Certain properties of difference operator and stability of Fréchet functional equation

Teerapol Sukhonwimolmal ${ }^{1 *}$ ©

"Correspondence:
teerasu@kku.ac.th
${ }^{1}$ Department of Mathematics, Khon Kaen University, Khon Kaen, Thailand

Abstract

Let M be a commutative monoid, and let B be a Banach space. We give a new recursive method to obtain a Găvruţa-type stability result for the functional equation

$$
\Delta_{y}^{n+1} f(x):=\sum_{k=0}^{n+1}(-1)^{n+1+k}\binom{n+1}{k} f(x+k y)=0
$$

via algebraic manipulations of the forward difference operator.
MSC: 39B52; 39B82
Keywords: Fréchet functional equation; Stability; Difference operator

1 Motivation

One of the best-known classes of functional equations, the Fréchet functional equations, consists of functional equations equivalent to the equation

$$
\begin{equation*}
\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n+1}} f(0)=0, \tag{1}
\end{equation*}
$$

studied by Fréchet [1] in 1909. In this paper, we focus on the equation

$$
\begin{equation*}
\Delta_{y}^{n+1} f(x)=0, \tag{2}
\end{equation*}
$$

for which the stability result relies on its equivalence with the equation

$$
\begin{equation*}
\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n+1}} f(x)=0 \tag{3}
\end{equation*}
$$

The stability problem of functional equations originated from a problem posed by S . Ulam regarding "almost additive" functions that satisfy

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for a fixed ϵ. This inequality was studied (under stricter assumptions than those for the posed problem) by Hyers [2] in 1941. The result was that such a function can be approximated by an additive function. Hence the problems in this sense, where the assigned bound is a constant, became known as Hyers-Ulam-type stability. Years later, Aoki [3] and Rassias [4] presented stability results where the bound is a power function of x and y. Thus the stability in this sense became known as the Aoki-Rassias-type stability. Later Gǎvruța [5] generalized this so that the bound (which can also be called the control function) is a function with specific properties.

The solutions of (1), (2), and (3) are called generalized polynomials of degree at most n. It is well known that a generalized polynomial p is constructed from diagonalization of multiadditive functions [6]. The Hyers-Ulam stability of (2) and (3) has been studied in [6-9]. The Gǎvruța-type stability of (1) has been studied by Dăianu [10]. Dăianu used an equivalence theorem, which is more general than that presented by Kuczma [11], to obtain a stability result for (2) under the assumption that M is $(n+1)$!-divisible. In this paper, we present a result in which divisibility of M is not required. Instead, we require $(n+1)$!-divisibility of B, which is readily true since B is a Banach space.

2 The forward difference operator

Let M be a commutative monoid, let be B be a Banach space, and let \mathbb{N} be the set of positive integers. For a function $f: M \rightarrow B$ and $y \in M$, define $\Delta_{y} f: M \rightarrow B$ by

$$
\Delta_{x} f(x)=f(x+y)-f(x)
$$

for $x \in M$. Also, define its iterations

$$
\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n}} f=\Delta_{y_{1}}\left(\Delta_{y_{2}} \Delta_{y_{3}} \cdots \Delta_{y_{n}} f\right) \quad \text { and } \quad \Delta_{y}^{n} f=\underbrace{\Delta_{y} \Delta_{y} \cdots \Delta_{y}}_{n \text { terms }} f
$$

for $y, y_{1}, y_{2}, \ldots, y_{n} \in M$. Observe that $\Delta_{y_{1}} \Delta_{y_{2}} f=\Delta_{y_{2}} \Delta_{y_{1}} f$, so the ordering of y_{i} is interchangable, and

$$
\Delta_{y}^{n} f(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(x+k y)
$$

and

$$
\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n}} f(x)=\sum_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}=0}^{1}(-1)^{n+\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} f\left(x+\sum_{i=1}^{n} \epsilon_{i} y_{i}\right) .
$$

We will establish some algebraic manipulation of the forward difference operator Δ. We begin with a modified version of Kuczma's theorem.

Lemma 2.1 Let $n \in \mathbb{N}$ and $f: M \rightarrow B$. Then

$$
\begin{equation*}
\Delta_{y_{1}} \Delta_{2 y_{2}} \Delta_{3 y_{3}} \cdots \Delta_{n y_{n}} f(x)=\sum_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}=0}^{1}(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} \Delta_{b_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}^{n}} f\left(x+a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}\right) \tag{4}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$, where

$$
a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}=\sum_{i=1}^{n} i \epsilon_{i} y_{i} \quad \text { and } \quad b_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}=\sum_{i=1}^{n}\left(1-\epsilon_{i}\right) y_{i} .
$$

