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Abstract
This paper is devoted to studying the growth of entire or meromorphic solutions to
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1 Introduction and main results
Let f (z) be a non-constant meromorphic function in the complex plane C. We use ρ(f )
and μ(f ) to denote the order and the lower order of f (z), and use λ( 1

f ) and λ( 1
f ) to denote

the exponent of convergence of poles and that of the distinct poles of f (z), respectively. In
addition, we say a meromorphic function α(z) ( �≡ 0,∞) is a small function of f (z) provided
that T(r,α) = S(r, f ), where S(r, f ) denotes any quantity that satisfies the condition S(r, f ) =
o(T(r, f )) as r → ∞, possibly outside a set of r with finite logarithmic measure. Nevanlinna
theory is an important tool in this paper, its standard symbols and fundamental results
come mainly from [12, 21].

As we all know, it is an interesting problem to consider the Malmquist theorem [16] for
differential equations. Laine [15] gave the following result.

Theorem A ([15]) Let

(
w′(z)

)n = R(z, w), (1)

where the right-hand side

R(z, w) =
∑k

i=0 ai(z)wi

∑l
j=0 bj(z)wj

is rational in both arguments. If equation (1) has a transcendental meromorphic solution,
then l = 0 and k ≤ 2n.
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With the establishment of the difference analog of Nevanlinna theory, many studies [1,
8, 13, 20] about the Malmquist-type theorem of complex difference equations or systems
have appeared. Gundersen et al. [11] considered the growth of meromorphic solutions to
a certain type of complex q-difference equation and proved the following result.

Theorem B ([11]) Let w(z) be a transcendental meromorphic solution of the equation

w(qz) = R(z, w),

where q ∈ C, |q| > 1, R(z, w) is irreducible in w, which is defined as in Theorem A, and the
coefficients ai(z) and bj(z) are small functions of w and ak(z)bl(z) �≡ 0. If m := max{k, l} ≥ 1,
then ρ(w) = log m

log |q| .

After these results, many scholars studied a series of complex q-difference differential
equations and systems about the Malmquist-type theorem [5, 6, 19]. Xu et al. [19] inves-
tigated the following system:

⎧
⎨

⎩
[w′

1(q1z)]n1 = R2(z, w2(z)),

[w′
2(q2z)]n2 = R1(z, w1(z)),

(2)

where q1, q2 ∈ C \ {0}, n1, n2 ∈ Z+, and

R1
(
z, w1(z)

)
=

∑k1
i=0 ai(z)w1(z)i

∑l1
j=0 bj(z)w1(z)j

, R2
(
z, w2(z)

)
=

∑k2
i=0 ci(z)w2(z)i

∑l2
j=0 dj(z)w2(z)j

(3)

are irreducible rational functions, and ai(z), bj(z) are small functions with respect to w1,
and ci(z), dj(z) are small functions with respect to w2. They obtained the estimates on the
growth order for meromorphic solutions of system (2).

We consider the question of what happens if system (2) is more general, for example,
⎧
⎨

⎩
Ω1(z, w(h1)

1 (q1z)) = R2(z, w2(z)),

Ω2(z, w(h2)
2 (q2z)) = R1(z, w1(z)),

(4)

where q1, q2 ∈ C \ {0}, h1, h2 ∈ Z+, and R1(z, w1(z)), R2(z, w2(z)) are defined as in (3), and

Ω1
(
z, w(h1)

1 (q1z)
)

=
∑p1

m1=0 u1
m1 (z)[w(h1)

1 (q1z)]m1

∑s1
n1=0 v1

n1 (z)[w(h1)
1 (q1z)]n1

,

Ω2
(
z, w(h2)

2 (q2z)
)

=
∑p2

m2=0 u2
m2 (z)[w(h2)

2 (q2z)]m2

∑s2
n2=0 v2

n2 (z)[w(h2)
2 (q2z)]n2

(5)

are irreducible rational functions in w(h1)
1 (q1z), w(h2)

2 (q2z), respectively, and the meromor-
phic coefficients ut

mt (z) (mt = 0, . . . , pt), vt
nt (z) (nt = 0, . . . , st) are of growth S(r, wt), t = 1, 2,

and ut
pt (z)vt

st (z) �≡ 0, t = 1, 2.
For the question above, we study the growth of solutions to the system of q-difference

differential equations (4). Further, set

τt = max{pt , st} and σt = max{kt , lt}, t = 1, 2.
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Clearly, τt ≥ 1 and σt ≥ 1. Also set

τ = τ1τ2, σ = σ1σ2, q = q1q2,

and

κ1 = τ (h1 + 1), κ2 = τ (h2 + 1), κ = τ (h1 + 1)(h2 + 1).

Now, we state the first result in this paper.

Theorem 1.1 Let (w1, w2) be a pair of transcendental solutions of system (4). Then one of
the following cases holds.

(i) For |q1| > 1, |q2| > 1, if w1, w2 are meromorphic and σ > κ , then μ(wt) ≥ logσ–logκ

log |q| ,
t = 1, 2; if wt is meromorphic and σ > κt , t = 1 or t = 2, and the other is entire, then
μ(wt) ≥ logσ–logκt

log |q| , t = 1, 2; if w1, w2 are entire and σ > τ , then μ(wt) ≥ logσ–log τ

log |q| ,
t = 1, 2.

