].

By the impulsive condition x(t+
1 ) = x(t1) + ϕ1(x(t1)), it follows, for t ∈ (t1, t2], that

x(t) = x(0) +
∫ t1

t0

f
(
s, x(s)

)
t0 dp0,q0 s + ϕ1

(
x(t1)

)
+

∫ t

t1

f
(
s, x(s)

)
t1 dp1,q1 s.

For t2 Dp2,q2 x(t) = f (t, x(t)), t ∈ (t2, (1/p2)(t3 – t2) + t2], we get

x(t) = x
(
t+
2
)

+
∫ t

t2

f
(
s, x(s)

)
t2 dp2,q2 s, t ∈ (t2, t3],

by (p2, q2)-integration and

x(t) = x(0) +
∫ t1

t0

f
(
s, x(s)

)
t0 dp0,q0 s +

∫ t2

t1

f
(
s, x(s)

)
t1 dp1,q1 s

+ ϕ1
(
x(t1)

)
+ ϕ2

(
x(t2)

)
+

∫ t

t2

f
(
s, x(s)

)
t2 dp2,q2 s, t ∈ (t2, t3],

due to the impulsive condition x(t+
2 ) = x(t–

2 ) + ϕ2(x(t2)).
Repeating this process, we obtain, for t ∈ Jk , k = 0, 1, . . . , m, that

x(t) = x(0) +
k–1∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

k∑
j=1

ϕj
(
x(tj)

)
+

∫ t

tk

f
(
s, x(s)

)
tk dpk ,qk s. (2.3)
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After that from the boundary condition αx(0) + βx(T) = γ , we have

x(0) =
γ

(α + β)
–

β

(α + β)

( m∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(tj)

))
.

Putting the value of x(0) into (2.3), shows that (2.2) is true and the proof is completed. �

Remark 2.2 If α �= 0 and β = 0, then the boundary value problem (2.1) can be reduced to
the initial value problem with initial condition x(0) = γ /α.

Before going to the second-order impulsive problem, we define

τk =
1

pk–1
(tk – tk–1) + tk–1, k = 1, 2, . . . , m,

which are impulsive shifting points of the (pk , qk)-derivative of the unknown function in
our system. In addition, we introduce a notation

〈ti+1〉k =

⎧⎨
⎩

ti+1, ti+1 ≤ tk ,

t, ti+1 > tk .

For example,

2∑
i=0

(〈ti+1〉2 – ti
)
Ki =

(〈t1〉2 – t0
)
K0 +

(〈t2〉2 – t2
)
K1 +

(〈t3〉2 – t2
)
K2

= (t1 – t0)K0 + (t2 – t1)K1 + (t – t2)K2,

where Ki ∈R, i = 0, 1, 2.
Now, we consider the second-order impulsive (p, q)-difference initial value problem of

the form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tk D2
pk ,qk

x(t) = f (t, x(t)), t ∈ (tk , 1
p2

k
(tk+1 – tk) + tk], k = 0, 1, . . . , m,

�x(tk) = ϕk(x(tk)), k = 1, 2, . . . , m,

tk Dpk ,qk x(t+
k ) – tk–1 Dpk–1,qk–1 x(τk) = ϕ∗

k (x(tk)), k = 1, 2, . . . , m,

x(0) = λ1, t0 Dp0,q0 x(0) = λ2,

(2.4)

where f : [0, ((T – tm)/p2
m) + tm] ×R →R, ϕk : R →R and ϕ∗

k : R →R, are given functions,
λ1, λ2 are given constants. Observe that the distance between the impulsive points tk and
τk in the third equation of (2.4) depends on the value of pk–1 for k = 1, 2, . . . , m. Indeed,

τk – tk =
1

pk–1
(tk – tk–1) + tk–1 – tk =

(1 – pk–1)
pk–1

(tk – tk–1),

which has appeared by the shifting property of (p, q)-calculus as discussed in the previous
section.
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Theorem 2.3 The impulsive initial value problem of type I given by the (p, q)-difference
equation (2.4) can be expressed as an integral equation of the form

x(t) = λ1 +
k∑

i=0

(〈ti+1〉k – ti
)[

λ2 +
i–1∑
j=0

{∫ τj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x(tj+1)

)}]

+
k–1∑
r=0

{
1
pr

∫ tr+1

tr

(
tr+1 – tr Φqr (s)

)
fx
(

tr Φ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x(tr+1)

)}

+
1
pk

∫ t

tk

(
t – tk Φqk (s)

)
fx
(

tk Φ 1
pk

(s)
)

tk dpk ,qk s, t ∈ Jk , k = 0, 1, . . . , m, (2.5)

where fx(trΦ 1
pr

(s)) = f (trΦ 1
pr

(s), x(trΦ 1
pr

(s))), r = 0, 1, . . . , k, and
∑b

a(·) = 0, when b < a.

