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Abstract
This paper explores a class of unbounded distributed delayed inertial neural
networks. By introducing some new differential inequality analysis and abandoning
the traditional order reduction technique, some new assertions are derived to verify
the global exponential stability of the addressed networks, which improve and
generalize some recently published articles. Finally, two cases of numerical examples
and simulations are given to illustrate these analytical conclusions.
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1 Introduction
In dynamic systems of neural networks, the existence of time delays is inevitable and is
always a source of instability, chaos, and oscillation of the network system. In particular,
on account of the occurrence of a lot of parallel routes with a series of different axon sizes
and lengths, it is desired to account for the dynamical behaviors of neural networks by
involving unbounded and continuously distributed delays. Meanwhile, there have existed
many papers dealing with the dynamics studies of distributed delayed neural networks,
which include stability analysis [1–4], almost periodic oscillation [5–9], and anti-periodic
oscillation [10–12].

On the other hand, during the last two decades, by using reduced order technique, the fa-
mous inertial neural networks with constant delays and bounded time-varying delays have
been widely investigated by many authors [13–37]. To reveal the rate of convergence, the
exponential stability of inertial neural networks models with bounded delays has been ex-
tensively researched in [15–21, 29, 37] by changing the addressed models into the first or-
der systems with some variable substitutions. Most recently, the authors in [36, 37] pointed
out that the above transformation will generate new parameters and increase the dimen-
sion of the addressed systems, which is difficult to be achieved in practical problems. In ad-
dition, abandoning the traditional reduced-order technique, the authors of [36, 37] gained
some new criteria to verify the synchronization and stability of the constant delayed in-
ertial neural network involving a new Lyapunov functional, which are complementary to
some known ones in [13, 35]. Unfortunately, there is no published paper touching upon the
exponential stability on continuously distributed delayed inertial neural network models.
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Based on the above arguments, we shall use the non-reduced order technique to estab-
lish the global exponential stability for the following unbounded continuously distributed
delayed inertial neural networks:

x′′
i (t) = –aix′

i(t) – bixi(t) +
n∑

j=1

cijPj
(
xj(t)

)
+

n∑

j=1

dij

∫ +∞

0
Kij(u)

× Qj
(
xj(t – u)

)
du + Ji(t), t ≥ 0, i ∈ D := {1, 2, . . . , n}, (1.1)

where x′′
i (t) is labeled as an inertial term of the state vector x(t) = (x1(t), x2(t), . . . , xn(t))

in (1.1), the constants ai > 0, bi > 0, cij, and dij are the connection weight parameters,
the bounded external input Ji ∈ C(R,R) is continuous on R, the delay kernel Kij ∈
C([0, +∞),R), Pj and Qj are the activation functions with Lipschitz constants LP

j and LQ
j

obeying

∣∣Pj(u) – Pj(v)
∣∣ ≤ LP

j |u – v|, ∣∣Qj(u) – Qj(v)
∣∣ ≤ LQ

j |u – v|, ∀u, v ∈R, j ∈ D. (1.2)

In (1.1), we define

xi(s) = ϕi(s), x′
i(s) = ψi(s), –∞ < s ≤ 0, i ∈ D, (1.3)

where ϕi and ψi are bounded and continuous initial values on (–∞, 0].
For the purpose of obtaining our main results in this paper, we presume the assumptions

as follows:
(T1) For i, j ∈ D, there is κ ∈ (0, +∞) such that |Kij(t)|eκt is integrable on [0, +∞).
(T2) For i ∈ D, constants βi > 0 and αi ≥ 0,γi ≥ 0 can be present to agree with that

Ei < 0, 4EiFi > H2
i ,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei = αiγi – aiα
2
i + 1

2
∑n

j=1(|cij|LP
j + |dij|LQ

j
∫ +∞

0 |Kij(u)|du)α2
i ,

Fi = –biαiγi + 1
2
∑n

j=1 α2
j (|cji|LP

i + |dji|LQ
i

∫ +∞
0 |Kji(u)|du)

+ 1
2
∑n

j=1(|cji|LP
i + |dji|LQ

i
∫ +∞

0 |Kji(u)|du)|αjγj|
+ 1

2
∑n

j=1(|cij|LP
j + |dij|LQ

j
∫ +∞

0 |Kij(u)|du)|αiγi|,
Hi = βi + γ 2

i – α2
i bi – aiγiαi.

Remark 1.1 Since (1.1) can be converted into the first order functional differential equa-
tions, from (1.2), (T1), and the basic theory on infinite delayed differential equation in [38],
one can show the existence and uniqueness of every solution of (1.1) and (1.3) on [0, +∞).