(ii) For |q1| < 1, |q2| < 1, if w1, w2 are meromorphic and σ ≤ κ , then ρ(wt) ≤ logσ–logκ

log |q| ,
t = 1, 2; if wt is meromorphic and σ ≤ κt , t = 1 or t = 2, and the other is entire, then
ρ(wt) ≤ logσ–logκt

log |q| , t = 1, 2; if w1, w2 are entire and σ ≤ τ , then ρ(wt) ≤ logσ–log τ

log |q| ,
t = 1, 2.

(iii) For |q1| = |q2| = 1, if w1, w2 are meromorphic, then σ ≤ κ , furthermore, if κt < σ ≤ κ ,
t = 1, 2, then λ( 1

wt
) = λ( 1

wt
) = ρ(wt), t = 1, 2; if wt is meromorphic, t = 1 or t = 2, and

the other is entire, then σ ≤ κt , t = 1 or t = 2, furthermore, if τ < σ ≤ κt , t = 1 or
t = 2, then λ( 1

wt
) = λ( 1

wt
) = ρ(wt), t = 1 or t = 2; if w1, w2 are entire, then σ ≤ τ .

In the past few decades, meromorphic solutions of complex functional equations were
studied by Bergweiler et al. [3, 4], Heittokangas et al. [14], and Rieppo [17]. Silvennoinen
[18] investigated the existence and growth of solutions to an equation of the form w(g(z)) =
R(z, w) and proved the following result.

Theorem C ([18]) Let

w
(
g(z)

)
= R(z, w), (6)

where the right-hand side R(z, w) is defined as in Theorem A, ai(z), bj(z) are of growth
S(r, w), and g(z) is entire. If equation (6) has a non-constant meromorphic solution w, then
g(z) is a polynomial.

Gao [7] considered the system of functional equations

⎧
⎨

⎩
w1(g(z)) = R2(z, w2(z)),

w2(g(z)) = R1(z, w1(z)),
(7)

where g(z) is an entire function, R1(z, w1(z)), R2(z, w2(z)) are defined as in (3), and obtained
the following result.
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Theorem D ([7]) If system (7) has a pair of non-constant meromorphic solutions (w1, w2),
then g(z) is a polynomial.

There are some results about the existence and growth of meromorphic solutions of sev-
eral systems of complex functional equations [8, 19, 20]. Xu et al. [19] studied the problem
when R1(z, w1(z)), R2(z, w2(z)) in (2) are replaced by R1(z, w1(g1(z))), R2(z, w2(g2(z))), re-
spectively, and (2) is turned into the following system:

⎧
⎨

⎩
[w′

1(q1z)]n1 = R2(z, w2(g2(z))),

[w′
2(q2z)]n2 = R1(z, w1(g1(z))),

(8)

where g1(z), g2(z) are polynomials, and obtained the estimates of the growth order of mero-
morphic solutions of system (8).

A similar question to ask is what happens if system (8) is more general, for example,

⎧
⎨

⎩
Ω1(z, w(h1)

1 (q1z)) = R2(z, w2(g2(z))),

Ω2(z, w(h2)
2 (q2z)) = R1(z, w1(g1(z))),

(9)

where R1(z, w1(z)), R2(z, w2(z)), Ω1(z, w(h1)
1 (q1z)), and Ω2(z, w(h2)

2 (q2z)) are defined as in (3),
(5), respectively. Further, set

g1(z) = αγ1 zγ1 + αγ1–1zγ1–1 + · · · + α0

and

g2(z) = βγ2 zγ2 + βγ2–1zγ2–1 + · · · + β0

be two polynomials, where αγ1 ,αγ1–1, . . . ,α0, βγ2 ,βγ2–1, . . . ,β0 are complex constants, and
γt ≥ 2 (t = 1, 2) are two positive integers.

The second result in this paper concerns the growth of solutions to the system of func-
tional equations (9).

Theorem 1.2 Let (w1, w2) be a pair of transcendental solutions of system (9). Then one of
the following cases holds.

(i) If w1, w2 are meromorphic and σ ≤ κ , then

T
(
r, wt(z)

)
= O

(
(log r)α1

)
, t = 1, 2,

where α1 = logκ–logσ

log(γ1γ2) .
(ii) If wt is meromorphic and σ ≤ κt , t = 1 or t = 2, and the other is entire, then

T
(
r, wt(z)

)
= O

(
(log r)α2

)
, t = 1 or t = 2,

where α2 = logκt–logσ

log(γ1γ2) , t = 1 or t = 2.
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(iii) If w1, w2 are entire and σ ≤ τ , then

T
(
r, wt(z)

)
= O

(
(log r)α3

)
, t = 1, 2,

where α3 = log τ–logσ

log(γ1γ2) .

2 Examples
In this section, we give examples to illustrate that the cases can occur in Theorem 1.1.

The following Examples 2.1–2.4 are about case (i) of Theorem 1.1.