Proof Recall that

$$
\begin{aligned}
& \Delta_{\epsilon_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}^{n}} f\left(x+a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}\right) \\
& \quad=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f\left(x+\sum_{i=1}^{n} i \epsilon_{i} y_{i}+k \sum_{i=1}^{n}\left(1-\epsilon_{i}\right) y_{i}\right) .
\end{aligned}
$$

We will show that each of these terms cancels out in the sum on the right-hand side of (4), except for $k=0$. For $k \neq 0$, we observe that ϵ_{k} is absent in the term where $i=k$. So changing ϵ_{k} does not change the argument of this term.
Consider another term in the sum on the right-hand side of (4), where only ϵ_{k} differs from this term. Then the k th term in its expansion cancels the term we mentioned before.
Hence every term where $k \neq 0$ has its negative in the sum in (4). Then

$$
\begin{aligned}
& \sum_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}=0}^{1}(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} \Delta_{b_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}^{n}} f\left(x+a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}}\right) \\
& =\sum_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}=0}^{1}(-1)^{n+\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} f\left(x+\sum_{i=1}^{n} \epsilon_{i} i y_{i}\right) \\
& =\Delta_{y_{1}} \Delta_{2 y_{2}} \Delta_{3 y_{3}} \cdots \Delta_{n y_{n}} f(x) .
\end{aligned}
$$

Lemma 2.2 Let $n, m \in \mathbb{N}$ and $f: M \rightarrow B$. Then

$$
\Delta_{y}^{n} f(x+m y)=\Delta_{y}^{n} f(x)+\sum_{k=0}^{m-1} \Delta_{y}^{n+1} f(x+k y)
$$

for all $x, y \in X$.

Proof Since $\Delta_{y}^{n+1} f(x)=\Delta_{y}^{n} f(x+y)-\Delta_{y}^{n} f(x)$ for all $x, y \in M$,

$$
\begin{align*}
\Delta_{y}^{n} f(x+m y) & =\Delta_{y}^{n} f(x+(m-1) y)+\Delta_{y}^{n+1} f(x+(m-1) y) \\
& =\Delta_{y}^{n} f(x+(m-2) y)+\Delta_{y}^{n+1} f(x+(m-2) y)+\Delta_{y}^{n+1} f(x+(m-1) y) \\
& \vdots \\
& =\Delta_{y}^{n} f(x)+\sum_{k=0}^{m-1} \Delta_{y}^{n+1} f(x+k y) . \tag{5}
\end{align*}
$$

In the following theorems, for convenience, we let $\sum_{i=0}^{-1} a_{i}=0$ for any sequence $\left(a_{i}\right)$.

Lemma 2.3 Let $n \in \mathbb{N}$ and $f: M \rightarrow B$. Then

$$
n!\Delta_{y}^{n} f(x)=\Delta_{2 y, 3 y, \ldots,(n+1) y} f(x)-\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{n}=0}^{n} \sum_{s=0}^{l_{2}+l_{3}+\cdots+l_{n}-1} \Delta_{y}^{n+1} f(x+s y)
$$

for all $x, y \in X$.

Proof By Lemma 2.2 it is sufficient to show that

$$
\begin{equation*}
\Delta_{2 y, 3 y, \ldots,(n+1) y} f(x)=\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{n}=0}^{n} \Delta_{y}^{n} f\left(x+\left(l_{1}+l_{2}+\cdots+l_{n}\right) y\right) . \tag{6}
\end{equation*}
$$

For the case $n=1$, we have

$$
\begin{aligned}
\Delta_{2 x} f(x) & =f(x+2 y)-f(x) \\
& =f(x+2 y)-f(x+y)+f(x+y)-f(x)=\Delta_{y} f(x+y)+\Delta_{y} f(x) .
\end{aligned}
$$

Suppose that (6) is true for $n=k$. Since the order of $\Delta_{i y}$ is interchangable,

$$
\begin{aligned}
\Delta_{2 y, 3 y, \ldots,(k+2) y} f(x) & =\Delta_{2 y, 3 y, \ldots,(k+1) y}\left(\Delta_{(k+2) y} f\right)(x) \\
& =\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{k}=0}^{k} \Delta_{y}^{n}\left(\Delta_{(k+2) y} f\right)\left(x+\left(l_{1}+l_{2}+\cdots+l_{k}\right) y\right) \\
& =\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{k}=0}^{k} \Delta_{(k+2) y}\left(\Delta_{y}^{k} f\right)\left(x+\left(l_{1}+l_{2}+\cdots+l_{k}\right) y\right) \\
& =\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{k}=0}^{k} \sum_{l_{k+1}=0}^{k+1} \Delta_{y}\left(\Delta_{y}^{k} f\right)\left(x+\left(l_{1}+l_{2}+\cdots+l_{k}\right) y+l_{k+1} y\right) .
\end{aligned}
$$

The following theorem follows from Lemmas 2.3 and 2.1.

