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Abstract
In this paper, based on the model of Zhao, Qin, and Chen [Adv. Differ. Equ. 2018:172,
2018], we propose a new model of the May cooperative system with strong and weak
cooperative partners. The model overcomes the drawback of the corresponding
model of Zhao, Qin, and Chen. By using the differential inequality theory, a set of
sufficient conditions that ensure the permanence of the system are obtained. By
combining the differential inequality theory and the iterative method, a set of
sufficient conditions that ensure the extinction of the weak partners and the
attractivity of the strong partners and the other species is obtained. Numeric
simulations show that too large transform rate will lead to more complicated
fluctuation; however, the system is still permanent.

Keywords: Mutualism; Iterative method; Weak partners; Strong partners; Global
stability

1 Introduction
During the last decade, many scholars [1–36] investigated the dynamic behaviors of the
mutualism and commensalism models. Some substantial progress has been made on the
stability, permanence, and extinction of the mutualism model. For example, under some
very simple assumption, Xie, Chen, and Xue [9] showed that the unique positive equilib-
rium of a cooperative system incorporating harvesting is globally attractive; Xie et al. [11]
showed that the unique positive equilibrium of an integrodifferential model of mutualism
is globally attractive. Chen, Xie, and Chen [17] proposed a stage structured cooperative
system, and they showed that the stage structure plays an important role in the persistence
and extinction property of the system. Lei [21] proposed a stage structured commensal-
ism model. By constructing some suitable Lyapunov function, he obtained the conditions
that ensure global asymptotic stability of the positive equilibrium.

Recently, stimulated by the idea of Mohammadi and Mahzoon [37], Zhao, Qin, and Chen
[36] proposed the following May cooperative system with strong and weak cooperative
partners:

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 –

αH2

r1

)
,
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dH2

dt
= H2(αH1 + d – eH2), (1.1)

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)
,

where ri, ai, bi, ci, d, i = 1, 2, are positive constants. The authors considered system (1.1)
together with the initial condition Hi(0) > 0, i = 1, 2, P(0) > 0. Obviously, any solution of
system (1.1) with positive initial conditions remains positive for all t ≥ 0.

Concerned with the non-persistence property of the species, by using the differential
inequality theory, the authors of [36] obtained the following result.

Theorem A If assumption (B3) holds, where

(B3) M = 1 –
αd
r1e

< 0,

then the weak partners H2 and the second species P are permanent, while the stronger part-
ners H1 will be driven to extinction.

Though it seems to be correct in mathematical deduction of Theorem A, from an eco-
logical point of view, it is unreasonable. It is hard to imagine in natural world that a species
only leave the weak partners while the stronger partners die out. Generally speaking, the
strong partners will have more chances to survive, let alone the fact that in system (1.1)
the strong partners will obtain the help from the species P.

After carefully checking the deduction of [36], we think the reason for such an unrea-
sonable phenomenon relies on the fact that the authors made the following assumption:

Without the strong partners, the weak partners in system (1.1) are always permanent.
Indeed, the authors assumed that the weak partners satisfy the equation

dH2

dt
= H2(d – eH2). (1.2)

This is the famous logistic equation, and the system admits a unique positive equilibrium
H∗

2 = d
e , which is globally asymptotically stable. Such an assumption seems curious since,

generally speaking, weak partners are more easily driven to extinction.
This motivated us to propose the following May cooperative system with strong and

weak cooperative partners:

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 –

αH2

r1

)
,

dH2

dt
= H2(αH1 – d – eH2), (1.3)

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)
.

One may argue that system (1.3) is very similar to system (1.1), maybe they have similar
dynamic behaviors. However, this is impossible, there are some essential differences be-
tween system (1.1) and (1.3). In system (1.3), as far as the weak partners are concerned,
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without the transformation of strong partners, it satisfies the equation

dH2

dt
= H2(–d – eH2). (1.4)

Hence,

dH2

dt
≤ –dH2. (1.5)

Consequently,

H2(t) ≤ H2(0) exp{–dt} → 0 as t → +∞. (1.6)

That is to say, without the transformation of the strong partners, the weak partners will
finally be driven to extinction.