Proof By computing the (p0, q0)-integral of both sides of the first equation of (2.4), we get

t0 Dp0,q0 x(t) = t0 Dp0,q0 x(0) +
∫ t

t0

f
(
s, x(s)

)
t0 dp0,q0 s, t ∈

(
0,

1
p0

t1

]
.

Applying another (p0, q0)-integration, we obtain, for t ∈ (0, t1],

x(t) = x(0) + tt0 Dp0,q0 x(0) +
∫ t

t0

∫ r

t0

f
(
s, x(s)

)
t0 dp0,q0 s t0 dp0,q0 r

= λ1 + λ2t +
1
p0

∫ t

t0

(
t – t0Φq0 (s)

)
fx
(

t0Φ 1
p0

(s)
)

t0 dp0,q0 s.

For t ∈ (t1, ((t2 – t1)/p2
1) + t1], applying the double (p1, q1)-integration to both sides of the

first equation of (2.4), we have

x(t) = x
(
t+
1
)

+ (t – t1)t1 Dp1,q1 x
(
t+
1
)

+
1
p1

∫ t

t1

(
t – t1Φq1 (s)

)
fx
(

t1Φ 1
p1

(s)
)

t1 dp1,q1 s,

where t ∈ (t1, t2]. Due to the impulsive conditions

x
(
t+
1
)

= x(t1) + ϕ1
(
x(t1)

)

= λ1 + λ2t1 +
1
p0

∫ t1

t0

(
t1 – t0Φq0 (s)

)
fx
(

t0Φ 1
p0

(s)
)

t0 dp0,q0 s + ϕ1
(
x(t1)

)

and

t1 Dp1,q1 x
(
t+
1
)

= t0 Dp0,q0 x(τ1) + ϕ∗
1
(
x(t1)

)

= λ2 +
∫ τ1

t0

f
(
s, x(s)

)
t0 dp0,q0 s + ϕ∗

1
(
x(t1)

)
,
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we have

x(t) = λ1 + λ2t1 +
1
p0

∫ t1

t0

(
t1 – t0Φq0 (s)

)
fx
(

t0Φ 1
p0

(s)
)

t0 dp0,q0 s + ϕ1
(
x(t1)

)

+ (t – t1)
[
λ2 +

∫ τ1

t0

f
(
s, x(s)

)
t0 dp0,q0 s + ϕ∗

1
(
x(t1)

)]

+
1
p1

∫ t

t1

(
t – t1Φq1 (s)

)
fx
(

t1Φ 1
p1

(s)
)

t1 dp1,q1 s, t ∈ (t1, t2].

Similarly, we deduce the integral equation (2.5), as desired. �

Now, the existence and uniqueness results for problems (2.1) and (2.4) will be proved by
using the Banach’s contraction mapping principle. Let us define the space PC(J ,R) = {x :
J →R: x(t) is continuous everywhere except for some tk in which x(t+

k ) and x(t–
k ) exist and

x(t–
k ) = x(tk), k = 1, 2, . . . , m}. The set PC(J ,R) is a Banach space equipped with the norm

‖x‖ = sup{|x(t)| : t ∈ J}. For convenience, we put

Ω1 =
|β| + |α + β|

|α + β|
m∑

i=0

(ti+1 – ti),

Ω2 = m
( |β| + |α + β|

|α + β|
)

,

Ω3 =
m∑

i=0

{
(ti+1 – ti)

i–1∑
j=0

(τj+1 – tj)

}
+

m∑
r=0

(tr+1 – tr)2

pr + qr
,

Ω4 =
m∑

i=0

(ti+1 – ti)i.

Theorem 2.4 Let f : [0, ((T – tm)/pm) + tm] × R → R and ϕk : R → R, k = 1, 2, . . . , m, be
given functions satisfying

(H1) There exist positive constants L1 and L2 such that

∣∣f (t, x) – f (t, y)
∣∣ ≤ L1|x – y| and

∣∣ϕk(x) – ϕk(y)
∣∣ ≤ L2|x – y|,

for all t ∈ [0, ((T – tm)/pm) + tm], x, y ∈R and k = 1, 2, . . . , m.
If

L1Ω1 + L2Ω2 < 1, (2.6)

then the boundary value problem (2.1) has a unique solution on J .