Theorem 2.4 Let $n \in \mathbb{N}$ and $f: M \rightarrow B$. Then there exist $m \in \mathbb{N}$ and nonnegative integers $a_{i}, b_{i}, c_{i}, d_{i}, e_{i}$ for $i \in\{1,2, \ldots, m\}$ such that

$$
n!\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)=\sum_{i=1}^{m}(-1)^{a_{i}} \Delta_{b_{i} y_{1}+c_{i} y_{2}}^{n+1} f\left(x+d_{i} y_{1}+e_{i} y_{2}\right)
$$

for $x, y_{1}, y_{2} \in M$. To be precise,

$$
\begin{aligned}
n!\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)= & \sum_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}=0}^{1}(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n+1}} \Delta_{b_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}}^{n+1} f\left(x+a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}}\right)} \\
& -\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{n}=0}^{n} \sum_{s=0}^{l_{1}+l_{2}+\cdots+l_{n}-1} \Delta_{y_{2}}^{n+1} f\left(x+y_{1}+s y_{2}\right) \\
& +\sum_{l_{1}=0}^{1} \sum_{l_{2}=0}^{2} \cdots \sum_{l_{n}=0}^{n} \sum_{s=0}^{l_{1}+l_{2}+\cdots+l_{n}-1} \Delta_{y_{2}}^{n+1} f\left(x+s y_{2}\right)
\end{aligned}
$$

where

$$
a_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}}=\epsilon_{1} y_{1}+\sum_{i=2}^{n+1} i \epsilon_{i} y_{2} \quad \text { and } \quad b_{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n+1}}=\left(1-\epsilon_{1}\right) y_{1}+\sum_{i=2}^{n+1}\left(1-\epsilon_{i}\right) y_{2} .
$$

3 The stability of $\Delta_{y}^{n+1} f(x)=0$
We recall a theorem from the author's dissertation [12].

Theorem 3.1 Let $n \in \mathbb{N}$ and $f: M \rightarrow B$. Then

$$
2^{n} \Delta_{y}^{n} f(x)=\Delta_{2 y}^{n} f(x)-\sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1} \Delta_{y}^{n+1} f(x+k y)
$$

for $x, y \in M$.

Next, we introduce the class of preferred control functions. Consider the following properties of a function $\varphi: M \rightarrow[0, \infty)$.

P1 $\varphi(x+y) \leq \varphi(x)+\varphi(y)$ for all $x, y \in M$.
P2 For each $x \in M$, either there exists $N \in \mathbb{N}$ such that $\varphi\left(2^{k} x\right)=0$ for every $k>N$, or $\lim _{k \rightarrow \infty} \frac{\varphi\left(2^{k+1} x\right)}{\varphi\left(2^{k} x\right)}<2$.
We take the notation of limit in P2 more loosely than normal. We allow it to not actually converge, as long as every of its limit points are in $[0,2)$.
Also note that P2 implies that $\sum_{k=0}^{\infty} \frac{\varphi\left(2^{k} x\right)}{2^{k}}$ converges. The next proposition states that the set of these functions forms a convex cone under pointwise addition and scalar multiplication.

Proposition 3.2 Let $\varphi_{1}, \varphi_{2}: M \rightarrow[0, \infty)$ satisfy $P 1$ and $P 2$. Then, for all $c_{1}, c_{2} \in[0, \infty)$, $c_{1} \varphi_{1}+c_{2} \varphi_{2}$ also satisfies P1 and P2.

Proof The case $c_{1} c_{2}=0$ is straightforward, so we omit it. Firstly, it is clear that $c_{1} \varphi_{1}+c_{2} \varphi_{2}$ satisfies P1. Let $x \in M$. We will consider the cases depending on whether N_{1} and N_{2} exist such that $\varphi_{1}\left(2^{k} x\right)=0$ for $k>N_{1}$ and $\varphi_{2}\left(2^{l} x\right)=0$ for $l>N_{2}$.

- If both such N_{1} and N_{2} exist, then $c_{1} \varphi_{1}\left(2^{k} x\right)+c_{2} \varphi_{2}\left(2^{k} x\right)=0$ whenever $k>\max \left\{N_{1}, N_{2}\right\}$.
- If only one exists, then without loss of generality we assume that N_{1} exists but N_{2} does not. Then

$$
\lim _{k \rightarrow \infty} \frac{c_{1} \varphi_{1}\left(2^{k+1} x\right)+c_{2} \varphi_{2}\left(2^{k+1} x\right)}{c_{1} \varphi_{1}\left(2^{k} x\right)+c_{2} \varphi_{2}\left(2^{k} x\right)}=\lim _{k \rightarrow \infty} \frac{c_{2} \varphi_{2}\left(2^{k+1} x\right)}{c_{2} \varphi_{2}\left(2^{k} x\right)}<2
$$

