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Abstract
In this paper, we investigate a class of nonlinear fractional differential equations with
integral boundary condition. By means of Krasnosel’skĭi fixed point theorem and
contraction mapping principle we prove the existence and uniqueness of solutions
for a nonlinear system. By means of Bielecki-type metric and the Banach fixed point
theorem we investigate the Ulam–Hyers and Ulam–Hyers–Rassias stability of
nonlinear fractional differential equations. Besides, we discuss an example for
illustration of the main work.
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1 Introduction
Fractional derivatives provide an effective instrument in the modeling of many physical
phenomena. Fractional differential equations and fractional integral equations appeared
in various fields such as polymer rheology, blood flow phenomena, electrodynamics of
complex medium, modeling and control theory, signal processing, and so on; see [1, 2]. In
recent years, many researchers proved the existence and uniqueness of solutions to frac-
tional differential equations [3–8]. Moreover, integral boundary problems had a variety of
applications in real-life problems such as blood flow, underground water flow, population
dynamics, thermoplasticity, chemical engineering, and so on; see [9–11].

On the other hand, S.M. Ulam presented the stability problem of the solutions of func-
tional equations (of group homomorphisms) in 1940 in a talk given at Wisconsin Univer-
sity [12]. In 1941, Hyers [13] gave the first answer to the question in Banach spaces. Since
then, many researchers were interested in Ulam-type stability. With a wide expansion of
the fractional calculus, the study of stability for fractional differential equations also at-
tracted the attention of researchers [14, 15].
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In 2011, Wang et al. [16] investigated the Ulam stability and data dependence for frac-
tional differential equations with Caputo derivative:

cDαx(t) = f
(
t, x(t)

)
, t ∈ [a, b), b = +∞,

where cDα(·) is the Caputo fractional derivative, α ∈ (0, 1).
Abbas, Benchohra et al. [17] researched the existence and Ulam stability for the frac-

tional differential equation
⎧
⎨

⎩

HDα,β
1+ u(t) = f (t, u(t)), t ∈ [1, T],

HIα,1–γ
1+ u(t)|t=1 = φ,

where α ∈ (0, 1), β ∈ [0, 1], γ = α + β – αβ , T > 1, φ ∈ R, HDα,β
1+ (·) is the Hilfer–Hadamard

fractional derivative, and HIα,1–γ
1+ (·) is the Hadamard integral.

Chalishajar et al. [18] discussed the existence, uniqueness, and Ulam–Hyers stability of
solutions for the following coupled system of fractional differential equations with integral
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
0+x(t) = f (t, y(t)), α ∈ (1, 2], t ∈ [0, 1],

cDβ
0+y(t) = g(t, x(t)), β ∈ (1, 2], t ∈ [0, 1],

px(0) + qx′(0) =
∫ 1

0 a1(x(s)) ds, px(1) + qx′(1) =
∫ 1

0 a2(x(s)) ds,

p̃y(0) + q̃y′(0) =
∫ 1

0 ã1(y(s)) ds, p̃y(1) + q̃y′(1) =
∫ 1

0 ã2(y(s)) ds,

where cDα
0+(·) and cDβ

0+(·) are the Caputo fractional derivatives, p, p̃ > 0, q, q̃ ≥ 0 are real
numbers, and a1, a2, ã1, ã2 are continuous functions.

Vanterler da C. Sousa et al. [19–21] studied the ψ-Hilfer fractional derivative and
the stability of Hyers–Ulam–Rassias and Hyers–Ulam of the following Volterra integro-
differential equation [14]:

⎧
⎨

⎩

HDα,β ;ψ
0+ u(t) = f (t, u(t)) +

∫ t
0 K(t, s, u(t)) ds, t ∈ [0, T] = I,

I1–γ
0+ u(0) = σ ,

where f (t, u) is a continuous function with respect to the variables t and u on I × R,
K(t, s, u) is continuous with respect to t, s, and u on I × I × R, σ is a given constant,
HDα,β ;ψ

0+ (·) is the right-sided ψ-Hilfer fractional derivative with α ∈ (0, 1) and β ∈ [0, 1],
and I1–γ