Proof In view of Theorem 2.1, we define the operator A : PC(J ,R) → PC(J ,R) by

Ax(t) =
γ

(α + β)
–

β

(α + β)

( m∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(tj)

))

+
k–1∑
i=0

∫ ti+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

k∑
j=1

ϕj
(
x(tj)

)
+

∫ t

tk

f
(
s, x(s)

)
tk dpk ,qk s, t ∈ J .
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Define the ball Br1 = {x ∈ PC(J ,R) : ‖x‖ ≤ r1} where the positive constant r1 is defined by

r1 >
(|γ |/|α + β|) + M1Ω1 + M2Ω2

1 – (L1Ω1 + L2Ω2)
.

The Banach contraction mapping principle is used to claim that there exists a unique
fixed point of an operator equation x = Ax in Br1 . By setting supt∈J |f (t, 0)| = M1, and
sup{|ϕi(0)|, i = 1, 2, . . . , m} = M2 and using the inequalities |f (t, x)| ≤ |f (t, x) – f (t, 0)| +
|f (t, 0)| ≤ L1r1 + M1 and |ϕi(x)| ≤ |ϕi(x) – ϕi(0)| + |ϕi(0)| ≤ L1r1 + M2, i = 1, 2, . . . , m, we
have

∣∣Ax(t)
∣∣ ≤ |γ |

|α + β| +
|β|

|α + β|

( m∑
i=0

∫ ti+1

ti

∣∣f (s, x(s)
)∣∣ ti dpi ,qi s +

m∑
j=1

∣∣ϕj
(
x(tj)

)∣∣
)

+
k–1∑
i=0

∫ ti+1

ti

∣∣f (s, x(s)
)∣∣ ti dpi ,qi s +

k∑
j=1

∣∣ϕj
(
x(tj)

)∣∣ +
∫ t

tk

∣∣f (s, x(s)
)∣∣ tk dpk ,qk s

≤ |γ |
|α + β| +

|β|
|α + β|

( m∑
i=0

(L1r1 + M1)
∫ ti+1

ti

(1) ti dpi ,qi s + (L2r1 + M2)
m∑

j=1

(1)

)

+ (L1r1 + M1)
m–1∑
i=0

∫ ti+1

ti

(1) ti dpi ,qi s + (L2r1 + M2)
m∑

j=1

(1)

+ (L1r1 + M1)
∫ tm+1

tm

(1) tk dpk ,qk s

=
|γ |

|α + β| +
|β|

|α + β|

(
(L1r1 + M1)

m∑
i=0

(ti+1 – ti) + m(L2r1 + M2)

)

+ (L1r1 + M1)
m–1∑
i=0

(ti+1 – ti) + m(L2r1 + M2) + (L1r1 + M1)(tm+1 – tm)

=
|γ |

|α + β| + L1Ω1r1 + L2Ω2r1 + M1Ω1 + M2Ω2 < r1,

which leads to ABr1 ⊂ Br1 . To prove that A is a contraction, we let x, y ∈ Br1 . Then we have

∣∣Ax(t) – Ay(t)
∣∣

≤ |β|
|α + β|

( m∑
i=0

∫ ti+1

ti

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ ti dpi ,qi s +
m∑

j=1

∣∣ϕj
(
x(tj)

)
– ϕj

(
y(tj)

)∣∣
)

+
k–1∑
i=0

∫ ti+1

ti

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ ti dpi ,qi s

+
k∑

j=1

∣∣ϕj
(
x(tj)

)
– ϕj

(
y(tj)

)∣∣ +
∫ t

tk

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ tk dpk ,qk s

≤ |β|
|α + β|

(
L1‖x – y‖

m∑
i=0

(ti+1 – ti) + mL2‖x – y‖
)
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+ L1‖x – y‖
m∑

i=0

(ti+1 – ti) + mL2‖x – y‖

= (L1Ω1 + L2Ω2)‖x – y‖.

Therefore, ‖Ax –Ay‖ ≤ (L1Ω1 + L2Ω2)‖x – y‖. By means of the Banach contraction map-
ping principle, the operator A has a unique fixed point in Br1 which is a unique solution
of boundary value problem (2.1). The proof is completed. �

Theorem 2.5 Assume that the functions f : [0, ((T – tm)/p2
m) + tm] ×R→R and ϕk : R →

R, k = 1, 2, . . . , m, satisfy (H1). In addition, we suppose that the functions ϕ∗
k : R → R, k =

1, 2, . . . , m, satisfy
(H2) There exists a positive constant L3 such that

∣∣ϕ∗
k (x) – ϕ∗

k (y)
∣∣ ≤ L3|x – y|,

for all x, y ∈R.
If

L1Ω3 + L2m + L3Ω4 < 1, (2.7)

then the boundary value problem (2.4) has a unique solution on [0, T].