- If there are no such N_{1} and N_{2}, then there exist $N_{1}^{\prime}, N_{2}^{\prime} \in \mathbb{N}$ and $r \in(0,2)$ such that $\varphi_{1}\left(2^{k+1} x\right)<r \varphi_{1}\left(2^{k} x\right)$ for $k>N_{1}^{\prime}$ and $\varphi_{2}\left(2^{l+1} x\right)<r \varphi_{2}\left(2^{l} x\right)$ for $l>N_{2}^{\prime}$. Thus

$$
c_{1} \varphi_{1}\left(2^{k+1} x\right)+c_{2} \varphi_{2}\left(2^{k+1} x\right)<r c_{1} \varphi_{1}\left(2^{k} x\right)+r c_{2} \varphi_{2}\left(2^{k} x\right)
$$

for $k>\max \left\{N_{1}^{\prime}, N_{2}^{\prime}\right\}$. This implies that $\lim _{k \rightarrow \infty} \frac{c_{1} \varphi_{1}\left(2^{k+1} x\right)+c_{2} \varphi_{2}\left(2^{k+1} x\right)}{c_{1} \varphi_{1}\left(2^{k} x\right)+c_{2} \varphi_{2}\left(2^{k} x\right)} \leq r<2$, and we conclude that $c_{1} \varphi_{1}+c_{2} \varphi_{2}$ satisfies P2.

Let $C=\{\varphi: M \rightarrow[0, \infty) \mid \varphi$ satisfy P1 and P2 $\}$. For all $\varphi: M \rightarrow[0, \infty)$ and $n \in \mathbb{N}$, we define $\lambda_{n} \varphi: M \rightarrow[0, \infty)$ by

$$
\lambda_{n} \varphi(x)=\sum_{k=0}^{\infty} \frac{\varphi\left(2^{k} x\right)}{2^{k n}}
$$

The next theorem shows that $\lambda_{n}(C) \subseteq C$.
Theorem 3.3 Let $\varphi \in C$ and $n \in \mathbb{N}$. Then $\lambda_{n} \varphi \in C$.
Proof It is clear that $\lambda_{n} \varphi$ satisfies P1. We will consider P2 for $\lambda_{n} \varphi$. Let $x \in M$.
If there exists $N \in \mathbb{N}$ such that $\varphi\left(2^{k} x\right)=0$ for all $k>N$, then it is straightforward to show that $\lambda_{n} \varphi\left(2^{k} x\right)=0$ for every $k>N$.
If no such N exists, then $\varphi\left(2^{k} x\right)>0$ for all $k \in \mathbb{N}$. This implies that $\lambda_{n} \varphi\left(2^{k} x\right)>0$ for all $k \in \mathbb{N}$. Since φ satisfies P 2 , there exist $N \in \mathbb{N}$ and $r \in(0,2)$ such that $\varphi\left(2^{k+1} x\right)<r \varphi\left(2^{k} x\right)$ whenever $k>N$. So,

$$
\frac{\lambda_{n} \varphi\left(2^{k+1} x\right)}{\varphi\left(2^{k} x\right)}=\sum_{i=0}^{\infty} \frac{\varphi\left(2^{k+i+1} x\right)}{2^{i n} \varphi\left(2^{k} x\right)}<\sum_{i=0}^{\infty} \frac{r^{i+1}}{2^{i n}}=r \sum_{i=0}^{\infty}\left(\frac{r}{2^{n}}\right)^{i}=\frac{2^{n} r}{2^{n}-r} .
$$

Also note that $\lambda_{n} \varphi\left(2^{k} x\right)=\varphi\left(2^{k} x\right)+\frac{1}{2^{n}} \lambda_{n} \varphi\left(2^{k+1} x\right)$. Thus

$$
\frac{\lambda_{n} \varphi\left(2^{k} x\right)}{\lambda_{n} \varphi\left(2^{k+1} x\right)}=\frac{\varphi\left(2^{k} x\right)}{\lambda_{n} \varphi\left(2^{k+1} x\right)}+\frac{1}{2^{n}}>\frac{2^{n}-r}{2^{n} r}+\frac{1}{2^{n}}=\frac{1}{r} .
$$

Hence we have $\frac{\lambda_{n} \varphi\left(2^{k+1} x\right)}{\lambda_{n} \varphi\left(2^{k} x\right)} \leq r<2$ whenever $k>N$. This completes the proof.

Now we establish our main theorems.