Noting that in analyzing the persistence and extinction property of the species in system
(1.1), the authors of [17] deeply relied on the fact that the weak partners have positive lower
bound, while this could not hold for system (1.3), as was shown in (1.6), the weak partners
will be driven to extinction.

Now, an interesting issue is proposed: Is it possible for us to investigate the persistence
and extinction property of system (1.3)? The aim of this paper is to give a positive answer
to this issue.

The rest of the paper is arranged as follows. We introduce a lemma in the next section,
and we investigate the persistence property of system (1.3) in Sect. 3. In Sect. 4, by using
the iterative method, we establish a set of sufficient conditions which ensure the global
attractivity of the boundary equilibrium. Some numeric simulations are carried out in
Sect. 5 to show the feasibility of the main results. We end this paper with a brief discussion.

2 Lemma
We need the following lemma to prove the main results.

Lemma 2.1 ([38]) Let a > 0, b > 0.
(I) If dx

dt ≥ x(b – ax), then lim inft→+∞ x(t) ≥ b
a for t ≥ 0 and x(0) > 0;

(II) If dx
dt ≤ x(b – ax), then lim supt→+∞ x(t) ≤ b

a for t ≥ 0 and x(0) > 0.

3 Permanence
The aim of this section is to obtain a set of sufficient conditions to ensure the permanence
of system (1.3).

Definition If there exist positive constants mi, Mi, i = 1, 2, 3, which are independent of the
positive solution of system (1.3) such that

m1 ≤ lim inf
t→+∞ H1(t) ≤ lim sup

t→+∞
H1(t) ≤ M1, (3.1)

m2 ≤ lim inf
t→+∞ H2(t) ≤ lim sup

t→+∞
H2(t) ≤ M2, (3.2)

m3 ≤ lim inf
t→+∞ P(t) ≤ lim sup

t→+∞
P(t) ≤ M3. (3.3)
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Obviously, by means of permanence means that the species could survive for a long
time.

Concerned with the persistence property of system (1.3), we have the following result.

Theorem 3.1 Assume that
(A1)

α

c1
> d; (3.4)

(A2)

r1 > αM2 (3.5)

and
(A3)

αm1 > d (3.6)

hold, where M2 is defined by (3.13) and m1 is defined by (3.20). Then system (1.3) is
permanent.

Proof Noting that m1, M2 are fixed positive constants, it follows from conditions (A2), (A3)
that, for small enough positive constant ε > 0, the inequalities

r1 > α(M2 + ε), (3.7)

α(m1 – ε) > d (3.8)

hold. Indeed, we could choose ε that satisfies the inequality ε < min{ r1
α

– M2, m1 – d
α
}.

From the first equation of system (1.3) we have

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 – α

H2

r1

)

≤ r1H1(1 – c1H1). (3.9)

Applying Lemma 2.1 to the above inequality leads to

lim sup
t→+∞

H1(t) ≤ 1
c1

def= M1. (3.10)

For above ε > 0, from (3.10), there exists T1 > 0 such that, for all t > T1,

H1(t) <
1
c1

+ ε. (3.11)

For t > T1, it follows from (3.11) and the second equation of system (1.3) that

dH2

dt
= H2(αH1 – d – eH2)
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≤ H2

(
α

(
1
c1

+ ε

)
– d – eH2

)
.