Example 2.1 Let q1 = 2, q2 = 3. Then (w1, w2) = ( ez

z , ez

z2 ) satisfies the system

⎧
⎨

⎩

[w′
1(2z)]2+w′

1(2z)+1
[w′

1(2z)]3+w′
1(2z)+2 = 2z4(2z–1)2w2(z)4+4z2(2z–1)w2(z)2+8

z6(2z–1)3w2(z)6+4z2(2z–1)w2(z)2+16 ,
[w′

2(3z)]2+w′
2(3z)+2

w′
2(3z)+1 = (3z–2)2w1(z)6+9(3z–2)w1(z)3+162

9(3z–2)w1(z)3+81 ,

where h1 = h2 = 1, τ1 = 3, τ2 = 2, and σ1 = σ2 = 6. Here σ = 36 > κ = 24 and μ(wt) = 1 ≥
log 36–log 24

log 6 = log 36–log 24
log 36–log 6 , t = 1, 2.

Example 2.2 Let q1 = 2, q2 = 3. Then (w1, w2) = (ez, ez

z ) satisfies the system

⎧
⎨

⎩

z[w′′
1(2z)]3+2w′′

1(2z)+z2

z2[w′′
1(2z)]2+w′′

1(2z)+z = 64z6w2(z)6+8zw2(z)2+z
16z5w2(z)4+4zw2(z)2+1 ,

9z4[w′
2(3z)]2+3z2w′

2(3z)
w′

2(3z)+2 = 3z2(3z–1)2w1(z)6+3z2(3z–1)w1(z)3

(3z–1)w1(z)3+6z2 ,

where h1 = 2, h2 = 1, τ1 = 3, τ2 = 2, and σ1 = σ2 = 6. Then we have σ = 36 > κ2 = 12 and
μ(wt) = 1 ≥ log 36–log 12

log 6 = log 3
log 6 , t = 1, 2.

Example 2.3 Let q1 = 3, q2 = 2. Then (w1, w2) = ( ez

z2 , ez) satisfies the system

⎧
⎨

⎩

[w′
1(3z)]3+z[w′

1(3z)]2

[w′
1(3z)]2+w′

1(3z) = (3z–2)2w2(z)6+9z4(3z–2)w2(z)3

9z3(3z–2)w2(z)3+81z6 ,
(z+1)w′′

2(2z)+1
[w′′

2(2z)]2+w′′
2(2z)+z = 4z4(z+1)w1(z)2+1

16z8w1(z)4+4z4w1(z)2+z ,

where h1 = 1, h2 = 2, τ1 = 3, τ2 = 2, σ1 = 4, and σ2 = 6. It is known that σ = 24 > κ1 = 12 and
μ(wt) = 1 ≥ log 24–log 12

log 6 = log 2
log 6 , t = 1, 2.

Example 2.4 Let q1 = 2, q2 = 3. Then (w1, w2) = (ez, zez) satisfies the system

⎧
⎨

⎩

w′′
1(2z)+z

[w′′
1(2z)]3+z2w′′

1(2z)+1 = 4z4w2(z)2+z7

64w2(z)6+4z6w2(z)2+z6 ,
[w′′

2(3z)]2+zw′′
2(3z)+1

w′′
2(3z)+z = 81(3z+2)2w1(z)6+9z(3z+2)w1(z)3+1

9(3z+2)w1(z)3+z ,

where h1 = h2 = 2, τ1 = 3, τ2 = 2, and σ1 = σ2 = 6. Thus, σ = 36 > τ = 6 and μ(wt) = 1 ≥
log 36–log 6

log 6 = 1, t = 1, 2.

The following Examples 2.5–2.8 are about case (ii) of Theorem 1.1.
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Example 2.5 Let q1 = 1
2 , q2 = 1

3 . Then (w1, w2) = ( ez

z , ez

z–1 ) satisfies the system

⎧
⎪⎨

⎪⎩

[w′
1( 1

2 z)]2+1
[w′

1( 1
2 z)]4+1

= z4(z–1)(z–2)2w2(z)+z8

(z–1)2(z–2)4w2(z)2+z8 ,

[w′
2( 1

3 z)]3+1
[w′

2( 1
3 z)]6+1

= z(z–6)3(z–3)6w1(z)+(z–3)12

z2(z–6)6w1(z)2+(z–3)12 ,

where h1 = h2 = 1, τ1 = 4, τ2 = 6, and σ1 = σ2 = 2. Clearly, σ = 4 ≤ κ = 96 and ρ(wt) = 1 ≤
log 4–log 96

log 1
6

= log 24
log 6 , t = 1, 2.