Theorem 3.4 Let $n \in \mathbb{N}, f: M \rightarrow B, \theta \in[0, \infty)$, and $\varphi_{1}, \varphi_{2} \in C$. If

$$
\left\|\Delta_{y}^{n+1} f(x)\right\| \leq \theta+\varphi_{1}(x)+\varphi_{2}(y)
$$

for all $x, y \in M$, then there exists $\varphi_{3} \in C$ such that

$$
\left|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right| \leq \frac{n 2^{n}}{2^{n}-1} \theta+\frac{n 2^{n-1} \varphi_{1}\left(y_{1}\right)}{2^{n}-1}+\frac{n 2^{n}}{2^{n}-1} \varphi_{1}(x)+\varphi_{3}\left(y_{2}\right)
$$

for all $x, y_{1}, y_{2} \in M$, where φ_{3} is defined by

$$
\varphi_{3}:=\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}+n \lambda_{n} \varphi_{2} .
$$

Proof According to Theorem 2.4, there exist $m \in \mathbb{N}$ and nonnegative integers $a_{i}, b_{i}, c_{i}, d_{i}$, e_{i} for $i \in\{1,2, \ldots, m\}$ such that

$$
\begin{align*}
\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| & =\frac{1}{n!}\left\|\sum_{i=1}^{m}(-1)^{a_{i}} \Delta_{b_{i} y_{1}+c_{i} y_{2}}^{n+1} f\left(x+d_{i} y_{1}+e_{i} y_{2}\right)\right\| \\
& \leq \frac{1}{n!} \sum_{i=1}^{m}\left(\theta+\varphi_{1}\left(x+d_{i} y_{1}+e_{i} y_{2}\right)+\varphi_{2}\left(b_{i} y_{1}+c_{i} y_{2}\right)\right) . \tag{7}
\end{align*}
$$

Denote the right-hand side of (7) by $\alpha_{0}\left(x, y_{1}, y_{2}\right)$. Since $\varphi_{1}, \varphi_{2} \in C$,

$$
\lim _{k \rightarrow \infty} \frac{\alpha_{0}\left(x, y_{1}, 2^{k} y_{2}\right)}{2^{k n}}=0 .
$$

For each nonnegative integer k, let

$$
\begin{aligned}
\alpha_{k+1}\left(x, y_{1}, y_{2}\right)= & \frac{\alpha_{k}\left(x, y_{1}, 2 y_{2}\right)}{2^{n}} \\
& +\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left(2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)+2 k \varphi_{1}\left(y_{2}\right)+2 \varphi_{2}\left(y_{2}\right)\right) .
\end{aligned}
$$

We can see that if $\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| \leq \alpha_{k}\left(x, y_{1}, y_{2}\right)$, then by Theorem 3.1

$$
\begin{aligned}
&\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| \\
&=\left\|\frac{1}{2^{n}} \Delta_{y_{1}} \Delta_{2 y_{2}}^{n} f(x)-\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1} \Delta_{y_{1}} \Delta_{y_{2}}^{n+1} f\left(x+k y_{2}\right)\right\| \\
& \leq \frac{\alpha_{k}\left(x, y_{1}, 2 y_{2}\right)}{2^{n}}+\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left\|\Delta_{y_{2}}^{n+1} f\left(x+y_{1}+k y_{2}\right)-\Delta_{y_{2}}^{n+1} f\left(x+k y_{2}\right)\right\| \\
& \leq \frac{\alpha_{k}\left(x, y_{1}, 2 y_{2}\right)}{2^{n}}+\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left(2 \theta+\varphi_{1}\left(x+y_{1}+k y_{2}\right)+\varphi_{1}\left(x+k y_{2}\right)+2 \varphi_{2}\left(y_{2}\right)\right) \\
& \leq \frac{\alpha_{k}\left(x, y_{1}, 2 y_{2}\right)}{2^{n}}+\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left(2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)+2 k \varphi_{1}\left(y_{2}\right)+2 \varphi_{2}\left(y_{2}\right)\right) \\
&=\alpha_{k+1}\left(x, y_{1}, y_{2}\right) .
\end{aligned}
$$

Hence $\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| \leq \alpha_{k}\left(x, y_{1}, y_{2}\right)$ for any nonnegative integer k. Observe that, for $m \geq 1$,