Applying Lemma 2.1 to the above inequality leads to

lim sup
t→+∞

H2(t) ≤ α( 1
c1

+ ε) – d
e

. (3.12)

Setting ε → 0 in (3.12) leads to

lim sup
t→+∞

H2(t) ≤
α
c1

– d
e

def= M2. (3.13)

From (3.13), for any ε > 0 that satisfies (3.7) and (3.8), there exists T2 > T1 such that

H2(t) < M2 + ε for all t ≥ T2. (3.14)

From the third equation of system (1.3), one has

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)

≤ r2P(1 – c2P). (3.15)

Applying Lemma 2.1 to the above inequality leads to

lim sup
t→+∞

P(t) ≤ 1
c2

def= M3. (3.16)

For any small enough positive constant ε > 0, it follows from (3.16) that there exists T3 > 0,

P(t) <
1
c2

+ ε for all t ≥ T3. (3.17)

For t ≥ T3, from (3.14) and the first equation of system (1.3), we have

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 – α

H2

r1

)

≥ r1H1

(
1 –

H1

a1
– c1H1 – α

M2 + ε

r1

)
. (3.18)

Applying Lemma 2.1 to (3.18) leads to

lim inf
t→+∞ H1(t) ≥ 1 – α

M2+ε

r1

c1 + 1
a1

. (3.19)

Setting ε → 0 in (3.19), we have

lim inf
t→+∞ H1(t) ≥ 1 – α

M2
r1

c1 + 1
a1

def= m1. (3.20)
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For ε > 0 that satisfies (3.7) and (3.8), it follows from (3.20) that there exists T4 > T3 such
that

H1(t) > m1 – ε for all t ≥ T4. (3.21)

For t > T4, from (3.21) and the second equation of system (1.3), we have

dH2

dt
= H2(αH1 – d – eH2)

≥ H2
(
α(m1 – ε) – d – eH2

)
.

Applying Lemma 2.1 to the above inequality leads to

lim inf
t→+∞ H2(t) ≥ α(m1 – ε) – d

e
. (3.22)

Setting ε → 0 in the above inequality, we have

lim inf
t→+∞ H2(t) ≥ αm1 – d

e
def= m2. (3.23)

From the third equation of system (1.3), one has

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)

≥ r2P
(

1 –
P
a2

– c2P
)

. (3.24)

Applying Lemma 2.1 to the above inequality leads to

lim inf
t→+∞ P(t) ≥ 1

1
a2

+ c2

def= m3. (3.25)

(3.10), (3.13), (3.16), (3.20), (3.23), and (3.25) show that under the assumption of Theo-
rem 3.1, system (1.3) is permanent. This ends the proof of Theorem 3.1. �

Remark 3.1 Condition (A1) shows that the transform rate of strong partners to weak part-
ners should be large enough, while condition (A2) requires the transform rate of strong
partners to weak partners to be restricted to some area. Combining these two inequali-
ties ensures the permanence of system (1.3), the transform rate (represent by α) should be
restricted to some interval.

Remark 3.2 Conditions (A1)–(A3) could be combined with the following inequality:

α · 1 –
α( α

c1
–d)

r1e

c1 + 1
a1

> d, (3.26)

which is equivalent to

1 >
α(α – c1d)

r1ec1
+

d
α

(
c1 +

1
a1

)
. (3.27)
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4 Stability of the boundary equilibrium
As was shown in the Introduction section, without the transformation of the strong part-
ners to the weak partners, the weak partners will be driven to extinction. Also, we have
shown in Sect. 3 that to ensure the permanence of the system, the transform rate should
be restricted to a certain range. A natural issue is proposed: What would happen if the
transform rate is small? This section will give the answer to this question.

Theorem 4.1 Assume that
(A4)

α

c1
< d (4.1)

holds, then the weak partners H2 in system (1.3) will be driven to extinction, while
the strong partners and the species P will be finally attracted to the unique positive
equilibrium of the following system:

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1

)
,

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)
.

(4.2)

Noting that the expression of the positive equilibrium of (4.2) is not easy to be expressed,
here we give the following lemma.

Lemma 4.1 System (4.2) admits a unique positive equilibrium (H∗
1 , P∗).

Proof The positive equilibrium of system (4.2) satisfies the equations

1 –
H1

a1 + b1P
– c1H1 = 0,

1 –
P

a2 + b2H1
– c2P = 0.