0+ (·) is the ψ-Riemann–Liouville fractional integral with γ ∈ [0, 1).
In this paper, we consider the following class of fractional differential equations with

integral boundary condition:

u′(t) + cDα
0+u(t) = f

(
t, u(t)

)
, t ∈ [0, 1], (1.1)

u(1) = Iβ
0+u(η) =

1
Γ (β)

∫ η

0
(η – s)β–1u(s) ds, (1.2)

where cDα
0+(·) is the Caputo derivative with 0 < α < 1, Iβ

0+(·) is the Riemann–Liouville frac-
tional integral with β > 0, η ∈ (0, 1] is a fixed real number, u ∈ C1[0, 1], and f : [0, 1] ×R →
R is a continuous function.
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Equation (1.1) represents a constitutive relation for viscoelastic model of fractional dif-
ferential equation. Equation (1.1) [22] can also be used to describe macroscopic models II
for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdif-
fusion due to binding, crowding, or trapping.

This paper is organized as follows. In the second section, we recall some basic definitions
of fractional calculus, the concepts of Ulam–Hyers and Ulam–Hyers–Rassias stability for
Eq. (1.1) and fixed point theorems. In the third section, we investigate the existence and
uniqueness of solutions for problem (1.1)–(1.2). Moreover, we discuss the Ulam–Hyers
and Ulam–Hyers–Rassias stability for Eq. (1.1). In the last section, we provide an illustra-
tive example.

2 Preliminaries
In this section, we recall some useful definitions, notations, and the fundamental results
about fractional derivatives (refer to [23, 24] and [25]). Also, we present the concepts of
the Ulam–Hyers and Ulam–Hyers–Rassias stability for Eq. (1.1).

Let C1[0, 1] = {u|u is a differentiable function on [0, 1] and its derivative is continuous}
with the norm

‖u‖ = max
t∈[0,1]

∣∣u(t)
∣∣.

Definition 2.1 ([23–25]) For a real-valued integrable function f : (0, +∞) → R, the
Riemann–Liouville fractional integral of order 0 < α < 1 is defined as

Iα
0+f (x) =

1
Γ (α)

∫ x

0
(x – t)α–1f (t) dt, x > 0,

where Γ is the gamma function.

Definition 2.2 ([23–25]) The Caputo fractional derivative cDα
0+ of an absolutely continu-

ous (or differentiable) function f (t) of order 0 < α < 1 is defined as

cDα
0+f (x) = I1–α

0+ f ′(x) =
1

Γ (1 – α)

∫ x

0
(x – t)–αf ′(t) dt.

Definition 2.3 ([23–25]) The two-parametric Mittag-Leffler function is defined as

Eα,β (z) =
∞∑

k=0

zk

Γ (kα + β)
, α,β , z ∈C, Re(α) > 0, Re(β) > 0.

The Laplace transform of the Caputo derivative cDα
0+f (t) is

L
{cDα

0+f (t)
}

(s) = sα̃f (s) – sα–1f (0), 0 < α < 1. (2.1)
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The Laplace transform of the two-parametric Mittag-Leffler function is

L
{

tβ–1Eα,β
(±atα

)}
(s) =

sα–β

(sα ∓ a)
,

Re(s) > |a| 1
α , Re(α) > 0, Re(β) > 0,α,β ∈C,

L
{

tαk+β–1E(k)
α,β

(±atα
)}

(s) =
k!sα–β

(sα ∓ a)k+1 ,

Re(s) > |a| 1
α , Re(α) > 0, Re(β) > 0,α,β ∈C,

(2.2)

where E(k)
α,β (y) = dk

dyk Eα,β (y) =
∑∞

j=0
(j+k)!yj

j!Γ (αj+αk+β) , k = 0, 1, 2, . . . .

Definition 2.4 ([26]) A function f is of exponential order λ if there exist constants M > 0
and λ such that for some t0 > 0,

∣
∣f (t)

∣
∣ ≤ Meλt for t ≥ t0.