Proof The proof is similar to that of Theorem 2.4 and is omitted. �

Example 2.6 Consider the following first-order impulsive quantum (p, q)-difference equa-
tion of type I subject to the boundary condition of the form:

⎧⎪⎪⎨
⎪⎪⎩

kD 1
k+2 , 1

k+3
x(t) = 1

18+t2 ( x2(t)+2|x(t)|
1+|x(t)| ) + 3

2 , t ∈ (k, 2k + 2], k = 0, 1, 2,

�x(k) = 1
6k sin x(tk), k = 1, 2,

1
2 x(0) + 1

3 x(3) = 1
4 .

(2.8)

Here pk = 1/(k + 2), qk = 1/(k + 3), k = 0, 1, 2, α = 1/2, β = 1/3, γ = 1/4, tk = k, k = 1, 2,
T = 3, and m = 2. The given data leads to constants Ω1 = 21/5, Ω2 = 14/5. Setting

f (t, x) =
1

18 + t2

(
x2 + 2|x|
1 + |x|

)
+

3
2

and ϕk(x) =
1

6k
sin x,

we have |f (t, x) – f (t, y)| ≤ (1/9)|x – y| and |ϕk(x) – ϕk(y)| ≤ (1/6)|x – y| which satisfy Con-
dition (H1) in Theorem 2.4 with L1 = 1/9 and L2 = 1/6. Since L1Ω1 + L2Ω2 = 14/15 < 1, by
Theorem 2.4, the boundary value problem (2.8) has a unique solution x on [0, 3].
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Example 2.7 Consider the following second-order impulsive quantum (p, q)-difference
equation of type I with the initial conditions of the form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kD2
1

k+2 , 1
k+3

x(t) = 1
5(t+5) tan–1 |x(t)| + 1

2 , t ∈ (k, k2 + 5k + 4], k = 0, 1, 2,

�x(k) = |x(tk )|
10k(1+|x(tk )|) , k = 1, 2,

kD 1
k+2 , 1

k+3
x(k) – (k–1)D 1

k+1 , 1
k+2

x(2k) = 1
15k2 sin |x(tk)|, k = 1, 2,

x(0) = 3
5 , 0D 1

2 , 1
3

x(0) = 5
7 .

(2.9)

Here the quantum constants pk , qk and impulsive points tk , are as in Example 2.6. In
addition, τk = 2k, k = 1, 2, and initial constants λ1 = 3/5, λ2 = 5/7. Next, we can compute
that Ω3 = 12.1365 and Ω4 = 3. Set

f (t, x) =
1

5(t + 5)
tan–1 |x| +

1
2

, ϕk(x) =
|x|

10k(1 + |x|) , and ϕ∗
k (x) =

1
15k2 sin |x|.

It is easy to see that f , ϕk , and ϕ∗
k satisfy (H1) and (H2) with L1 = 1/25, L2 = 1/10, and

L3 = 1/15. Therefore, we have L1Ω3 + L2m + L3Ω4 = 0.8855 < 1. Hence the boundary value
problem (2.9) has a unique solution x on [0, 3] by Theorem 2.5.

2.2 Impulsive (p, q)-difference equations of type II
Now we study the first-order impulsive (p, q)-difference boundary value problem of the
form

⎧⎪⎪⎨
⎪⎪⎩

tk Dpk ,qk x(t) = f (t, x(t)), t ∈ (tk , tk+1], k = 0, 1, . . . , m,

x(t+
k ) – x(ρk) = ϕk(x(ρk)), k = 1, 2, . . . , m,

αx(0) + βx(ρm+1) = γ ,

(2.10)

where f : J ×R →R and the functions ϕk , k = 1, 2, . . . , m, and constants α, β , γ are defined
as in Sect. 2.1. The constant ρk is defined by

ρk = pk–1(tk – tk–1) + tk–1, k = 1, 2, . . . , m, m + 1.

Then the lagging distance is tk – ρk = (1 – pk–1)(tk – tk–1) which depends on the value of
pk–1 ∈ (0, 1].

To observe the special characteristic of this type, by the shifting property of the (p, q)-
derivative, we see that the unknown function x(t) is defined on [t0,ρ1] ∪ (tk ,ρk+1], k =
1, 2, . . . , m.