(4.3)

From the second equation of system (4.3), we have

P =
b2H1 + a2

H1b2c2 + a2c2 + 1
. (4.4)

Substituting it into the first equation of system (4.3) and simplifying it, we have

A1H2
1 + A2H1 + A3 = 0, (4.5)

here

A1 = a1b2c1c2 + b1b2c1 + b2c2 > 0,

A2 = a1a2c1c2 – a1b2c2 + a2b1c1 + a1c1 + a2c2 – b1b2 + 1,

A3 = –a1a2c2 – a2b1 – a1 < 0.
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Obviously, system (4.5) has the unique positive solution

H∗
1 =

–A2 +
√

A2
2 – 4A1A3

2A1
. (4.6)

Thus, system (4.3) has a unique positive solution (H∗
1 , P∗), where H∗

1 is defined by (4.6) and

P∗ =
b2H∗

1 + a2

H∗
1 b2c2 + a2c2 + 1

. (4.7)

This ends the proof of Lemma 4.1. �

Proof of Theorem 4.1 For any small enough positive constant ε > 0, without loss of general-
ity, we may assume that ε < min{ 1

α
r1

+c1+ 1
a1

, 1
2

1
c2+ 1

a2
}, it follows from (4.1) that the inequality

α

(
1
c1

+ ε

)
< d (4.8)

holds. For above ε > 0, similar to the analysis of (3.9)–(3.11), we have

lim sup
t→+∞

H1(t) ≤ 1
c1

. (4.9)

For above ε > 0, it follows from (4.9) that there exists T11 > 0 such that

H1(t) <
1
c1

+ ε
def= M(1)

1 for all t > T11. (4.10)

For t > T11, from (4.10) and the second equation of system (1.3), we have

dH2

dt
= H2(αH1 – d – eH2)

≤ H2

(
α

(
1
c1

+ ε

)
– d

)
.

Hence

H2(t) ≤ H2(T1) exp

{(
α

(
1
c1

+ ε

)
– d

)
(t – T1)

}
. (4.11)

Therefore,

lim
t→+∞ H2(t) = 0. (4.12)

It follows from (4.12) that the weak parters will be driven to extinction. Also, for any small
enough positive constant ε > 0, it follows from (4.12) that there exists T12 > T11 > 0 such
that

H2(t) < ε for all t > T12. (4.13)
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From the third equation of system (1.3), similar to the analysis of (3.15)–(3.16), we have

lim sup
t→+∞

P(t) ≤ 1
c2

. (4.14)

For any small enough positive constant ε > 0, it follows from (4.14) that there exists T13 > 0
such that, for all t > T13,

P(t) <
1
c2

+ ε
def= M(1)

2 . (4.15)

For t > T13, from (4.15) and the first equation of system (1.3) we have

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 – α

H2

r1

)

≤ r1H1

(
1 –

H1

a1 + b1M(1)
2

– c1H1

)
. (4.16)

Applying Lemma 2.1 to (4.16) leads to

lim sup
t→+∞

H1(t) ≤ 1
c1 + 1

a1+b1M(1)
2

. (4.17)

Hence, for ε > 0 that satisfies (4.8), there exists T21 > T13 such that, for all t > T21, one has

H1(t) <
1

c1 + 1
a1+b1M(1)

2

+
ε

2
def= M(2)

1 . (4.18)

For t > T21, from (4.18) and the third equation of system (1.3), we have

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)

≤ r2P
(

1 –
P

a2 + b2M(2)
1

– c2P
)

. (4.19)

Applying Lemma 2.1 to (4.19) leads to

lim sup
t→+∞

P(t) ≤ 1
c2 + 1

a2+b2M(2)
1

. (4.20)

For ε > 0 that satisfies (4.8), it follows from (4.20) that there exists T22 > T21 such that, for
all t > T22, one has

P(t) <
1

c2 + 1
a2+b2M(2)

1

+
ε

2
def= M(2)

2 . (4.21)