Next, we present the concepts of the Ulam– and Ulam–Hyers–Rassias stability for
Eq. (1.1). The following Definitions 2.5 and 2.6 are adapted from [14].

Definition 2.5 If x(t) is a continuously differentiable function satisfying

∣
∣x′(t) +c Dα

0+x(t) – f
(
t, x(t)

)∣∣ ≤ θ , t ∈ [0, 1],

where θ > 0, and there are a solution u(t) of Eq. (1.1) and a constant C > 0 independent of
x(t) and u(t) such that

∣∣x(t) – u(t)
∣∣ ≤ Cθ , t ∈ [0, 1],

then we say that the Eq. (1.1) has the Ulam–Hyers stability.

Definition 2.6 If x(t) is a continuously differentiable function satisfying

∣∣x′(t) +c Dα
0+x(t) – f

(
t, x(t)

)∣∣ ≤ σ (t),

where σ : [0, 1] → [0, +∞) is a continuous function, and there exist a solution u(t) of
Eq. (1.1) and a constant C > 0 independent of x(t) and u(t) such that

∣∣x(t) – u(t)
∣∣ ≤ Cσ (t), t ∈ [0, 1],

then we say that the Eq. (1.1) has the Ulam–Hyers–Rassias stability.

Theorem 2.1 ([27] (Krasnosel’skĭi fixed point theorem)) Let M be a closed convex and
nonempty subset of a Banach space X. Let A, B be operators such that

(i) Ax + By ∈ M whenever x, y ∈ M,
(ii) A is compact and continuous,

(iii) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.
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Theorem 2.2 ([28] (Banach)) Let (X, d) be a generalized complete metric space. Assume
that Λ : X → X is a strictly contractive operator with Lipschitz constant K < 1. If there exists
a nonnegative integer k such that d(Λk+1x,Λkx) < ∞ for some x ∈ X, then the following three
propositions hold:

(1) The sequence {Λnx} converges to a fixed point x∗ of Λ;
(2) x∗ is a unique fixed point of Λ in X∗ = {y ∈ X : d(Λkx, y) < ∞};
(3) If y ∈ X∗, then d(y, x∗) ≤ 1

1–K d(Λy, y).

Theorem 2.3 ([26]) If f is piecewise continuous function on [0,∞) of exponential order λ,
then the Laplace transform L(f (t)) exists for Re(s) > λ and converges absolutely.

3 Main results
In this section, we derive the existence and uniqueness of solutions for the integral bound-
ary problem (1.1)–(1.2). Moreover, we study the Ulam–Hyers and Ulam–Hyers–Rassias
stability for Eq. (1.1).

3.1 Existence and uniqueness results
In this subsection, by means of the Krasnosel’skĭi fixed point theorem and contraction
mapping principle, we investigate the existence and uniqueness of solutions for problem
(1.1)–(1.2) in C1[0, 1].

Lemma 3.1 Let u(t) ∈ C1[0, 1], 0 < α < 1, β > 0. For any g ∈ C[0, 1] and η ∈ (0, 1], the
solution of the boundary value problem

u′(t) +c Dα
0+u(t) = g(t), t ∈ [0, 1], (3.1)

u(1) = Iβ
0+u(η). (3.2)

is given by

u(t) =
1

Γ (β)

∫ η

0
(η – s)β–1u(s) ds +

∫ 1

0
G(t, s)g(s) ds,

where G(t, s) is called the Green’s function of problem (3.1)–(3.2)and is given by

G(t, s) =

⎧
⎨

⎩
E1–α,1(–(t – s)1–α) – E1–α,1(–(1 – s)1–α), 0 ≤ s ≤ t,

–E1–α,1(–(1 – s)1–α), t ≤ s ≤ 1.
(3.3)

Proof Since u(t) ∈ C1[0, 1], u(t) and cDα
0+u(t) are bounded. For any t ∈ [0, 1], we have that

u′ and cDα
0+ are of exponential order. By Theorem 2.3 and Definition 2.4 we have that the

Laplace transform of both u′(t) and cDα
0+u(t) exist for u(t) ∈ C1[0, 1].