Remark 1.2 Assumption (T2) means that ai and bi are large enough and satisfy the above
matrix inequalities which are adopted to guarantee the stability of system (1.1). Clearly,
the above matrix inequalities are weaker than those used in [15–21], where |ai – bi| is
assumed to be small enough.
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The main principle of this article is by employing differential inequality analysis to estab-
lish the global exponential stability of the addressed networks. To do that, our contribu-
tions are based on four aspects: (1) Propose a general inertial neural that has unbounded
continuously distributed delays and is more general than the ones considered in [15–37].
(2) Establish sufficient conditions to ensure the global exponential stability of system (1.1).
This is the first time to derive such a result for this type of unbounded continuously dis-
tributed delay inertial neural networks. (3) The results obtained in this article are original
and complete those obtained previously in [17–21, 36, 37]. (4) The theoretical results play
an important role in the design of the electrical implementation of the unbounded delayed
inertial neural networks and in the processing of the transmission of its signals.

In the rest of this paper, Sect. 2 gives the global exponential convergence of all solutions
with their derivatives of networks (1.1) under conditions (1.2), (T1), and (T2). Section 3
shows numerical figures. Conclusions are drawn in the last section.

2 Global exponential stability
Theorem 2.1 Under (1.2), (T1), and (T2), system (1.1) is globally exponentially stable.
More precisely, label x(t) = (x1(t), x2(t), . . . , xn(t)) and y(t) = (y1(t), y2(t), . . . , yn(t)) as two
solutions of system (1.1) satisfying

xi(s) = ϕx
i (s), x′

i(s) = ψx
i (s), yi(s) = ϕ

y
i (s), y′

i(s) = ψ
y
i (s), i ∈ D, (2.1)

where ϕx
i ,ψx

i ,ϕy
i , and ψ

y
i are bounded and continuous on (–∞, 0]. Then, one can take two

positive constants λ and Λ = Λϕx ,ψx ,ϕy ,ψy such that

∣∣xi(t) – yi(t)
∣∣ ≤ Λe–λt ,

∣∣x′
i(t) – y′

i(t)
∣∣ ≤ Λe–λt , ∀t ≥ 0, i ∈ D.

Remark 2.1 In Theorem 2.1, x(t) and x′(t) are exponentially convergent to y(t) and y′(t),
respectively. This suggests that the stability on system (1.1) is in accordance with the ex-
ponential stability definition adopted in [15–21, 29].

Proof of Theorem 2.1 Label wi(t) = yi(t) – xi(t)(i ∈ D), then, for i ∈ D,

w′′
i (t) = –aiw′

i(t)

– biwi(t) +
n∑

j=1

cijP̃j
(
wj(t)

)
+

n∑

j=1

dij

∫ +∞

0
Kij(u)Q̃j

(
wj(t – u)

)
du, (2.2)

where

P̃j
(
wj(t)

)
= Pj

(
yj(t)

)
–Pj

(
xj(t)

)
, Q̃j

(
wj(t –u)

)
= Qj

(
yj(t –u)

)
–Qj

(
xj(t –u)

)
, j ∈ D.

In the light of (T2), one can select a constant λ ∈ (0, 1
2κ] to agree with that

Eλ
i < 0, 4Eλ

i Fλ
i >

(
Hλ

i
)2, i ∈ D, (2.3)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eλ
i = λα2

i + αiγi – aiα
2
i + 1

2α2
i
∑n

j=1(|cij|LP
j + |dij|LQ

j
∫ +∞

0 |Kij(u)|du),

Fλ
i = –biαiγi + λβi + λγ 2

i + 1
2
∑n

j=1(|cij|LP
j + |dij|LQ

j
∫ +∞

0 |Kij(u)|du)|αiγi|
+ 1

2
∑n

j=1 α2
j (|cji|LP

i + |dji|LQ
i

∫ +∞
0 |Kji(u)|e2λu du)

+ 1
2
∑n

j=1(|cji|LP
i + |dji|LQ

i
∫ +∞

0 |Kji(u)|e2λu du)|αjγj|,
Hλ

i = βi + γ 2
i + 2λαiγi – biα

2
i – aiαiγi.

Designate

Π (t) =
1
2

n∑

i=1

βiw2
i (t)e2λt +

1
2

n∑

i=1

(
αiw′

i(t) + γiwi(t)
)2e2λt

+
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣
∫ t

t–u
w2

j (s)e2λ(u+s) ds du.