Example 2.6 Let q1 = 1
3 , q2 = 1

2 . Then (w1, w2) = (ez, ez

z–1 ) satisfies the system

⎧
⎪⎨

⎪⎩

[w′
1( 1

3 z)]6+1
[w′

1( 1
3 z)]3+1

= (z–1)2w2(z)2+729
27(z–1)2w2(z)2+729 ,

[w′
2( 1

2 z)]4+1
[w′

2( 1
2 z)]2+1

= (z–4)4w1(z)2+(z–2)8

(z–4)2(z–2)4w1(z)+(z–2)8 ,

where h1 = h2 = 1, τ1 = 6, τ2 = 4, and σ1 = σ2 = 2. Then we have σ = 4 ≤ κ2 = 48 and ρ(wt) =
1 ≤ log 4–log 48

log 1
6

= log 12
log 6 , t = 1, 2.

Example 2.7 Let q1 = 1
2 , q2 = 1

4 . Then (w1, w2) = ( zez

z–1 , zez) satisfies the system

⎧
⎨

⎩

[w′′
1( z

2 )]2 = (z3–4z2–4z+32)2w2(z)
16z(z–2)6 ,

[w′
2( z

4 )]8 = (z–1)2(z+4)8w1(z)2

168z2 ,

where h1 = 2, h2 = 1, τ1 = 2, τ2 = 8, σ1 = 2, and σ2 = 1. It is known that σ = 2 ≤ κ1 = 48 and
ρ(wt) = 1 ≤ log 2–log 48

log 1
8

= log 24
log 8 , t = 1, 2.

Example 2.8 Let q1 = 1
2 , q2 = 1

4 . Then (w1, w2) = (zez, e2z) satisfies the system

⎧
⎨

⎩
4096[w′′

1( z
2 )]4 = (z + 4)4w2(z),

4z[w′
2( z

4 )]2 = w1(z),

where h1 = 2, h2 = 1, τ1 = 4, τ2 = 2, and σ1 = σ2 = 1. Here σ = 1 ≤ τ = 8 and ρ(wt) = 1 ≤
log 1–log 8

log 1
8

= 1, t = 1, 2.

The following Examples 2.9–2.12 are about case (iii) of Theorem 1.1.

Example 2.9 Let q1 = q2 = 1. Then (w1, w2) = ( ez

ez–1 , zez

ez–1 ) satisfies the system

⎧
⎨

⎩
z2[w′

1(z)]2 = w2(z)2,

w′
2(z) = –zw1(z)2 + (1 + z)w1(z),

where h1 = h2 = 1, τ1 = 2, τ2 = 1, and σ1 = σ2 = 2. Clearly, σ = 4 ≤ κ = 8.
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Example 2.10 Let q1 = 1, q2 = –1. Then (w1, w2) = ( 1
ez–1 , 1

1–ez ) satisfies the system

⎧
⎨

⎩
w′′

1(z) = –2w2(z)3 + 3w2(z)2 – w2(z),

w′
2(–z) = –w1(z)2 – w1(z),

where h1 = 2, h2 = 1, τ1 = τ2 = 1, σ1 = 2, and σ2 = 3. Then we have κt < σ = 6 ≤ κ = 6,
t = 1, 2, and λ( 1

wt
) = λ( 1

wt
) = ρ(wt) = 1, t = 1, 2.

Example 2.11 Let q1 = q2 = 1. Then (w1, w2) = (ez, 1
ez–1 ) satisfies the system

⎧
⎨

⎩
w′′

1(z)2 = [w2(z)+1]2

w2(z)2 ,

w′
2(z)4 = w1(z)4

[w1(z)–1]8 ,

where h1 = 2, h2 = 1, τ1 = 2, τ2 = 4, σ1 = 8, and σ2 = 2. It is known that τ = 8 < σ = 16 ≤ κ2 =
16 and λ( 1

w2
) = λ( 1

w2
) = ρ(w2) = 1.

Example 2.12 Let q1 = q2 = 1. Then (w1, w2) = (ez, ze2z) satisfies the system

⎧
⎨

⎩

[w′′
1(z)]2+1

[w′′
1(z)]4+1 = zw2(z)+z2

w2(z)+z2 ,
[w′

2(z)]2+1
w′

2(z)+1 = (2z+1)2w1(z)4+1
(2z+1)w1(z)2+1 ,

where h1 = 2, h2 = 1, τ1 = 4, τ2 = 2, σ1 = 4, and σ2 = 1. Then we have σ = 4 ≤ τ = 8.

3 Lemmas
To prove Theorems 1.1 and 1.2, we need the following lemmas. Yang and Yi [21] showed
the value distribution of a meromorphic function and its derivative.

Lemma 3.1 ([21])

N
(
r, f (k)) = N(r, f ) + kN(r, f ), T

(
r, f (k)) ≤ T(r, f ) + kN(r, f ) + S(r, f ).

The following lemma is to compare the Nevanlinna functions of f (z) and f (cz).

Lemma 3.2 ([3])

N
(
r, f (cz)

)
= N

(|c|r, f (z)
)

+ O(1), T
(
r, f (cz)

)
= T

(|c|r, f (z)
)

+ O(1).

In 1972, Bank [2] established the following lemma.

Lemma 3.3 ([2]) Let g(r) and h(r) be monotone non-decreasing functions on (0, +∞) such
that g(r) ≤ h(r), possibly outside a set of r with finite logarithmic measure. Then, for any
real number a > 1, there exists r0 > 0 such that g(r) ≤ h(ar) for all r > r0.