Taking the Laplace transform on both sides of Eq. (3.1), by Eq. (2.1) we obtain

s̃u(s) – u(0) + sαũ(s) – sα–1u(0) = g̃(s).

ũ(s) =
1
s

u(0) +
s–α

1 + s1–α
g̃(s).
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Using the inverse Laplace transform, by Eq. (2.2) we have

u(t) = u(0) +
∫ t

0
E1–α,1

(
–(t – s)1–α

)
g(s) ds. (3.4)

Equation (3.4) is the equivalent fractional integral equation of Eq. (3.1), so we have

u(1) = u(0) +
∫ 1

0
E1–α,1

(
–(1 – s)1–α

)
g(s) ds. (3.5)

From Eqs. (3.2) and (3.5) we have

u(0) = Iβ
0+u(η) –

∫ 1

0
E1–α,1

(
–(1 – s)1–α

)
g(s) ds.

Therefore the unique solution of problem (3.1)–(3.2) is

u(t) = Iβ
0+u(η) +

∫ 1

0
G(t, s)g(s) ds,

where G(t, s) is given by (3.3). This completes the proof. �

Remark 3.1 By the definition of the two-parameter Mittag-Leffler function we get

∫ t

0
E1–α,1

(
–(t – s)1–α

)
ds = tE1–α,2

(
–t1–α

)
, t ∈ [0, 1], 0 < α < 1,

which is a convergent series of real numbers. Therefore there exists a constant E1–α,2 > 0
such that

∣
∣∣
∣

∫ t

0
E1–α,1

(
–(t – s)1–α

)
ds

∣
∣∣
∣ ≤ ∣∣E1–α,2

(
–t1–α

)∣∣ ≤ E1–α,2.

Moreover, by Eq. (3.3) and the continuity of the two-parameter Mittag-Leffler function
there exists a constant M > 0 such that

∫ t

0

∣∣G(t, s)
∣∣ds ≤ M, t ∈ [0, 1].

Remark 3.2 For a continuous function f : [0, 1] × R → R, there exists a constant N > 0
such that

N = max
t∈[0,1],s∈R

∣
∣f (t, s)

∣
∣.

Theorem 3.1 Let 0 < α < 1, β > 0, and η ∈ [0, 1] be fixed real numbers. Let f : [0, 1] ×
R → R be a continuous function satisfying the Lipschitz condition with respect to second
argument, that is,

∣∣f (t, h1) – f (t, h2)
∣∣ ≤ L|h1 – h2|
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for all t ∈ [0, 1] and h1, h2 ∈R, where L > 0 is a Lipschitz constant. Then problem (1.1)–(1.2)
has unique solution in C1[0, 1], provided that

ηβ

Γ (β + 1)
+ LM < 1.

Proof By Lemma 3.1 the equivalent fractional integral of problem (1.1)–(1.2) is given by

u(t) =
1

Γ (β)

∫ η

0
(η – s)β–1u(s) ds +

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds,

where G(t, s) is given by Eq. (3.3).
Consider the operator T defined on C1[0, 1] by

(Tu)(t) =
1

Γ (β)

∫ η

0
(η – s)β–1u(s) ds +

∫ 1

0
G(t, s)f

(
s, u(s)

)
ds. (3.6)

By the continuity of the functions G(t, s) and f (t, u(t)) we have Tu ∈ C1[0, 1] for any
u ∈ C1[0, 1]. This proves that T maps C1[0, 1] into itself.

We define the set B = {u ∈ C1[0, 1] : ‖u‖ < δ} and choose δ > MNΓ (β+1)
Γ (β+1)–ηβ .

From Eq. (3.6), for u ∈ B, we obtain

∣∣(Tu)(t)
∣∣ ≤ 1

Γ (β)

∫ η

0
(η – s)β–1∣∣u(s)

∣∣ds +
∫ 1

0

∣∣G(t, s)
∣∣∣∣f

(
s, u(s)

)∣∣ds

≤ ηβ

Γ (β + 1)
δ + MN ≤ δ

�⇒ ‖Tu‖ ≤ δ, u ∈ B.