From (4.21) and the first equation of system (1.3), we have

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 – α

H2

r1

)
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≥ r1H1

(
1 –

H1

a1
– c1H1 – α

ε

r1

)
. (4.22)

Applying Lemma 2.1 to (4.22) leads to

lim inf
t→+∞ H1(t) ≥ 1 – α ε

r1

c1 + 1
a1

. (4.23)

For ε > 0 that satisfies (4.8), it follows from (4.23) that there exists T ′
11 > T22 such that, for

all t > T ′
11, one has

H1(t) >
1 – α ε

r1

c1 + 1
a1

– ε
def= m(1)

1 . (4.24)

From the third equation of system (1.3), we have

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)

≥ r2P
(

1 –
P
a2

– c2P
)

. (4.25)

Applying Lemma 2.1 to (4.25) leads to

lim inf
t→+∞ P(t) ≥ 1

c2 + 1
a2

. (4.26)

For ε > 0 that satisfies (4.8), it follows from (4.26) that there exists T ′
12 > T ′

11 such that, for
all t > T ′

12, one has

P(t) >
1

c2 + 1
a2

– ε
def= m(1)

2 . (4.27)

From (4.27) and the first equation of system (1.3), for t > T ′
12, one has

dH1

dt
= r1H1

(
1 –

H1

a1 + b1P
– c1H1 – α

H2

r1

)

≥ r1H1

(
1 –

H1

a1 + m(1)
2

– c1H1 – α
ε

r1

)
. (4.28)

Applying Lemma 2.1 to (4.28) leads to

lim inf
t→+∞ H1(t) ≥ 1 – α ε

r1

c1 + 1
a1+m(1)

2

. (4.29)

For ε > 0 that satisfies (4.8), it follows from (4.29) that there exists T ′
21 > T ′

12 such that, for
all t > T ′

21, one has

H1(t) >
1 – α ε

r1

c1 + 1
a1+m(1)

2

–
ε

2
def= m(2)

1 . (4.30)
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From (4.30) and the third equation of system (1.3), we have

dP
dt

= r2P
(

1 –
P

a2 + b2H1
– c2P

)

≥ r2P
(

1 –
P

a2 + b2m(1)
1

– c2P
)

. (4.31)

Applying Lemma 2.1 to (4.31) leads to

lim inf
t→+∞ P(t) ≥ 1

c2 + 1
a2+b2m(1)

1

. (4.32)

For ε > 0 that satisfies (4.8), it follows from (4.32) that there exists T ′
22 > T ′

21 such that, for
all t > T ′

22, one has

P(t) >
1

c2 + 1
a2+b2m(1)

1

–
ε

2
def= m(2)

2 . (4.33)

Noting that 1
a2+b2M(1)

1
> 0, 1

a1+b1M(1)
2

> 0, from (4.10), (4.15), (4.18), and (4.21), one has

M(2)
1 < M(1)

1 , M(2)
2 < M(1)

2 . (4.34)

Also, from m(1)
1 > 0, m(1)

2 > 0 we have

1
a1

>
1

a1 + b1m(1)
2

,
1
a2

>
1

a2 + b2m(1)
1

.

Hence, from (4.24), (4.27), (4.30), and (4.33), we have

m(2)
1 > m(1)

1 , m(2)
2 > m(1)

2 . (4.35)

Repeating the above procedure, we get four sequences m(n)
i , M(n)

i , i = 1, 2, n = 1, 2, . . . . such
that

M(n)
1 =

1
c1 + 1

a1+b1M(n–1)
2

+
ε

n
,

M(n)
2 =

1
c2 + 1

a2+b2M(n)
1

+
ε

n
,

m(n)
1 =

1 – α ε
r1

c1 + 1
a1+b1m(n–1)

2

–
ε

n
,

m(n)
2 =

1
c2 + 1

a2+b2m(n–1)
1

–
ε

n
.