Gundersen et al. [11] showed a method to obtain an upper bound for the growth order
of a meromorphic function.



Tu and Yuan Advances in Difference Equations        (2020) 2020:112 Page 8 of 15

Lemma 3.4 ([11]) Let f (z) be a non-constant meromorphic function, and let Ψ : (1,∞) →
(0,∞) be a monotone non-decreasing function. If for some real number a ∈ (0, 1), there exist
real numbers K1 > 0 and K2 ≥ 1 such that

T(r, f ) ≤ K1Ψ (ar) + K2T(ar, f ) + S(ar, f ),

then

ρ(f ) ≤ log K2

– log a
+ lim sup

r→∞
logΨ (r)

log r
.

The following lemma gives us a method to have a lower bound for the lower order of a
meromorphic function.

Lemma 3.5 ([17]) Let Ψ : (r0,∞) → (1,∞) be a monotone non-decreasing function, where
r0 ≥ 1. If for some real number a > 1, there exists a real number b > 1 such that Ψ (ar) ≥
bΨ (r), then

lim inf
r→∞

logΨ (r)
log r

≥ log b
log a

.

The following result about estimate of the Nevanlinna characteristic function of a mero-
morphic function composed with polynomials is given by Goldstein.

Lemma 3.6 ([9]) Let f (z) be a transcendental meromorphic function and g(z) = amzm +
am–1zm–1 + · · · + a0 be a polynomial with degree m (≥ 1). For given δ ∈ (0, |am|), let λ =
|am| + δ, μ = |am| – δ, then

(1 – ε)T
(
μrm, f

) ≤ T(r, f ◦ g) ≤ (1 + ε)T
(
λrm, f

)

for any given ε > 0 and sufficiently large r.

Goldstein [10] showed the following lemma.

Lemma 3.7 ([10]) Let φ(r) be a positive function defined on [r0,∞) and bounded in every
finite interval. Assume that φ(μrk) ≤ aφ(r) + b (r ≥ r0), where μ (> 0), k (> 1), a (≥ 1), and
b are constants. Then φ(r) = O((log r)α) with α = log a

log k , unless a = 1 and b > 0; and if a = 1
and b > 0, then for any ε > 0, φ(r) = O((log r)ε).

4 Proofs of the results

Proof of Theorem 1.1 Suppose first that (w1, w2) is a pair of transcendental solutions of
system (4). In the following, we consider three cases.
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Case (i): |q1| > 1 and |q2| > 1. Suppose that both w1 and w2 are meromorphic. It follows
from Valiron–Mohon’ko theorem [15, Theorem 2.2.5], Lemma 3.1, and Lemma 3.2 that

T
(
r, R2(z, w2)

)
= σ2T(r, w2) + S(r, w2)

= T
(
r,Ω1

(
z, w(h1)

1 (q1z)
))

= τ1T
(
r, w(h1)

1 (q1z)
)

+ S
(
r, w(h1)

1 (q1z)
)

≤ τ1
[
T

(
r, w1(q1z)

)
+ h1N

(
r, w1(q1z)

)
+ S

(
r, w1(q1z)

)]

+ S
(
r, w(h1)

1 (q1z)
)

≤ τ1(h1 + 1)T
(|q1|r, w1

)
+ S

(|q1|r, w1
)
,

that is,

σ2T(r, w2) + S(r, w2) ≤ τ1(h1 + 1)T
(|q1|r, w1

)
+ S

(|q1|r, w1
)
. (10)

Similarly, we have

σ1T(r, w1) + S(r, w1) ≤ τ2(h2 + 1)T
(|q2|r, w2

)
+ S

(|q2|r, w2
)
. (11)

Thus, from (10) and (11), we obtain

σT(r, wt) + S(r, wt) ≤ κT
(|q|r, wt

)
+ S

(|q|r, wt
)
, t = 1, 2. (12)

Now σ > κ , and for any given ε > 0,

σ (1 – ε)T(r, wt) ≤ κ(1 + ε)T
(|q|r, wt

)
, t = 1, 2, (13)

for sufficiently large r, possibly outside a set of r with finite logarithmic measure. By
Lemma 3.3, with a > 1 and (13) we have

σ (1 – ε)T(r, wt) ≤ κ(1 + ε)T
(
a|q|r, wt

)
, t = 1, 2, (14)

for all r ≥ r0. It follows from Lemma 3.5 and (14) that

μ(wt) ≥ log[σ (1 – ε)] – log[κ(1 + ε)]
log(a|q|) , t = 1, 2.

As ε → 0+ and a → 1+, we get

μ(wt) ≥ logσ – logκ

log |q| , t = 1, 2.