Hence TB ⊆ B.
Next, we show that T is a contraction operator. For u1, u2 ∈ C1[0, 1] and t ∈ [0, 1], from

Eq. (3.6), using the Lipschitz condition on f , we have

∣
∣(Tu1)(t) – (Tu2)(t)

∣
∣ ≤ 1

Γ (β)

∫ η

0
(η – s)β–1∣∣u1(s) – u2(s)

∣
∣ds

+
∫ 1

0

∣∣G(t, s)
∣∣∣∣f

(
s, u1(s)

)
– f

(
s, u2(s)

)∣∣ds

≤ ηβ

Γ (β + 1)
‖u1 – u2‖ + LM‖u1 – u2‖

=
(

ηβ

Γ (β + 1)
+ LM

)
‖u1 – u2‖.

As ηβ

Γ (β+1) + LM < 1, T is a contraction mapping. By the contraction mapping principle
it has a unique fixed point, which is the unique solution of problem (1.1)–(1.2). �

Theorem 3.2 Let f : [0, 1]×R → R be a continuous function, and let f satisfy the Lipschitz
condition with respect to second argument:

∣∣f (t, h1) – f (t, h2)
∣∣ ≤ L|h1 – h2|
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for all t ∈ [0, 1] and h1, h2 ∈R, where L > 0 is a Lipschitz constant, and

ηβ

Γ (β + 1)
+ LM < 1.

Then problem (1.1)–(1.2) has at least one solution in C1[0, 1].

Proof We consider the operators A and B on C1[0, 1] defined by

(Au)(t) = –
∫ 1

t
E1–α,1

(
–(1 – s)1–α

)
f
(
s, u(s)

)
ds,

(Bu)(t) =
1

Γ (β)

∫ η

0
(η – s)β–1u(s) ds

+
∫ t

0

[
E1–α,1

(
–(t – s)1–α

)
– E1–α,1

(
–(1 – s)1–α

)]
f
(
s, u(s)

)
ds.

Consider Wr = {u ∈ C1[0, 1] : ‖u‖ ≤ r} and choose

0 <
MN

1 – ηβ

Γ (β+1)

≤ r.

For any u, v ∈ Wr , having in mind Remark 3.1, Remark 3.2, and the definitions of the
operators A and B, we conclude that

‖Au + Bv‖ ≤ N
∫ 1

0

∣
∣G(t, s)

∣
∣ds + ‖v‖ ηβ

Γ (β + 1)

≤ NM +
rηβ

Γ (β + 1)
.

Therefore we obtain Au + Bv ∈ Wr .
By Theorem 3.1 the operator B is a contraction mapping if

ηβ

Γ (β + 1)
+ LM < 1.

It follows from the proof of the operator T .
By the continuity of the two-parameter Mittag-Leffler function and f (t.u(t)), for any

continuous function u ∈ Wr , the operator A is continuous.
For any u ∈ Wr , from Remarks 3.1 and 3.2 we have

∣
∣Au(t)

∣
∣ ≤ MN .

Hence A is uniformly bounded on Wr .
For any u ∈ Wr and t1, t2 ∈ [0, 1] such that t1 < t2,

∥
∥Au(t1) – Au(t2)

∥
∥ =

∥∥
∥∥

∫ 1

t1

E1–α,1
(
–(1 – s)1–α

)
f
(
s, u(s)

)
ds

–
∫ 1

t2

E1–α,1
(
–(1 – s)1–α

)
f
(
s, u(s)

)
ds

∥
∥∥∥
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=
∥
∥∥
∥

∫ t2

t1

E1–α,1
(
–(1 – s)1–α

)
f
(
s, u(s)

)
ds

∥
∥∥
∥

≤ NE1–α,1
(
–(1 – θ )1–α

)|t2 – t1|, t1 < θ < t2.