(4.36)

From the deduction process, for t > max{T2n, T ′
2n}, we have

m(n)
1 < H1(t) < M(n)

1 , m(n)
2 < P(t) < M(n)

2 . (4.37)
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We claim that sequences M(n)
i , i = 1, 2, are strictly decreasing, and sequences m(n)

i , i = 1, 2,
are strictly increasing. To prove this claim, we carry on by induction. (4.34) and (4.35)
show that the conclusion holds for n = 2. Let us assume now that our claim is true for
n = k, that is,

M(k)
i < M(k–1)

i , m(k)
i > m(k–1)

i , i = 1, 2.

Then

1
a1 + b1M(k–1)

2

<
1

a1 + b1M(k)
2

,
1

a2 + b2M(k–1)
1

<
1

a2 + b2M(k)
1

, (4.38)

1
a1 + b1m(k–1)

2

<
1

a1 + b1m(k)
2

,
1

a2 + b2m(k–1)
1

>
1

a2 + b2m(k)
1

. (4.39)

And so

M(k+1)
1 =

1
c1 + 1

a1+b1M(k)
2

+
ε

k + 1

<
1

c1 + 1
a1+b1M(k–1)

2

+
ε

k
= M(k)

1 ,

M(k+1)
2 =

1
c2 + 1

a2+b2M(k)
1

+
ε

k + 1

<
1

c2 + 1
a2+b2M(k–1)

1

+
ε

k
= M(k)

2 ,

m(k+1)
1 =

1 – α ε
r1

c1 + 1
a1+b1m(k)

2

–
ε

k + 1

(4.40)

>
1 – α ε

r1

c1 + 1
a1+b1m(k–1)

2

–
ε

k
= m(k)

1 ,

m(k+1)
2 =

1
c2 + 1

a2+b2m(k)
1

–
ε

k + 1

>
1

c2 + 1
a2+b2m(k–1)

1

–
ε

k
= m(k)

2 .

The above analysis shows that M(n)
i is a strictly decreasing sequence, mn

i is a strictly in-
creasing sequence. Set

lim
n→+∞ M1(n) = H1,

lim
n→+∞ M2(n) = P,

lim
n→+∞ m1(n) = H1,

lim
n→+∞ m2(n) = P.

(4.41)
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Setting n → +∞ in (4.40) leads to

H1 =
1

c1 + 1
a1+b1P

,

P =
1

c2 + 1
a2+b2H1

,

H1 =
1

c1 + 1
a1+b1P

,

P =
1

c2 + 1
a2+b2H1

.

(4.42)

(4.42) shows that (H1, P), (H1, P) are all the solutions of (4.3). By Lemma 4.1, (4.3) has a
unique positive solution (H∗

1 , P∗). Hence, we conclude that H1 = H1 = H∗
1 , P = P = P∗, that

is,

lim
t→+∞ H1(t) = H∗

1 , lim
t→+∞ P(t) = P∗. (4.43)

Thus, the unique interior equilibrium (H∗
1 , P∗) is globally attractive. This completes the

proof of Theorem 4.1. �

5 Numeric simulations
Now let us consider the following three examples.

Example 5.1

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– H1 –

2H2

3

)
,

dH2

dt
= H2(2H1 – 0.5 – 2H2), (5.1)

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.

Here, corresponding to system (1.3), we take r1 = 3, a1 = 2, b1 = 2, c1 = 1,α = 2, r2 = 2, d =
0.5, e = 2, a2 = 2, b2 = 0.8, c2 = 1.5. By simple computation, we have

α(α – c1d)
r1ec1

+
d
α

(
c1 +

1
a1

)
=

7
8

< 1. (5.2)

That is, inequality (3.27) holds, it follows from Remark 3.2 and Theorem 3.1 that system
(1.3) is permanent. Figures 1–3 support this assertion.

Example 5.2

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– H1 –

0.5H2

3

)
,

dH2

dt
= H2(0.5H1 – 2 – 2H2), (5.3)



Lin et al. Advances in Difference Equations        (2020) 2020:113 Page 14 of 20

Figure 1 Dynamic behaviors of the strong partners in system (5.1). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Figure 2 Dynamic behaviors of the weak partners in system (5.1). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.