Suppose that only one between w1 and w2 is meromorphic, without loss of generality,
we assume that w1 is meromorphic and w2 is entire. Then, similar to (11), we have

σ1T(r, w1) + S(r, w1) ≤ τ2T
(|q2|r, w2

)
+ S

(|q2|r, w2
)
. (15)
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Thus, it follows from (10) and (15) that

σT(r, wt) + S(r, wt) ≤ κ1T
(|q|r, wt

)
+ S

(|q|r, wt
)
, t = 1, 2. (16)

Similar to the above argument, since σ > κ1 and for any small ε > 0, we know that there
exists a > 1 such that

σ (1 – ε)T(r, wt) ≤ κ1(1 + ε)T
(
a|q|r, wt

)
, t = 1, 2, (17)

for all r ≥ r0. Applying Lemma 3.5 to (17) yields that

μ(wt) ≥ log[σ (1 – ε)] – log[κ1(1 + ε)]
log(a|q|) , t = 1, 2.

By letting ε → 0+ and a → 1+, we obtain

μ(wt) ≥ logσ – logκ1

log |q| , t = 1, 2.

Suppose that both w1 and w2 are entire. Then, similar to (10), we have

σ2T(r, w2) + S(r, w2) ≤ τ1T
(|q1|r, w1

)
+ S

(|q1|r, w1
)
. (18)

Thus, it follows from (15) and (18) that

σT(r, wt) + S(r, wt) ≤ τT
(|q|r, wt

)
+ S

(|q|r, wt
)
, t = 1, 2.

Now, σ > τ , we know that for ε > 0 there exists a > 1 such that

σ (1 – ε)T(r, wt) ≤ τ (1 + ε)T
(
a|q|r, wt

)
, t = 1, 2, (19)

for all r ≥ r0. Recalling Lemma 3.5 and letting ε → 0+ and a → 1+, we conclude that

μ(wt) ≥ logσ – log τ

log |q| , t = 1, 2.

Case (ii): |q1| < 1 and |q2| < 1. Suppose that both w1 and w2 are meromorphic. Then,
similar to the previous argument, we have that for ε > 0 there exists a > 1 such that a|q| < 1,
(12) and (14) hold for all r ≥ r0. Since σ ≤ κ , then κ(1+ε)

σ (1–ε) > 1. Hence, applying Lemma 3.4
to (14) yields that

ρ(wt) ≤ log[κ(1 + ε)] – log[σ (1 – ε)]
– log(a|q|) , t = 1, 2,

which implies

ρ(wt) ≤ logσ – logκ

log |q| , t = 1, 2,

as ε → 0+ and a → 1+.
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Suppose that only one between w1 and w2 is meromorphic. Without loss of generality,
we assume that w1 is meromorphic and w2 is entire. Then we similarly obtain that, for
ε > 0, there exists a > 1 such that a|q| < 1, (16) and (17) hold for all r ≥ r0. Since σ ≤ κ1,
then κ1(1+ε)

σ (1–ε) > 1. Thus, we conclude by Lemma 3.4 and (17) that

ρ(wt) ≤ log[κ1(1 + ε)] – log[σ (1 – ε)]
– log(a|q|) , t = 1, 2,

and let ε → 0+ and α → 1+, it yields

ρ(wt) ≤ logσ – logκ1

log |q| , t = 1, 2.

Suppose that both w1 and w2 are entire. Similarly, for ε > 0, there exists a > 1 such that
a|q| < 1, (15), (18), and (19) hold for all r ≥ r0. Since σ ≤ τ , then τ (1+ε)

σ (1–ε) > 1. Therefore,
recalling Lemma 3.4, we have

ρ(wt) ≤ log[τ (1 + ε)] – log[σ (1 – ε)]
– log(a|q|) , t = 1, 2,

which deduces

ρ(wt) ≤ logσ – log τ

log |q| , t = 1, 2,

as ε → 0+ and a → 1+.
Case (iii): |q1| = |q2| = 1. Suppose that both w1 and w2 are meromorphic. Then, from

Valiron–Mohon’ko theorem [15, Theorem 2.2.5] and Lemma 3.1, we conclude that

σ2T(r, w2) + S(r, w2) ≤ τ1
[
T(r, w1) + h1N(r, w1) + S(r, w1)

]
+ S

(
r, w(h1)

1
)

≤ τ1(h1 + 1)T(r, w1) + S(r, w1), (20)

and

σ1T(r, w1) + S(r, w1) ≤ τ2
[
T(r, w2) + h2N(r, w2) + S(r, w2)

]
+ S

(
r, w(h2)

2
)

≤ τ2(h2 + 1)T(r, w2) + S(r, w2). (21)

From (20) and (21), we have σ ≤ κ . Furthermore, if κt < σ ≤ κ , t = 1, 2, then

σ – κ2

h1κ2
T(r, w1) + S(r, w1) ≤ N(r, w1) + S(r, w1) ≤ T(r, w1) + S(r, w1)

and

σ – κ1

h1κ1
T(r, w2) + S(r, w2) ≤ N(r, w2) + S(r, w2) ≤ T(r, w2) + S(r, w2),

which imply that λ( 1
wt

) = λ( 1
wt

) = ρ(wt), t = 1, 2.
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Suppose that only one between w1 and w2 is meromorphic. Without loss of generality,
we assume that w1 is meromorphic and w2 is entire. Then we get (20) and

σ1T(r, w1) + S(r, w1) ≤ τ2T(r, w2) + S(r, w2). (22)

Hence, it follows from (20) and (22) that σ ≤ κ1. Furthermore, if τ < σ ≤ κ1, it yields

σ – τ

τh1
T(r, w1) + S(r, w1) ≤ N(r, w1) + S(r, w1) ≤ T(r, w1) + S(r, w1),

which implies λ( 1
w1

) = λ( 1
w1

) = ρ(w1). Similarly, if w2 is meromorphic and w1 is entire, we
obtain that λ( 1

w2
) = λ( 1

w2
) = ρ(w2) when τ < σ ≤ κ2.