Differentiating Π (t) on solutions along system (2.2) leads to

Π ′(t) = 2λ

[
1
2

n∑

i=1

βiw2
i (t)e2λt +

1
2

n∑

i=1

(
αiw′

i(t) + γiwi(t)
)2e2λt

]

+
n∑

i=1

βiwi(t)w′
i(t)e2λt +

n∑

i=1

(
αiw′

i(t) + γiwi(t)
)(

αiw′′
i (t) + γiw′

i(t)
)
e2λt

+
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣[w2

j (t)e2λ(u+t)

– w2
j (t – u)e2λt]du

= 2λ

[
1
2

n∑

i=1

βiw2
i (t)e2λt +

1
2

n∑

i=1

(
αiw′

i(t) + γiwi(t)
)2e2λt

]

+
n∑

i=1

(
βi + γ 2

i
)
wi(t)w′

i(t)e2λt +
n∑

i=1

αi
(
αiw′

i(t) + γiwi(t)
)
e2λt

×
[

–aiw′
i(t) – biwi(t) +

n∑

j=1

cijP̃j
(
wj(t)

)
+

n∑

j=1

dij

∫ +∞

0
Kij(u)Q̃j

(
wj(t – u)

)
du

]

+
n∑

i=1

αiγi
(
w′

i(t)
)2e2λt +

1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LQ

j

×
[∫ +∞

0

∣∣Kij(u)
∣∣e2λu duw2

j (t)e2λt –
∫ +∞

0

∣∣Kij(u)
∣∣w2

j (t – u) due2λt
]

≤ e2λt

{ n∑

i=1

(
βi + γ 2

i + 2λαiγi – aiαiγi – biα
2
i
)
wi(t)w′

i(t)

+
n∑

i=1

(
λα2

i + αiγi – aiα
2
i
)(

w′
i(t)

)2 –
n∑

i=1

(
biαiγi – λβi – λγ 2

i
)
w2

i (t)
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+
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣e2λu duw2

j (t)

–
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣w2

j (t – u) du

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣wi(t)
∣∣)|cij|

∣∣̃Pj
(
wj(t)

)∣∣

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣wi(t)
∣∣)|dij|

∫ +∞

0

∣∣Kij(u)
∣∣∣∣Q̃j

(
wj(t – u)

)∣∣du

}

= e2λt

{ n∑

i=1

(
βi + γ 2

i + 2λαiγi – aiαiγi – biα
2
i
)
wi(t)w′

i(t)

+
n∑

i=1

(
λα2

i + αiγi – aiα
2
i
)(

w′
i(t)

)2

+
n∑

i=1

[
–biαiγi + λβi + λγ 2

i +
1
2

n∑

j=1

(
α2

j |dji| + |αjγj||dji|
)
LQ

i

×
∫ +∞

0

∣∣Kji(u)
∣∣e2λu du

]
w2

i (t)

–
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij| + |αiγi||dij|
)
LG

j

∫ +∞

0

∣∣Kij(u)
∣∣w2

j (t – u) du

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣wi(t)
∣∣)|cij|

∣∣̃Pj
(
wj(t)

)∣∣

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)|dij|

×
∫ +∞

0

∣∣Kij(u)
∣∣∣∣Q̃j

(
wj(t – u)

)∣∣du

}
, ∀t ∈ [0, +∞). (2.4)

With the help of (1.2) and the fact that AB ≤ 1
2 (A2 + B2)(A, B ∈R), one can see

n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣wi(t)
∣∣)|cij|

∣∣̃Pj
(
wj(t)

)∣∣

≤ 1
2

n∑

i=1

n∑

j=1

α2
i |cij|LP

j
((

w′
i(t)

)2 + w2
j (t)

)

+
1
2

n∑

i=1

n∑

j=1

|αiγi||cij|LP
j
(
w2

i (t) + w2
j (t)

)

=
1
2

n∑

i=1

n∑

j=1

α2
i |cij|LP

j
(
w′

i(t)
)2 +

1
2

n∑

i=1

n∑

j=1

(|αiγi||cij|LP
j + α2

j |cji|LP
i

+ |αjγj||cji|LP
i
)
w2

i (t)
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and

n∑

i=1

n∑

j=1

(
α2

i
∣∣w′

i(t)
∣∣ + |αiγi|

∣∣wi(t)
∣∣)|dij|

∫ +∞

0

∣∣Kij(u)
∣∣∣∣Q̃j

(
zj(t – u)