The constant NE1–α,1(–(1 – θ )1–α) is independent of u, so A is relatively compact on Wr .
Therefore by the Arzelà–Ascoli theorem the operator A is compact on Wr . By Theorem 2.1
problem (1.1)–(1.2) has at least one solution on [0, 1]. �

3.2 Ulam–Hyers–Rassias and Ulam–Hyers stability
In this subsection, by means of the Bielecki metric and Banach fixed-point theorem we
investigate the Ulam–Hyers–Rassias and Ulam–Hyers stability in C1[0, 1] for Eq. (1.1).

Consider the space C1[0, 1] endowed with the Bielecki-type metric

d(w, v) = sup
t∈[0,1]

|w(t) – v(t)|
σ (t)

, w, v ∈ C1[0, 1],

where σ : [0, 1] → (0,∞) is a nondecreasing continuous function. Obviously, (C1[0, 1], d)
is a complete metric space.

Theorem 3.3 Let f : [0, 1] ×R →R be a continuous function satisfying the Lipschitz con-
dition

∣
∣f (t, h1) – f (t, h2)

∣
∣ ≤ L|h1 – h2|, t ∈ [0, 1], h1, h2 ∈R,

with L > 0. Moreover, let σ : [0, 1] → (0,∞) be a nondecreasing continuous function, and
suppose that there exists a constant ξ ∈ [0, 1) such that

∫ t

0
E1–α,1

(
–(t – s)1–α

)
σ (s) ds ≤ ξσ (t). (3.7)

If x ∈ C1[0, 1] satisfies

∣∣x′(t) + cDα
0+x(t) – f

(
t, x(t)

)∣∣ ≤ σ (t), t ∈ [0, 1] (3.8)

and Lξ < 1, then there exists a solution u(t) of Eq. (1.1) in C1[0, 1] such that

∣
∣x(t) – u(t)

∣
∣ ≤ ξ

1 – Lξ
σ (t), t ∈ [0, 1]. (3.9)

This means that under the above conditions, the fractional differential Eq. (1.1) has the
Ulam–Hyers–Rassias stability.

Proof By Lemma 3.1 the equivalent fractional integral equation of Eq. (1.1) is given by

u(t) = u(0) +
∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, u(s)

)
ds, (3.10)

which follows from the proof of Eq. (3.4).
We conclude that u(t) satisfies Eq. (1.1) if and only if u(t) satisfies the integral Eq. (3.10).
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We consider the operator Λ : C1[0, 1] → C1[0, 1] defined by

(Λv)(t) = v(0) +
∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, v(s)

)
ds, t ∈ [0, 1], v ∈ C1[0, 1].

By the continuity of the two-parameter Mittag-Leffler function and f the operator Λ is
continuous.

First, we prove that the operator Λ is strictly contractive in (C1[0, 1], d). From Eq. (3.7),
for any v, w ∈ C1[0, 1], we obtain

d(Λw,Λv) = sup
t∈[0,1]

| ∫ t
0 E1–α,1(–(t – s)1–α)[f (s, w(s)) – f (s, v(s))] ds|

σ (t)

≤ L sup
t∈[0,1]

| ∫ t
0 E1–α,1(–(t – s)1–α)|w(s) – v(s)|ds|

σ (t)

= L sup
t∈[0,1]

| ∫ t
0 E1–α,1(–(t – s)1–α)σ (s) |w(s)–v(s)|

σ (s) ds|
σ (t)

≤ Lξd(w, v).

Since Lξ < 1, the operator Λ is strictly contractive.
On the other hand, let x ∈ C1[0, 1] satisfy Eq. (3.8). By the Laplace transform and the

inverse Laplace transform we obtain that x satisfies

∣∣
∣∣x(t) – x(0) –

∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, x(s)

)
ds

∣∣
∣∣

≤
∣
∣∣
∣

∫ t

0
E1–α,1

(
–(t – s)1–α

)
σ (s) ds

∣
∣∣
∣, (3.11)

which follows from the proof of Lemma 3.1.
By Eq. (3.7), Eq. (3.11), and the definition of the operator Λ we get

∣∣(Λx)(t) – x(t)
∣∣ =

∣
∣∣∣x(0) +

∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, x(s)

)
ds – x(t)

∣
∣∣∣

≤
∣∣
∣∣

∫ t

0
E1–α,1

(
–(t – s)1–α

)
σ (s) ds

∣∣
∣∣ ≤ ξσ (t).