$$
\begin{aligned}
\alpha_{m}\left(x, y_{1}, y_{2}\right)= & \frac{\alpha_{0}\left(x, y_{1}, 2^{m} y_{2}\right)}{2^{m n}} \\
& +\frac{1}{2^{n}} \sum_{j=0}^{m-1} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left(\frac{2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)}{2^{j n}}+\frac{2 k \varphi_{1}\left(2^{j} y_{2}\right)+2 \varphi_{2}\left(2^{j} y_{2}\right)}{2^{j n}}\right) \\
= & \frac{\alpha_{0}\left(x, y_{1}, 2^{m} y_{2}\right)}{2^{m n}} \\
& +\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1} \sum_{j=0}^{m-1}\left(\frac{2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)}{2^{j n}}+\frac{2 k \varphi_{1}\left(2^{j} y_{2}\right)+2 \varphi_{2}\left(2^{j} y_{2}\right)}{2^{j n}}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} a_{m}\left(a, y_{1}, y_{2}\right) \\
& \quad=0+\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1} \sum_{j=0}^{\infty}\left(\frac{2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)}{2^{j n}}+\frac{2 k \varphi_{1}\left(2^{j} y_{2}\right)+2 \varphi_{2}\left(2^{j} y_{2}\right)}{2^{j n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{n}} \sum_{i=1}^{n}\binom{n}{i} \sum_{k=0}^{i-1}\left(\frac{2^{n}}{2^{n}-1}\left(2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)\right)+2 k \lambda_{n} \varphi_{1}\left(y_{2}\right)+2 \lambda_{n} \varphi_{2}\left(y_{2}\right)\right) \\
& =\frac{n 2^{n-1}}{2^{n}-1}\left(2 \theta+2 \varphi_{1}(x)+\varphi_{1}\left(y_{1}\right)\right)+\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}\left(y_{2}\right)+n \lambda_{n} \varphi_{2}\left(y_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| & \leq \lim _{m \rightarrow \infty} \alpha_{m}\left(x, y_{1}, y_{2}\right) \\
& =\frac{n 2^{n}}{2^{n}-1}\left(\theta+\varphi_{1}(x)+\frac{\varphi_{1}\left(y_{1}\right)}{2}\right)+\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}\left(y_{2}\right)+n \lambda_{n} \varphi_{2}\left(y_{2}\right)
\end{aligned}
$$

Let $\Lambda_{n, k} \varphi=\left(\prod_{k+1}^{n} \frac{2^{k}}{2^{k}-1}\right) \lambda_{1} \lambda_{2} \cdots \lambda_{k} \varphi$ for $k<n$ and $\Lambda_{n, n}=\lambda_{1} \lambda_{2} \cdots \lambda_{n} \varphi$. Using Theorem 3.4 inductively, we get the following theorem.

Theorem 3.5 Let $n \in \mathbb{N}, \theta \in[0, \infty), \varphi_{1}, \varphi_{2} \in C$, and $f: M \rightarrow B$. If $\left|\Delta_{y}^{n+1} f(x)\right| \leq \theta+\varphi_{1}(x)+$ $\varphi_{2}(y)$ for all $x, y \in M$, then there exists $\varphi_{3} \in C$ such that

$$
\left\|\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n+1}} f(x)\right\| \leq n!\left(\prod_{k=1}^{n} \frac{2^{k}}{2^{k}-1}\right)\left(\theta+\varphi_{1}(x)+\sum_{i=1}^{n} \frac{\varphi_{1}\left(y_{i}\right)}{2}\right)+\varphi_{3}\left(y_{n+1}\right)
$$

for all $x, y_{1}, y_{2} \in M$, where φ_{3} is defined by

$$
\varphi_{3}:=n!\Lambda_{n, n} \varphi_{2}+n!\sum_{i=1}^{n} \frac{i-1}{4} \Lambda_{n, i} \varphi_{1}
$$

Proof Let $y_{1} \in M$. By Theorem 3.4 there exists $\varphi_{2}^{\prime} \in C$ such that

$$
\left\|\Delta_{y_{1}} \Delta_{y_{2}}^{n} f(x)\right\| \leq \frac{n 2^{n}}{2^{n}-1}\left(\theta+\varphi_{1}(x)+\frac{\varphi_{1}\left(y_{1}\right)}{2}\right)+\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}+n \lambda_{n} \varphi_{2}
$$

Let $f_{y_{1}}=\Delta_{y_{1}} f, \theta_{y_{1}}=\frac{n 2^{n}}{2^{n}-1}\left(\theta+\frac{\varphi_{1}\left(y_{1}\right)}{2}\right), \psi_{1}=\frac{n 2^{n}}{2^{n}-1} \varphi_{1}$, and $\psi_{2}=\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}+n \lambda_{n} \varphi_{2}$. Since the order of $\Delta_{y_{i}}$ can be interchanged without affecting the value on the left-hand side, we have

$$
\begin{aligned}
\left\|\Delta_{y_{2}}^{n} f_{y_{1}}(x)\right\| & =\left\|\Delta_{y_{2}}^{n} \Delta_{y_{1}} f(x)\right\| \\
& \leq \frac{n 2^{n}}{2^{n}-1}\left(\theta+\varphi_{1}(x)+\frac{\varphi_{1}\left(y_{1}\right)}{2}\right)+\frac{n(n-1)}{4} \lambda_{n} \varphi_{1}\left(y_{2}\right)+n \lambda_{n} \varphi_{2}\left(y_{2}\right) \\
& =\theta_{y_{1}}^{\prime}+\psi_{1}(x)+\psi_{2}\left(y_{2}\right)
\end{aligned}
$$