Example 2.8 Let J = [0, 2] and t1 = 1 be an impulsive point. Then

0D 1
2 , 1

3
x(t) = f

(
t, x(t)

)
, t ∈ [0, 1],

and

1D 1
4 , 1

5
x(t) = f

(
t, x(t)

)
, t ∈ (1, 2],
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can be presented as

x(t) = x(0) +
∫ t

0
f
(
s, x(s)

)
0d 1

2 , 1
3

, t ∈
[

0,
1
2

]
,

and

x(t) = x
(
1+)

+
∫ t

1
f
(
s, x(s)

)
1d 1

4 , 1
5

, t ∈
(

1,
5
4

]
.

Theorem 2.9 The first-order type II (p, q)-difference boundary value problem (2.10) can
be expressed as an integral equation

x(t) =
γ

(α + β)
–

β

(α + β)

( m∑
i=0

∫ ρi+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(ρj)

))

+
k–1∑
i=0

∫ ρi+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

k∑
j=1

ϕj
(
x(ρj)

)
+

∫ t

tk

f
(
s, x(s)

)
tk dpk ,qk s, (2.11)

with
∑b

a(·) = 0, if b < a.

Proof Firstly, the (p0, q0)-integration of the first equation in (2.10) yields

x(t) = x(0) +
∫ t

t0

f
(
s, x(s)

)
t0 dp0,q0 s, t ∈ (t0,ρ1].

In particular, for t = ρ1, we have

x(ρ1) = x(0) +
∫ ρ1

t0

f
(
s, x(s)

)
t0 dp0,q0 s.

For k = 1, by (p1, q1)-integration, we obtain

x(t) = x
(
t+
1
)

+
∫ t

t1

f
(
s, x(s)

)
t1 dp1,q1 s, t ∈ (t1,ρ2],

which leads to

x(t) = x(0) +
∫ ρ1

t0

f
(
s, x(s)

)
t0 dp0,q0 s + ϕ1

(
x(ρ1)

)
+

∫ t

t1

f
(
s, x(s)

)
t1 dp1,q1 s,

by using the impulse condition x(t+
1 ) = x(ρ1) + ϕ1(x(ρ1)).

Repeating the process for any t ∈ (tk ,ρk+1], we get

x(t) = x(0) +
k–1∑
i=0

∫ ρi+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

k∑
j=1

ϕj
(
x(ρj)

)
+

∫ t

tk

f
(
s, x(s)

)
tk dpk ,qk s.

Since

x(ρm+1) = x(0) +
m∑

i=0

∫ ρi+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(ρj)

)
,
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by the boundary condition, we have

x(0) =
γ

(α + β)
–

β

(α + β)

( m∑
i=0

∫ ρi+1

ti

f
(
s, x(s)

)
ti dpi ,qi s +

m∑
j=1

ϕj
(
x(ρj)

))
,

which implies that (2.11) holds. This completes the proof. �

Next we define the points ρ∗
k = p2

k–1(tk –tk–1)+tk–1, k = 1, 2, . . . , m, m+1. Now we consider
the second-order type II impulsive (p, q)-difference initial value problem of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tk D2
pk ,qk

x(t) = f (t, x(t)), t ∈ (tk , tk+1], k = 0, 1, . . . , m,

x(t+
k ) – x(ρ∗

k ) = ϕk(x(ρ∗
k )), k = 1, 2, . . . , m,

tk Dpk ,qk x(t+
k ) – tk–1 Dpk–1,qk–1 x(ρk) = ϕ∗

k (x(ρ∗
k )), k = 1, 2, . . . , m,

x(0) = λ1, t0 Dp0,q0 x(0) = λ2,

(2.12)

where f : J × R → R, while other functions and constants are defined as in Sect. 2.1.
Since 0 < pk ≤ 1, we have ρ∗

k ≤ tk , and consequently (tk ,ρ∗
k ] ⊆ (tk , tk+1] for all k =

0, 1, . . . , m. By Lemma 1.1, the unknown function x(t) of problem (2.12) is defined on
[t0,ρ∗

1 ]
⋃m

k=1(tk ,ρ∗
k+1].