Suppose that both w1 and w2 are entire. Then, similar to the above argument, we can
get (22) and

σ2T(r, w2) + S(r, w2) ≤ τ1T(r, w1) + S(r, w1). (23)

Thus, it follows from (22) and (23) that σ ≤ τ .
From Cases (i)–(iii), the proof of Theorem 1.1 is completed. �

Proof of Theorem 1.2 Suppose first that (w1, w2) is a pair of transcendental solutions of
system (9). In what follows, we consider three cases.

Case (i): Suppose that both w1 and w2 are meromorphic. Then, by Valiron–Mohon’ko
theorem [15, Theorem 2.2.5], Lemma 3.1, and Lemma 3.2, we get

σ1T
(
r, w1

(
g1(z)

))
+ S

(
r, w1

(
g1(z)

)) ≤ τ2(h2 + 1)T
(|q2|r, w2

)
+ S

(|q2|r, w2
)

(24)

and

σ2T
(
r, w2

(
g2(z)

))
+ S

(
r, w2

(
g2(z)

)) ≤ τ1(h1 + 1)T
(|q1|r, w1

)
+ S

(|q1|r, w1
)
. (25)

By Lemma 3.6, for given 0 < δ1 < |αγ1 |, 0 < δ2 < |βγ2 |, and μ1 = |αγ1 | – δ1, μ2 = |βγ2 | – δ2,
we know that for any small ε > 0 there exists two sets E1, E2 of finite logarithmic measure
such that

σ1(1 – ε)T
(
μ1rγ1 , w1

) ≤ τ2(h2 + 1)(1 + ε)T
(|q2|r, w2

)
, r /∈ E1, (26)

and

σ2(1 – ε)T
(
μ2rγ2 , w2

) ≤ τ1(h1 + 1)(1 + ε)T
(|q1|r, w1

)
, r /∈ E2. (27)

Thus, for sufficiently large r and r /∈ E1 ∪ E2, we can deduce from (26) and (27) that

σ (1 – ε)2T
(

μ1μ
γ1
2

|q2|γ1
rγ1γ2 , w1

)
≤ κ(1 + ε)2T

(|q1|r, w1
)

(28)

and

σ (1 – ε)2T
(

μ2μ
γ2
1

|q1|γ2
rγ1γ2 , w2

)
≤ κ(1 + ε)2T

(|q2|r, w2
)
. (29)
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By Lemma 3.3, with a > 1 and (28), we have

σ (1 – ε)2T
(

μ1μ
γ1
2

|q2|γ1
rγ1γ2 , w1

)
≤ κ(1 + ε)2T

(
a|q1|r, w1

)
(30)

for all r ≥ r0. Set R = a|q1|r. Then (30) can be rewritten as

T
(

μ1μ
γ1
2

|q2|γ1 |aq1|γ1γ2
Rγ1γ2 , w1

)
≤ κ(1 + ε)2

σ (1 – ε)2 T(R, w1). (31)

If σ ≤ κ , then κ(1+ε)2

σ (1–ε)2 ≥ 1. Since μ1μ
γ1
2

|q2|γ1 |aq1|γ1γ2 > 0, γt ≥ 2 (t = 1, 2), applying Lemma 3.7 to
(31) yields that

T(r, w1) = O
(
(log r)α1

)
,

where

α1 =
log[κ(1 + ε)2] – log[σ (1 – ε)2]

log(γ1γ2)
,

which deduces

α1 =
logκ – logσ

log(γ1γ2)
,

as ε → 0+. Similarly, from (29), we conclude that

T(r, w2) = O
(
(log r)α1

)
,

where

α1 =
logκ – logσ

log(γ1γ2)
.

Case (ii): Suppose that only one between w1 and w2 is meromorphic. Without loss of
generality, we assume that w2 is meromorphic and w1 is entire. By Valiron–Mohon’ko
theorem [15, Theorem 2.2.5], Lemma 3.1, and Lemma 3.2, we get (24) and

σ2T
(
r, w2

(
g2(z)

))
+ S

(
r, w2

(
g2(z)

)) ≤ τ1T
(|q1|r, w1

)
+ S

(|q1|r, w1
)
. (32)

Thus, by an argument similar to the proof of Case (i) of Theorem 1.2, we can deduce

T
(

μ1μ
γ1
2

|q2|γ1 |aq1|γ1γ2
Rγ1γ2 , w1

)
≤ κ2(1 + ε)2

σ (1 – ε)2 T(R, w1).