)∣∣du

≤ 1
2

n∑

i=1

n∑

j=1

α2
i |dij|LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣((w′

i(t)
)2 + w2

j (t – u)
)

du

+
1
2

n∑

i=1

n∑

j=1

|αiγi||dij|LQ
j

∫ +∞

0

∣∣Kij(u)
∣∣(w2

i (t) + z2
j (t – u)

)
du

=
1
2

n∑

i=1

n∑

j=1

α2
i |dij|LQ

j

∫ +∞

0

∣∣Kij(u)
∣∣du

(
w′

i(t)
)2

+
1
2

n∑

i=1

n∑

j=1

|αiγi||dij|LQ
j

∫ +∞

0

∣∣Kij(u)
∣∣duw2

i (t)

+
1
2

n∑

i=1

n∑

j=1

(
α2

i |dij|LQ
j + |αiγi||dij|LQ

j
)∫ +∞

0

∣∣Kij(u)
∣∣w2

j (t – u) du,

which, along with (2.3) and (2.4), results in

Π ′(t) ≤ e2λt

{ n∑

i=1

(
βi + γ 2

i + 2λαiγi – aiαiγi – biα
2
i
)
wi(t)w′

i(t)

+
n∑

i=1

[
λα2

i + αiγi – aiα
2
i

+
1
2
α2

i

n∑

j=1

(
|cij|LP

j + |dij|LQ
j

∫ +∞

0

∣∣Kij(u)
∣∣du

)]
(
w′

i(t)
)2

+
n∑

i=1

[
–biαiγi + λβi + λγ 2

i +
1
2

n∑

j=1

(
|cij|LP

j + |dij|LQ
j

∫ +∞

0

∣∣Kij(u)
∣∣du

)
|αiγi|

+
1
2

n∑

j=1

α2
j

(
|cji|LP

i + |dji|LQ
i

∫ +∞

0

∣∣Kji(u)
∣∣e2λu du

)

+
1
2

n∑

j=1

(
|cji|LP

i + |dji|LQ
i

∫ +∞

0

∣∣Kji(u)
∣∣e2λu du

)
|αjγj|

]
w2

i (t)

}

= e2λt

{ n∑

i=1

(
Eλ

i
(
z′

i(t)
)2 + Fλ

i w2
i (t) + Hλ

i wi(t)w′
i(t)

)
}

= e2λt

{ n∑

i=1

Eλ
i

(
w′

i(t) +
Hλ

i
2Eλ

i
wi(t)

)2

+
n∑

i=1

(
Fλ

i –
(Hλ

i )2

4Eλ
i

)
w2

i (t)

}

≤ 0, ∀t ∈ [0, +∞). (2.5)
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This indicates that Π (t) ≤ Π (0) on [0, +∞) and

1
2

n∑

i=1

βiz2
i (t)e2λt +

1
2

n∑

i=1

(
αiz′

i(t) + γizi(t)
)2e2λt ≤ U(0), t ∈ [0, +∞).

Moreover, by using the Cauchy–Schwarz inequality,

(
αiw′

i(t)eλt + γiwi(t)eλt)2 =
(
αiw′

i(t) + γiwi(t)
)2e2λt

and

αi
∣∣w′

i(t)
∣∣eλt ≤ ∣∣αiw′

i(t)eλt + γiwi(t)eλt∣∣ +
∣∣γiwi(t)eλt∣∣

imply that one can take a positive constant Λϕ,ψ > 0 satisfying

∣∣w′
i(t)

∣∣ ≤ Λϕ,ψe–λt ,
∣∣wi(t)

∣∣ ≤ Λϕ,ψe–λt , ∀t ≥ 0, i ∈ D,

which finishes the proof of Theorem 2.1. �

Corollary 2.1 Under (1.2), define Ji(t) ≡ J as a constant, and

βi = α2
i bi + aiγiαi – γ 2

i > 0, Ei < 0, Fi < 0, i ∈ D.

Then the equilibrium point in (1.1) is globally exponentially stable.

Proof With the aid of the proof of Corollary 2 in [36], one can reveal that (1.1) has exactly
one equilibrium y∗. Then Remark 2.1 and Theorem 2.1 give that y∗ is globally exponentially
stable. This ends the proof. �

Remark 2.2 Since the authors in [36] have not considered the exponential stability on iner-
tial neural networks by using non-reduced order method, our results in Theorem 2.1 and
Corollary 2.1 not only improve the main conclusions of [36], but also generalize them. Fur-
thermore, using an argument similar to the one adopted in Theorem 2.1, it is not difficult
to obtain the global exponential synchronization of networks (1.1) subject to its driving
system.