Theorem 2.10 The initial value problem (2.12) of the impulsive (p, q)-difference equation
of type II can be stated as an integral equation of the form

x(t) = λ1 +
k∑

i=0

(〈
ρ∗

i+1
〉
k – ti

)[
λ2 +

i–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}]

+
k–1∑
r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
fx
(

tr Φ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x
(
ρ∗

r+1
))}

+
1
pk

∫ t

tk

(
t – tk Φqk (s)

)
fx
(

tk Φ 1
pk

(s)
)

tk dpk ,qk s, t ∈ (tk ,ρ∗
k+1], k = 0, 1, . . . , m. (2.13)

Proof The mathematical induction will be used to prove that (2.13) holds. To do this, by
applying the double (p0, q0)-integration to the first equation of (2.12), we obtain

x(t) = λ1 + λ2t +
1
p0

∫ t

t0

(
t – t0Φq0 (s)

)
fx
(

t0Φ 1
p0

(s)
)

t0 dp0,q0 s, t ∈ (t0,ρ∗
1 ],

which implies that (2.13) is true for k = 0. In the next step, we suppose that (2.13) holds
for t ∈ (tk ,ρ∗

k+1]. By mathematical induction, we shall show that (2.13) holds on (tk+1,ρ∗
k+2].

Now, the double (p0, q0)-integration of the first equation of (2.12) yields on t ∈ (tk+1,ρ∗
k+2]

that

x(t) = x
(
t+
k+1

)
+ (t – tk+1)tk+1 Dpk+1,qk+1 x

(
t+
k+1

)

+
1

pk+1

∫ t

tk+1

(
t – tk+1Φqk+1 (s)

)
fx
(

tk+1Φ 1
pk+1

(s)
)

tk+1 dpk+1,qk+1 s. (2.14)
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We have

x
(
t+
k+1

)
= x

(
ρ∗

k+1
)

+ ϕk+1
(
x
(
ρ∗

k
))

= λ1 +
k∑

i=0

(
ρ∗

i+1 – ti
)[

λ2 +
i–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}]

+
k∑

r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
fx
(

trΦ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x
(
ρ∗

r+1
))}

and

tk+1 Dpk+1,qk+1 x
(
t+
k+1

)
= tk Dpk ,qk x(ρk+1) + ϕ∗

k+1
(
x
(
ρ∗

k
))

= λ2 +
k–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}

+
∫ ρk+1

tk

f
(
s, x(s)

)
tk dpk ,qk s + ϕ∗

k+1
(
x
(
ρ∗

k+1
))

= λ2 +
k∑

j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}

.

Substituting above two values into (2.14), we obtain

x(t) = λ1 +
k∑

i=0

(
ρ∗

i+1 – ti
)[

λ2 +
i–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}]

+
k∑

r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
fx
(

tr Φ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x
(
ρ∗

r+1
))}

+ (t – tk+1)

(
λ2 +

k∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))})

+
1

pk+1

∫ t

tk+1

(
t – tk+1Φqk+1 (s)

)
fx
(

tk+1Φ 1
pk+1

(s)
)

tk+1 dpk+1,qk+1 s

= λ1 +
k+1∑
i=0

(〈
ρ∗

i+1
〉
k+1 – ti

)[
λ2 +

i–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}]

+
k∑

r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
fx
(

tr Φ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x
(
ρ∗

r+1
))}

+
1

pk+1

∫ t

tk+1

(
t – tk+1Φqk+1 (s)

)
fx
(

tk+1Φ 1
pk+1

(s)
)

tk+1 dpk+1,qk+1 s,

which holds for (tk+1,ρ∗
k+2]. This completes the proof. �

To investigate the impulsive (p, q)-difference equations of type II, we define intervals of
solutions as Λ1 = (

⋃m
k=0(tk ,ρk+1]) ∪ {0} and Λ2 = (

⋃m
k=0(tk ,ρ∗

k+1]) ∪ {0}, and also the spaces
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PC1(Λ1,R) = {x : Λ1 →R: x(t) is continuous everywhere on Λ1 such that x(t+
k ) and x(ρk+1)

exist for all k = 0, 1, . . . , m} and PC2(Λ2,R) = {x : Λ2 → R: x(t) is continuous everywhere
on Λ2 such that x(t+

k ) and x(ρ∗
k+1) exist for all k = 0, 1, . . . , m}. Both of them are Banach

spaces equipped with the norms ‖x‖1 = sup{|x(t)|, t ∈ Λ1} and ‖x‖2 = sup{|x(t)|, t ∈ Λ2}.
In proving our next results, we use the constants:

Ω5 =
|β| + |α + β|

|α + β|
m∑

i=0

(ρi+1 – ti),

Ω6 :=
m∑

i=0

{(
ρ∗

i+1 – ti
) i–1∑

j=0

(ρj+1 – tj)

}
+

m∑
r=0

(ρ∗
r+1 – tr)2

pr + qr
,

Ω7 :=
m∑

i=0

(
ρ∗

i+1 – ti
)
i.

Applying Theorem 2.9 to define the operator on PC1(Λ1,R) and following the method of
Theorem 2.4, we can easily prove the existence of a unique solution of problem (2.10).