If σ ≤ κ2, then κ2(1+ε)2

σ (1–ε)2 ≥ 1. Since μ1μ
γ1
2

|q2|γ1 |aq1|γ1γ2 > 0, γt ≥ 2 (t = 1, 2), it follows from
Lemma 3.7 that

T(r, w1) = O
(
(log r)α2

)
,
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where

α2 =
logκ2 – logσ

log(γ1γ2)
.

Similarly, we have

T(r, w2) = O
(
(log r)α2

)
,

where

α2 =
logκ1 – logσ

log(γ1γ2)
.

Case (iii): Suppose that both w1 and w2 are entire. Then, similar to the above argument,
we can get (32) and

σ1T
(
r, w1

(
g1(z)

))
+ S

(
r, w1

(
g1(z)

)) ≤ τ2T
(|q2|r, w2

)
+ S

(|q2|r, w2
)
.

Hence, by an argument similar to the proof of Case (ii) of Theorem 1.2, if σ ≤ τ , then we
can obtain

T(r, wt) = O
(
(log r)α3

)
, t = 1, 2,

where

α3 =
log τ – logσ

log(γ1γ2)
.

From Cases (i)–(iii), the proof of Theorem 1.2 is completed. �

Acknowledgements
The authors are very grateful to the editor and anonymous referees for their valuable comments and suggestions, which
improved the presentation of this manuscript.

Funding
This work was supported by the Innovation Research for the Postgraduates of Guangzhou University under Grant
No. 2018GDJC-D04.

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors drafted the manuscript, read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 November 2019 Accepted: 28 February 2020



Tu and Yuan Advances in Difference Equations        (2020) 2020:112 Page 15 of 15

References
1. Ablowitz, M.J., Halburd, R., Herbst, B.: On the extension of the Painlevé property to difference equations. Nonlinearity

13, 889–905 (2000)
2. Bank, S.: A general theorem concerning the growth of solutions of first-order algebraic differential equations.

Compos. Math. 25, 61–70 (1972)
3. Bergweiler, W., Ishizaki, K., Yanagihara, N.: Meromorphic solutions of some functional equations. Methods Appl. Anal.

5, 248–258 (1998). Correction: Methods Appl. Anal. 6, 617–618 (1999)
4. Bergweiler, W., Ishizaki, K., Yanagihara, N.: Growth of meromorphic solutions of some functional equations. I. Aequ.

Math. 63, 140–151 (2002)
5. Chen, M.F., Gao, Z.S., Du, Y.F.: Existence of entire solutions of some non-linear differential-difference equations.

J. Inequal. Appl. 2017, Article ID 90 (2017)
6. Chen, M.F., Jiang, Y.Y., Gao, Z.S.: Growth of meromorphic solutions of certain types of q-difference differential

equations. Adv. Differ. Equ. 2017, Article ID 37 (2017)
7. Gao, L.Y.: On meromorphic solutions of a type of system of composite functional equations. Acta Math. Sci. Ser. B

Engl. Ed. 32, 800–806 (2012)
8. Gao, L.Y.: Systems of complex difference equations of Malmquist type. Acta Math. Sinica (Chin. Ser.) 55, 293–300

(2012)
9. Goldstein, R.: Some results on factorization of meromorphic functions. J. Lond. Math. Soc. 4, 357–364 (1971)
10. Goldstein, R.: On meromorphic solutions of certain functional equations. Aequ. Math. 18, 112–157 (1978)
11. Gundersen, G.G., Heittokangas, J., Laine, I., Rieppo, J., Yang, D.Q.: Meromorphic solutions of generalized Schröder

equations. Aequ. Math. 63, 110–135 (2002)
12. Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)
13. Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Tohge, K.: Complex difference equations of Malmquist type.

Comput. Methods Funct. Theory 1, 27–39 (2001)
14. Heittokangas, J., Laine, I., Rieppo, J., Yang, D.G.: Meromorphic solutions of some linear functional equations. Aequ.

Math. 60, 148–166 (2000)
15. Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)
16. Malmquist, J.: Sur les fonctions a un nombre fini de branches définies par les équations différentielles du premier

order. Acta Math. 36, 297–343 (1913)
17. Rieppo, J.: On a class of complex functional equations. Ann. Acad. Sci. Fenn., Math. 32, 151–170 (2007)
18. Silvennoinen, H.: Meromorphic Solutions of Some Composite Functional Equations. Ann. Acad. Sci. Fenn. Math. Diss.,

vol. 133 (2003)
19. Xu, H.Y., Liu, S.Y., Li, Q.P.: The existence and growth of solutions for several systems of complex nonlinear difference

equations. Mediterr. J. Math. 16, Article ID 8 (2019)
20. Xu, H.Y., Liu, B.X., Tang, K.Z.: Some properties of meromorphic solutions of systems of complex q-shift difference

equations. Abstr. Appl. Anal. 2013, Article ID 680956 (2013)
21. Yang, C.C., Yi, H.Y.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic, New York (2003)


	Growth of solutions to two systems of q-difference differential equations
	Abstract
	MSC
	Keywords

	Introduction and main results
	Examples
	Lemmas
	Proofs of the results
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