3 Some simulations
In this section, we give some numeric simulation results to verify our theoretical results.
We choose the following models:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′′
1(t) = –3.81x′

1(t) – 8.21x1(t) + 1.21P1(x1(t)) + 1.51P2(x2(t))

– 0.81
∫ +∞

0 (sin 2u)e–uQ1(x1(t – u)) du

+ 1.91
∫ +∞

0 (sin 3u)e–uQ2(x2(t – u)) du + 10 sin t,

x′′
2(t) = –4.71x′

2(t) – 10.91x2(t) – 0.91P1(x1(t)) – 1.71P2(x2(t))

– 2.51
∫ +∞

0 (sin 4u)e–uQ1(x1(t – u)) du

+ 2.11
∫ +∞

0 (sin 5u)e–uQ2(x2(t – u)) du + 10 cos t,

Pi(u) = Qi(u) = 0.25(|u + 1| – |u – 1|), i = 1, 2,

(3.1)
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Figure 1 Numerical solutions x(t) on system (3.1). Numerical solutions x(t) to example (3.1) with initial values:
(sin t + 1, – cos t – 3, cos t, sin t), (2 cos t + 2, 3 sin t – 1, –2 sin t, 3 cos t), (–3 sin t – 2, –4 sin t + 3, –3 cos t, –4 cos t)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′′
1(t) = –3.81x′

1(t) – 8.21x1(t) + 1.21P1(x1(t)) + 1.51P2(x2(t))

– 0.81
∫ +∞

0 (sin 2u)e–uQ1(x1(t – u)) du

+ 1.91
∫ +∞

0 (sin 3u)e–uQ2(x2(t – u)) du + 20,

x′′
2(t) = –4.71x′

2(t) – 10.91x2(t) – 0.91P1(x1(t)) – 1.71P2(x2(t))

– 2.51
∫ +∞

0 (sin 4u)e–uQ1(x1(t – u)) du

+ 2.11
∫ +∞

0 (sin 5u)e–uQ2(x2(t – u)) du + 20,

Pi(u) = Qi(u) = 1
4π

arctan u, i = 1, 2.

(3.2)

It is easy to check that (3.1) and (3.2) satisfy all the conditions made in Theorem 2.1
and Corollary 2.1, respectively. Consequently, (3.1) and (3.2) are globally exponen-
tially stable. The numeric simulations in Figs. 1–4 support the theoretical results in
Sect. 2.

Remark 3.1 Because the exponential stability of unbounded distributed delayed inertial
neural networks has never been touched by the aid of the non-reduced order method, it is
clear to find that all results in the references [15–37, 39–78] cannot be straightly employed
to reveal the exponential convergence on the solutions and their derivative for networks
(3.1) and (3.2).

4 Conclusions
In this article, without utilizing the reduced order technique, the global exponential stabil-
ity of unbounded continuously distributed delayed inertial neural networks has been con-
sidered. By combining Lyapunov function way with differential inequality analysis, some
sufficient assertions have been gained to evidence the global exponential convergence on
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Figure 2 Numerical solutions x′(t) on system (3.1). Numerical solutions x′(t) to example (3.1) with initial
values:
(sin t + 1, – cos t – 3, cos t, sin t), (2 cos t + 2, 3 sin t – 1, –2 sin t, 3 cos t), (–3 sin t – 2, –4 sin t + 3, –3 cos t, –4 cos t)

Figure 3 Numerical solutions x(t) on system (3.2). Numerical solutions x(t) to example (3.2) with initial values:
(sin t + 1, – cos t – 3, cos t, sin t), (2 cos t + 2, 3 sin t – 1, –2 sin t, 3 cos t), (–3 sin t – 2, –4 sin t + 3, –3 cos t, –4 cos t)

all solution and their derivatives in the addressed networks. It should be pointed out that
our assumptions are easily checked in practice by simple inequality technique, and the
approach adopted in this paper provides a possible way to investigate the dynamic topic
on other unbounded continuously distributed delayed inertial neural networks. We would
like to extend our approach to study the periodicity and dissipativity for unbounded dis-
tributed delayed inertial neural network models.



Zhang and Huang Advances in Difference Equations        (2020) 2020:120 Page 10 of 12

Figure 4 Numerical solutions x′(t) on system (3.2). Numerical solutions x′(t) to example (3.2) with initial
values:
(sin t + 1, – cos t – 3, cos t, sin t), (2 cos t + 2, 3 sin t – 1, –2 sin t, 3 cos t), (–3 sin t – 2, –4 sin t + 3, –3 cos t, –4 cos t)
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