Therefore we conclude that

d(Λx, x) ≤ ξ < ∞, ξ ∈ [0, 1). (3.12)

By means of item 2 of Theorem 2.2 there exists a unique element

u ∈ C∗[0, 1] =
{

y ∈ C1[0, 1] : d(Λx, y) < ∞}

such that Λu = u or, equivalently,

u(t) = u(0) +
∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, u(s)

)
ds.
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Since Eq. (3.10) is the equivalent integral equation of Eq. (1.1), we conclude that u(t) is
a solution of Eq. (1.1). Also, from item 3 of Theorem 2.2 and Eq. (3.12) we have

d(x, u) ≤ 1
1 – Lξ

d(Λx, x) ≤ ξ

1 – Lξ
.

By the definition of d we obtain that inequality (3.9) holds. �

Theorem 3.4 Let f : [0, 1] ×R →R be a continuous function satisfying the Lipschitz con-
dition

∣
∣f (t, h1) – f (t, h2)

∣
∣ ≤ L|h1 – h2|, t ∈ [0, 1], h1, h2 ∈R,

with L > 0. Moreover, let σ : [0, 1] → (0,∞) be a nondecreasing continuous function, and
suppose that there exists a constant ξ ∈ [0, 1) such that

∫ t

0
E1–α,1

(
–(t – s)1–α

)
σ (s) ds ≤ ξσ (t) (3.13)

and Lξ < 1. If x ∈ C1[0, 1] satisfies

∣
∣x′(t) +c Dα

0+x(t) – f
(
t, x(t)

)∣∣ ≤ θ , t ∈ [0, 1], (3.14)

where θ > 0, then there exists a solution u(t) of Eq. (1.1) in C1[0, 1] such that

∣∣x(t) – u(t)
∣∣ ≤ σ (1)E1–α,2

(1 – Lξ )σ (0)
θ , t ∈ [0, 1]. (3.15)

This means that under the above conditions, the fractional differential Eq. (1.1) has the
Ulam–Hyers stability.

Proof: The first part of the proof follows the same steps as in the proof of Theorem 3.3.
Consider the operator Λ : C1[0, 1] → C1[0, 1] defined by

(Λv)(t) = v(0) +
∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, v(s)

)
ds, t ∈ [0, 1], v ∈ C1[0, 1].

For any v, w ∈ C1[0, 1], we have

d(Λw,Λv) ≤ Lξ d(w, v).

Since Lξ < 1, we conclude that the operator Λ is strictly contractive in (C1[0, 1], d), which
follows from the proof of Theorem 3.3.

Suppose that x ∈ C1[0, 1] satisfies Eq. (3.14). By means of the Laplace transform, the
inverse Laplace transform, and Remark 3.1 we obtain

∣
∣∣
∣x(t) – x(0) –

∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, x(s)

)
ds

∣
∣∣
∣ ≤ θ

∣
∣∣
∣

∫ t

0
E1–α,1

(
–(t – s)1–α

)
ds

∣
∣∣
∣

≤ θE1–α,2, t ∈ [0, 1].
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Now by the definition of the operator Λ we get

∣
∣(Λx)(t) – x(t)

∣
∣ =

∣∣
∣∣x(0) +

∫ t

0
E1–α,1

(
–(t – s)1–α

)
f
(
s, x(s)

)
ds – x(t)

∣∣
∣∣

≤ θE1–α,2, t ∈ [0, 1].

Since σ is a positive nondecreasing function, we have

d(Λx, x) = sup
t∈[0,1]

|(Λx)(t) – x(t)|
σ (t)

≤ E1–α,2

σ (0)
θ < ∞. (3.16)

Having in mind item 2 of Theorem 2.2, there exists a unique element

u ∈ C∗[0, 1] =
{

y ∈ C1[0, 1] : d(Λx, y) < ∞}

such that Λu = u, which means that u(t) is a solution of Eq. (1.1).
Thus from item 3 of Theorem 2.2 and Eq. (3.16) it follows that

d(x, u) ≤ 1
1 – Lξ

d(Λx, x) =
1

1 – Lξ
sup

t∈[0,1]

|(Λx)(t) – x(t)|
σ (t)

≤ 1
1 – Lξ

E1–α,2

σ (0)
θ .