Since y_{1} is currently fixed and $\psi_{1}, \psi_{2} \in C$, the theorem is true by induction on n.
Now we apply this to the result of Theorem 4.4 in [10]. For all $\varphi: M^{n+1} \rightarrow[0, \infty)$ and $n \in \mathbb{N}$, define $r_{n} \varphi, R_{n} \varphi: M^{n} \rightarrow \mathbb{R}^{*}$ by

$$
\begin{aligned}
& r_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \quad=\varphi\left(2 x_{1}, 2 x_{2}, \ldots, 2 x_{n-1}, x_{n}, x_{n}\right)+2 \varphi\left(2 x_{1}, 2 x_{2}, \ldots, 2 x_{n-2}, x_{n}, x_{n-1}, x_{n-1}\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \quad+2^{n-2} \varphi\left(2 x_{1}, x_{n}, x_{n-1}, \ldots, x_{3}, x_{2}, x_{2}\right)+2^{n-1} \varphi\left(x_{n}, x_{n-1}, \ldots, x_{2}, x_{1}, x_{1}\right), \\
& R_{n} \varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k=0}^{\infty} \frac{r_{n} \varphi\left(2^{k} x_{1}, 2^{k} x_{2}, \ldots, 2^{k} x_{n}\right)}{2^{n(k+1)}} .
\end{aligned}
$$

Also, let

$$
\begin{aligned}
D_{n}^{+}= & \left\{\left(\varphi, \varphi^{\prime}\right) \mid \varphi: M^{n+1} \rightarrow \mathbb{R}^{*}, \sum_{k=0}^{\infty} 2^{-n(k+1)} \varphi\left(2^{k} z\right)<\infty, z \in M^{n+1},\right. \\
& \left.\varphi^{\prime}: M^{n} \rightarrow[0, \infty), \varphi^{\prime}(y) \geq R_{n} \varphi(y), \text { and } \lim _{k \rightarrow \infty} 2^{-n k} \varphi^{\prime}\left(2^{k} y\right)=0, y \in M^{n}\right\} .
\end{aligned}
$$

We restate the theorem as follows.

Theorem 3.6 Let $n \in \mathbb{N}$, and let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n+1}: M^{i} \rightarrow[0, \infty)$ for $i \in\{1,2, \ldots, n+1\}$ be such that $\left(\varphi_{i+1}, \varphi_{i}\right) \in D_{i}^{+}$for $1 \leq i \leq n$. Iff $: M \rightarrow B$ satisfies

$$
\left\|\Delta_{y_{1}} \Delta_{y_{2}} \cdots \Delta_{y_{n+1}} f(0)\right\| \leq \varphi_{n+1}\left(y_{1}, y_{2}, \ldots, y_{n+1}\right)
$$

for all $y_{1}, y_{2}, \ldots, y_{n+1} \in M$, then there exists a generalized polynomial $p: M \rightarrow B$ of degree at most n such that

$$
\|f(x)-p(x)\| \leq \varphi_{1}(x)
$$

for all $x \in M$ and $p(0)=f(0)$.

If we let

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right)=\theta+\sum_{i=1}^{n+1} \varphi_{i}\left(x_{i}\right)
$$

with $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n+1} \in C$, then

$$
\begin{aligned}
r_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq & \left(2^{n}-1\right) \theta+\left(\left(2^{n}-2\right) \varphi_{1}\left(x_{1}\right)+2^{n-1} \varphi_{n}\left(x_{1}\right)+2^{n-1} \varphi_{n+1}\left(x_{1}\right)\right) \\
& +\left(2^{n-1}-2\right) \varphi_{2}\left(x_{2}\right)+2^{n-1} \varphi_{n-1}\left(x_{2}\right)+2^{n-2} \varphi_{n}\left(x_{2}\right)+2^{n-2} \varphi_{n+1}\left(x_{2}\right) \\
& \vdots \\
& +\varphi_{n+1}\left(x_{n}\right)+\sum_{i=1}^{n} 2^{n-i} \varphi_{i}\left(x_{n}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
R_{n} \varphi\left(y_{1}, y_{2}, \ldots, y_{n}\right) \leq & 2^{n} \theta+\left(\frac{2^{n}-2}{2^{n}} \lambda_{n} \varphi_{1}\left(x_{1}\right)+\frac{1}{2} \lambda_{n} \varphi_{n}\left(x_{1}\right)+\frac{1}{2} \lambda_{n} \varphi_{n+1}\left(x_{1}\right)\right) \\
& +\frac{2^{n-1}-2}{2^{n}} \lambda_{n} \varphi_{2}\left(x_{2}\right)+\frac{1}{2} \lambda_{n} \varphi_{n-1}\left(x_{2}\right)+\frac{1}{4} \lambda_{n} \varphi_{n}\left(x_{2}\right)+\frac{1}{4} \lambda_{n} \varphi_{n+1}\left(x_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \vdots \\
& +\frac{1}{2^{n}} \lambda_{n} \varphi_{n+1}\left(x_{n}\right)+\sum_{i=1}^{n} \frac{1}{2^{i}} \lambda_{n} \varphi_{i}\left(x_{n}\right) . \tag{8}
\end{align*}
$$

Let $\Psi\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be the right-hand side of (8). Then $(\varphi, \Psi) \in D_{n}^{+}$and Ψ can be used to produce the next pair, resulting in a stability chain. We have the following result.