Theorem 2.11 Assume that the functions f : [0, T] × R → R and ϕk : R → R, k =
1, 2, . . . , m, satisfy condition (H1). If

L1Ω5 + L2Ω2 < 1, (2.15)

then the boundary value problem of type II (2.10) has a unique solution on Λ1.

Theorem 2.12 Assume that the functions f : [0, T] ×R →R, ϕk : R →R and ϕ∗
k : R →R,

k = 1, 2, . . . , m, satisfy (H1)–(H2). If

L1Ω6 + L2m + L3Ω7 < 1, (2.16)

then the problem of type II (2.12) has a unique solution on Λ2.

Proof To show the technique of computation of constants Ω6 and Ω7, we give a short
proof. Now we prove that the operator equation x = Bx has a unique fixed point, where
the operator B : PC2(Λ2,R) → PC2(Λ2,R) is defined, in view of Theorem 2.10, by

Bx(t) = λ1 +
k∑

i=0

(〈
ρ∗

i+1
〉
k – ti

)[
λ2 +

i–1∑
j=0

{∫ ρj+1

tj

f
(
s, x(s)

)
tj dpj ,qj s + ϕ∗

j+1
(
x
(
ρ∗

j+1
))}]

+
k–1∑
r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
fx
(

tr Φ 1
pr

(s)
)

tr dpr ,qr s + ϕr+1
(
x
(
ρ∗

r+1
))}

+
1
pk

∫ t

tk

(
t – tk Φqk (s)

)
fx
(

tk Φ 1
pk

(s)
)

tk dpk ,qk s, t ∈ (tk ,ρ∗
k+1], k = 0, 1, . . . , m.

By a similar method as in Theorem 2.4, we can show that the operator B maps a subset
of PC2(Λ2,R) into subset of PC2(Λ2,R). Next, we will prove that B is a contraction. Let
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x, y ∈ PC2(Λ2,R). Then we have

∣∣Bx(t) – By(t)
∣∣

≤
k∑

i=0

(〈
ρ∗

i+1
〉
k – ti

)[ i–1∑
j=0

{∫ ρj+1

tj

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ tj dpj ,qj s

+
∣∣ϕ∗

j+1
(
x
(
ρ∗

j+1
))

– ϕ∗
j+1

(
y
(
ρ∗

j+1
))∣∣

}]

+
k–1∑
r=0

{
1
pr

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)∣∣fx

(
tr Φ 1

pr
(s)

)
– fy

(
tr Φ 1

pr
(s)

)∣∣ tr dpr ,qr s

+
∣∣ϕr+1

(
x
(
ρ∗

r+1
))

– ϕr+1
(
y
(
ρ∗

r+1
))∣∣

}

+
1
pk

∫ t

tk

(
t – tk Φqk (s)

)∣∣fx
(

tk Φ 1
pk

(s)
)

– fy
(

tk Φ 1
pk

(s)
)∣∣ tk dpk ,qk s

≤
m∑

i=0

(
ρ∗

i+1 – ti
)[ i–1∑

j=0

{
L1‖x – y‖2

∫ ρj+1

tj

(1) tj dpj ,qj s + L3‖x – y‖2

}]

+
m–1∑
r=0

{
1
pr

L1‖x – y‖2

∫ ρ∗
r+1

tr

(
ρ∗

r+1 – tr Φqr (s)
)
(1) tr dpr ,qr s + L2‖x – y‖2

}

+
1

pm
L1‖x – y‖2

∫ ρ∗
m+1

tm

(
ρ∗

m+1 – tmΦqm (s)
)
(1) tm dpm ,qm s

=
m∑

i=0

(
ρ∗

i+1 – ti
)[ i–1∑

j=0

{
L1‖x – y‖2(ρj+1 – tj) + L3‖x – y‖2

}]

+
m–1∑
r=0

{
L1‖x – y‖2

(ρ∗
r+1 – tr)2

pr + qr
+ L2‖x – y‖2

}
+ L1‖x – y‖2

(ρ∗
m+1 – tm)2

pm + qm

= (L1Ω6 + L2m + L3Ω7)‖x – y‖2,

which implies that ‖Bx – By‖2 ≤ (L1Ω6 + L2m + L3Ω7)‖x – y‖2. Condition (2.16) and the
Banach contraction mapping principle guarantee that the impulsive (p, q)-difference ini-
tial value problem of type II (2.12) has a unique solution on Λ2. The proof is completed. �

Example 2.13 Consider the following first-order impulsive (p, q)-difference equation of
type II subject to the boundary condition of the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

kD k+1
k+2 , k+1

k+3
x(t) = 5

6(3+t)2 ( x2(t)+2|x(t)|
1+|x(t)| ) + 3

4 , t ∈ (k, k + 1], k = 0, 1, 2,

x(k) – x( k2+k–1
k+1 ) = 1

6k tan–1(x( k2+k–1
k+1 )), k = 1, 2,

1
2 x(0) + 1

3 x( 11
4 ) = 1

4 .