Here, corresponding to system (1.3), we take r1 = 3, a1 = 2, b1 = 2, c1 = 1,α = 0.5, r2 = 2, d =
2, e = 2, a2 = 2, b2 = 0.8, c2 = 1.5. By simple computation, we have

α

c1
= 0.5 < 2 = d. (5.4)

That is, inequality (4.1) holds. It follows from Theorem 4.1 that the weak partners H2 in
system (5.3) will be driven to extinction, while the strong partners and the species P will
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Figure 3 Dynamic behaviors of the second species in system (5.1). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Figure 4 Dynamic behaviors of the strong partners in system (5.3). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

be finally attracted to the unique positive equilibrium of the following system:

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– H1

)
,

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.

(5.5)

Figures 4–6 support this assertion.
In Theorems 3.1 and 4.1, we made the assumption that the transform rate of the strong

partners to the weak partners is limited to an interval, one may argue what would happen
if the transform rate is large enough. Now let us consider the following example.
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Figure 5 Dynamic behaviors of the weak partners in system (5.3). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Figure 6 Dynamic behaviors of the second species in system (5.3). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Example 5.3

dH1

dt
= 3H1

(
1 –

H1

2 + 2P
– H1 –

10H2

3

)
,

dH2

dt
= H2(10H1 – 2 – 2H2), (5.6)

dP
dt

= 2P
(

1 –
P

2 + 0.8H1
– 1.5P

)
.
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Figure 7 Dynamic behaviors of the strong partners in system (5.6). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Here, corresponding to system (1.3), we take r1 = 3, a1 = 2, b1 = 2, c1 = 1,α = 10, r2 = 2, d =
2, e = 2, a2 = 2, b2 = 0.8, c2 = 1.5. By simple computation, we have

α(α – c1d)
r1ec1

+
d
α

(
c1 +

1
a1

)
=

409
30

> 1 (5.7)

and

α

c1
= 10 > 2 = d. (5.8)

Thus, neither (3.27) nor (4.1) holds. We could not give any persistence or non-persistence
property from Theorem 3.1 and 4.1. However, numeric simulations (Figs. 7–9) show that
in this case the system is still permanent.

6 Discussion
Based on the traditional May cooperative system, Zhao, Qin, and Chen [36] proposed
a May cooperative system with strong and weak cooperative partners (system (1.1)). The
authors investigated the persistence and non-persistence property of system (1.1). By con-
structing a suitable Lyapunov function, they also obtained the conditions that ensure the
global asymptotic stability of the positive equilibrium and boundary equilibrium. As was
shown in the Introduction section, their result (Theorem A) from the mathematic point
of view is correct; however, from the biological background, it is unreasonable. This mo-
tivated us to propose system (1.3), which overcomes the drawback of model (1.1).

By applying the differential inequality theory, we first obtain a set of conditions that
ensure the permanence of system (1.3). Then, by using the iterative method and the dif-
ferential inequality theory, we also obtain a set of conditions that ensure the extinction of
the weak partners and the attractivity of the strong partners and the other species.

Since our results require the restriction of the transform rate, it is natural to ask what
would happen if the transform rate is large enough. Zhao, Qin, and Chen [36] showed
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Figure 8 Dynamic behaviors of the weak partners in system (5.6). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

Figure 9 Dynamic behaviors of the second species in system (5.6). The initial conditions
(H1(0),H2(0),P(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1), and (0.1, 0.1, 2), respectively

that in system (1.1), if the transform rate is too large, the strong partners will be driven to
extinction; however, for model (1.3), numeric simulations (Figs. 7–9) show that in this case
the model is still permanent. From numeric simulations one could also see that the species
need more time to attract to their final density. It is in this sense that the large transform
rate makes the system unstable, since from Figs. 7–9 we could see that sometimes the
density of the species may be very near to zero, which means the lack of the species, and
could increase the chance of extinction of the species.
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