Theorem 3.7 Let $n \in \mathbb{N}, \theta \in[0, \infty), \varphi_{1}, \varphi_{2} \in C$, and $f: M \rightarrow B$. If

$$
\left\|\Delta_{y}^{n+1} f(x)\right\| \leq \theta+\varphi_{1}(x)+\varphi_{2}(y)
$$

for all $x, y \in M$, then there exist a generalized polynomial $p: M \rightarrow B$ of degree at most n and $\varphi_{3} \in C$ such that

$$
\|f(x)-p(x)\| \leq\left(2^{\frac{n(n+1)}{2}}\right)\left(n!\prod_{i=1}^{n} \frac{2^{n}}{2^{n}-1}\right) \theta+\varphi_{3}(x)
$$

for all $x \in M$.

A direct corollary of this theorem is the Aoki-Rassias stability:

$$
\left\|\Delta^{n+1} f(x)\right\| \leq \theta+c_{1}\left|x^{p}\right|+c_{2}|y|^{p}
$$

for $0<p<1$ when M is either $\mathbb{N} \cup\{0\}$ or the set of all integers. In this case, $\varphi_{1}(x)=|x|^{p}$ and

$$
\lambda_{n} \varphi_{1}(x)=\sum_{k=0}^{\infty} \frac{\left|2^{k} x\right|^{p}}{2^{k n}}=\sum_{k=0}^{\infty} \frac{\left|2^{k} x\right|^{p}}{2^{k n}}=|x|^{p} \sum_{k=0}^{\infty} \frac{1}{2^{k(n-p)}}=\frac{2^{n-p}}{2^{n-p}-1}|x|^{p} .
$$

Theorem 3.8 Let $n \in \mathbb{N}, \theta, c_{1}, c_{2} \in[0, \infty), p \in(0,1)$, and $f: \mathbb{N} \cup\{0\} \rightarrow B$. If

$$
\left\|\Delta_{y}^{n+1} f(x)\right\| \leq \theta+c_{1}|x|^{p}+c_{2}|y|^{p}
$$

for all $x, y \in \mathbb{N} \cup\{0\}$, then there exist $M_{n} \in[0, \infty)$ and a polynomial $p: \mathbb{N} \cup\{0\} \rightarrow B$ of degree at most n such that

$$
\|f(x)-p(x)\| \leq\left(2^{\frac{n(n+1)}{2}}\right)\left(n!\prod_{i=1}^{n} \frac{2^{n}}{2^{n}-1}\right) \theta+M_{n}|x|^{p}
$$

for all $x \in \mathbb{N} \cup\{0\}$.

Acknowledgements

The author would like to show his gratitude to the reviewers for their beneficial remarks. They were also generous enough to understand many mistypes the author made, including $[0,1]$, where it should be $[0, \infty)$ at many places.

Funding

Not applicable

Availability of data and materials

Not applicable.

Competing interests

The author declares that he has no competing interests.

Author's contributions

Author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 12 December 2019 Accepted: 21 February 2020 Published online: 06 March 2020

References

1. Fréchet, M.: Une definition fonctionnelle des polynômes. Nouv. Ann. Math. 9, 145-182 (1909)
2. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222-224 (1941)
3. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2(1-2), 64-66 (1950)
4. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72(2), 297-300 (1978)
5. Găvruța, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)
6. Albert, M., Baker, J.A.: Functions with bounded nth differences. Ann. Pol. Math. 43, 93-103 (1983)
7. Whitney, H.: On functions with bounded nth differences. J. Math. Pures Appl. 36(9), 67-95 (1957)
8. Whitney, H.: On bounded functions with bounded nth differences. Proc. Am. Math. Soc. 10, 480-481 (1959)
9. Hyers, D.H.: Transformations with bounded m th differences. Pac. J. Math. 11(2), 591-602 (1961)
10. Dăianu, D.M.: Recursive procedure in the stability of Fréchet polynomials. Adv. Differ. Equ. 201416 (2014)
11. Kuczma, M.: The difference operator. In: Gilányi, A. (ed.) An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality, 2nd edn., pp. 415-421. Birkhäuser, Basel (2009)
12. Sukhonwimolmal, T.: Stability of Fréchet functional equations on certain groupoid. Ph.D. thesis, Chulalongkorn University, Department of Mathematics and Computer Science (2016)

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