(2.17)

Here the quantum numbers are pk = (k +1)/(k +2), qk = (k +1)/(k +3), k = 0, 1, 2, J = [0, 3],
tk = k, k = 1, 2, α = 1/2, β = 1/3, γ = 1/4, and ρk = (k2 + k – 1)/(k + 1). We can find that
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Ω2 = 2.8000, Ω5 = 2.6833, and

Λ1 =
[

0,
1
2

]
∪

(
1,

5
3

]
∪

(
2,

11
4

]
.

By setting

f (t, x) =
5

6(3 + t)2

(
x2 + 2|x|
1 + |x|

)
+

3
4

and ϕk(x) =
1

6k
tan–1(x),

we see that the functions f and ϕk satisfy (H1) with L1 = 5/27 and L2 = 1/6, respectively.
Then we get L1Ω5 + L2Ω2 = 0.9543 < 1. Therefore, by Theorem 2.11, the boundary value
problem (2.17) has a unique solution x on Λ1.

Example 2.14 Consider the following second-order impulsive (p, q)-difference equation
of type II with the initial conditions of the form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kD2
k+1
k+2 , k+1

k+3
x(t) = 1

10(t+6) sin |x(t)| + 5
6 , t ∈ (k, k + 1], k = 0, 1, 2,

x(k+) – x( k3+2k2–k–1
(k+1)2 ) = 3

5(k+1)2 tan–1(x( k3+2k2–k–1
(k+1)2 )), k = 1, 2,

kD k+1
k+2 , k+1

k+3
x(k+) – (k–1)D k

k+1 , k
k+2

x( k2+k–1
k+1 ) = 1

5k3 |x( k3+2k2–k–1
(k+1)2 )|, k = 1, 2,

x(0) = 3
5 , 0D 1

2 , 1
3

x(0) = 5
7 .

(2.18)

The quantum numbers pk , qk , impulsive points tk , ρk , and interval J are defined the same
as in Example 2.13. We have the constants λ1 = 3/5, λ2 = 5/7, and points ρ∗

k = (k3 + 2k2 –
k – 1)/(k + 1)2. Next we can find that Ω6 = 18.4273, Ω7 = 1.5694, and

Λ2 =
[

0,
1
4

]
∪

(
1,

13
9

]
∪

(
2,

41
16

]
.

By setting

f (t, x) =
1

10(t + 6)
sin |x| +

5
6

, ϕk(x) =
3

5(k + 1)2 tan–1(x), and ϕ∗
k (x) =

1
5k3 |x|,

we deduce that (H1)–(H2) are fulfilled with L1 = 1/60, L2 = 3/20, and L3 = 1/5. Hence, it
follows that L1Ω6 + L2m + L3Ω7 = 0.9210 < 1. Therefore, by applying Theorem 2.12, the
boundary value problem (2.18) has a unique solution x on Λ2.

3 Conclusion
In this research, we initiated the study of the first and second order (p, q)-difference equa-
tions with initial or boundary conditions. Firstly, we let tk , k = 1, . . . , m, be the impulsive
points such that 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T and Jk = (tk , tk+1], k = 1, . . . , m,
J0 = [0, t1] be the intervals such that

⋃m
k=0 Jk = [0, T] := J . The investigations were based

on (p, q)-calculus introduced in the first section of this paper, by replacing a point a by
tk , quantum numbers p by pk and q by qk , k = 0, 1, . . . , m, and also applying the (pk , qk)-
difference and (pk , qk)-integral operators only on a finite subinterval of J . In addition, the
consecutive subintervals could be related with jump conditions which led to a meaning
of quantum difference equations with impulse effects. There are two types of impulsive
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problems. The consecutive domains of impulsive (p, q)-difference equations of type I are
overlapped, while the unknown functions of impulsive equations of type II are defined
on disjoint consecutive domains. Four types of problems were considered, two impulsive
(p, q)-difference equations of type I and two impulsive (p, q)-difference equations of type II.
Existence and uniqueness results were proved via Banach’s contraction mapping principle.
Examples illustrating the obtained results were also presented.
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