By the definition of the Bielecki-type metric d we obtain

∣∣x(t) – u(t)
∣∣ ≤ σ (t)E1–α,2

(1 – Lξ )σ (0)
θ , t ∈ [0, 1]. (3.17)

Therefore Eq. (3.15) follows directly from Eq. (3.17).

4 Example
Example 4.1 Consider the following fractional differential equation with integral bound-
ary condition:

u′(t) + cD
1
2
0+u(t) =

1
t2 + 8

1
1 + |u(t)| , t ∈ [0, 1], (4.1)

u(1) = I
1
2

0+u
(

1
4

)
, (4.2)

where u(t) ∈ C1[0, 1].

Comparing with problem (1.1)–(1.2), we have

α =
1
2

, β =
1
2

, η =
1
4

, f
(
t, u(t)

)
=

1
t2 + 8

1
1 + |u(t)| .

Clearly, we obtain

∣∣f (t, h1) – f (t, h2)
∣∣ ≤ 1

8
|h1 – h2|, h1, h2 ∈R, t ∈ [0, 1],

∣∣f
(
t, u(t)

)∣∣ ≤ 1
8

, t ∈ [0, 1], u ∈ C1[0, 1].
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Here we get L = N = 1
8 .

Further, by Remark 3.1 we have

ηβ

Γ (β + 1)
+ LM =

1
4

1
2

Γ ( 3
2 )

+
1
4

=
1√
π

+
1
4

< 1.

Therefore by Theorems 3.1 and 3.2 problem (4.1)–(4.2) has a unique solution.
Next, we investigate the Ulam–Hyers and Ulam–Hyers–Rassias stability for Eq. (4.1).
Letting σ (t) = et , by Remark 3.1 we obtain

∫ t

0
E 1

2 ,1
(
–(t – s)

1
2
)
es ds < et – 1 <

3
4

et , t ∈ [0, 1].

Thus σ (t) = et satisfies Eq. (3.7) with ξ = 3
4 , and Lξ = 3

32 < 1.
Hence Theorem 3.3 guarantees that Eq. (4.1) has the Ulam–Hyers–Rassias stability. Fur-

ther, Theorem 3.4 guarantees that Eq. (4.1) has the Ulam–Hyers stability.
The Ulam–Hyers and Ulam–Hyers–Rassias stability for Eq. (4.1) is independent of the

initial value condition. Using MATLAB, the solution u(t) of Eq. (4.1) with initial value
condition u(0) = 0 is computed and depicted in Fig. 1.

Now consider x ∈ C1[0, 1], the solution of the following fractional differential equation:

x′(t) + cD
1
2
0+x(t) =

1
t2 + 8

1
1 + |x(t)| + t, t ∈ [0, 1],

x(0) = 0.

We conclude that x satisfies Eq. (3.8). Therefore we have

∣∣x(t) – u(t)
∣∣ ≤ ξ

1 – Lξ
et =

24
29

et , t ∈ [0, 1];

see Fig. 2.

Figure 1 The solution u(t) of Eq. (4.1) with initial value condition u(0) = 0
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Figure 2 Functions x(t) – u(t), y(t) – u(t), and ± 24
29 e

t

On the other hand, consider y ∈ C1[0, 1], the solution of the following fractional differ-
ential equation:

y′(t) + cD
1
2
0+y(t) =

1
t2 + 8

1
1 + |y(t)| + et , t ∈ [0, 1],

y(0) = 0,

Then y satisfies Eq. (3.8), and we have

∣∣y(t) – u(t)
∣∣ ≤ ξ

1 – Lξ
et =

24
29

et , t ∈ [0, 1];

see Fig. 2.
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