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Abstract
In this paper, the Nörlund–Orlicz difference sequence spaceN t(F ,�m

n ,u,q) of
nonabsolute type is introduced as a domain of Nörlund means which is isomorphic
to the space �(p) and the basis of the space is constructed. Additionally, the α–, β–,
and γ -duals of the spaces are computed and their matrix transformations are given.
Finally, the properties like rotundity, modularity of the newly formed spaces are
established.

MSC: 40A35; 40C05; 46A45

Keywords: Orlicz function; Matrix domain; Difference sequence spaces; Nörlund
matrix; Alpha-dual; Beta-dual; Gamma-dual; Matrix transformations

1 Introduction and preliminaries
Summability is a wide field of mathematics in functional analysis and has many applica-
tions, for instance, in numerical analysis to speed up the rate of convergence, in operator
theory, the theory of orthogonal series, approximation theory, etc. Toeplitz [22] was the
first to study summability methods as a class of transformations of complex sequences by
complex infinite matrices. By w, we mean the space of all complex sequences. Any vector
subspace of w is called a sequence space. The spaces of all bounded, convergent, and null
sequences are denoted respectively by �∞, c, and c0. We indicate the set of natural num-
bers including 0 by N, and G denotes the collection of all finite subsets of N. Let λ and η be
two sequence spaces, and let A = (ank) be an infinite matrix of real or complex numbers
ank , where n, k ∈ N. Then the matrix A defines the A-transformation from λ into η if, for
every sequence x = (xk) ∈ λ, the sequence Ax = {(Ax)n}, the A-transform of x exists and is
in η; where

(Ax)n =
∑

k

ankxk for each n ∈N.

For example, if A = I , the unit matrix for all n, then xk → �(I) means precisely that xk → �

as k → ∞. By (λ : η), we denote the class of all matrices A such that A : λ → η. For a
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sequence space λ, the matrix domain λA of an infinite matrix A is defined as

λA =
{

x = (xk) ∈ w : Ax ∈ λ
}

. (1)

Also, we write An = (ank)k∈N for the sequence in the nth row of A.
A sequence (bn) in a normed space X is called a Schauder basis for X if, for every x ∈ X,

there is one kind of sequence (αn) of scalars such that x =
∑

n αnbn, that is,

lim
m

∥∥∥∥∥x –
m∑

n=0

αnbn

∥∥∥∥∥ = 0.

In [10] Lindenstrauss and Tzafriri utilized the idea of Orlicz function to define the Orlicz
space of sequences. A sequence F = (Fk) of Orlicz functions is called a Musielak–Orlicz
function (see [13, 15]). For detailed definition of Orlicz sequence spaces and paranormed
spaces, see [1, 2, 18–21, 23, 25] and the references therein.

Now, we define the sequence spaces �(q,�m
n ) and �∞(q,�m

n ) as follows:

�
(
q,�m

n
)

=
{

x = (xk) ∈ ω :
∑

k

∣∣�m
n xk

∣∣qk < ∞
}

,

�∞
(
q,�m

n
)

=
{

x = (xk) ∈ ω : sup
k

∣∣�m
n xk

∣∣qk < ∞
}

,

which are the complete spaces (see [5, 27]).
Kızmaz [8] gave the concept of the spaces �∞(�), c(�), and c0(�) by using difference

operator, and it was additionally summed up by Et and Çolak [6]. Let n, m be nonnegative
integers, then for a given sequence space Z, we have

Z
(
�m

n
)

=
{

x = (xk) ∈ w :
(
�m

n xk
) ∈ Z

}

for Z = c, c0 and �∞, where �m
n x = (�m

n xk) = (�m–1
n xk – �m–1

n xk+1) and �0xk = xk for all
k, n ∈N, which is equal to the accompanying binomial representation

�m
n xk =

m∑

v=0

(–1)v

(
m
v

)
xk+nv.

Taking n = 1, we get the spaces �∞(�m), c(�m), and c0(�m) studied by Et and Çolak [6].
Taking m = n = 1, we get the spaces �∞(�), c(�), and c0(�) introduced and studied by
Kızmaz [8].

Let Tn =
∑n

k=0 tk for all n ∈N, where (tk) is a sequence of nonnegative real numbers with
t0 > 0. Then the Nörlund means N t = (ct

nk) is defined by

ct
nk =

⎧
⎨

⎩

tn–k
Tn

, if 0 ≤ k ≤ n,

0, if k > n
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for all k, n ∈ N. For more details about Nörlund spaces, one can refer to [14, 17, 24]. Let
t0 = D0 = 1 and define Dn for n ∈ {1, 2, 3, . . .} by

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t1 1 0 0 · · · 0
t2 t1 0 0 · · · 0
t3 t2 t1 0 · · · 0
...

...
...

...
. . .

...

tn–1 tn–2 tn–3 tn–4
. . . 1

tn tn–1 tn–2 tn–3
. . . t1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The inverse matrix V t = (vt
nk) of the matrix Nt = (ct

nk) (see [14]) is as follows:

vt
nk =

⎧
⎨

⎩
(–1)n–kDn–kTk , 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈N. Also, for k ∈ {1, 2, 3, . . .}, we have

Dk =
k–1∑

j=1

(–1)j–1Dk–j + (–1)k–1tk .

In [26] Yeşilkayagil introduced the Nörlund sequence space N t(q) defined by

N t(q) =

{
x = (xk) ∈ ω :

∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

tk–jxj

∣∣∣∣∣

qk

< ∞
}

,

where 0 < qk ≤ D < ∞. Throughout the paper we shall assume that qk
–1 + (q′

k)–1 = 1 pro-
vided 1 < inf qk ≤ D < ∞. By bs, cs, �1, and �p, we denote the spaces of all bounded, con-
vergent, absolutely and p-absolutely convergent series respectively.

The main purpose of this paper is to introduce some difference sequence spaces gen-
erated by Nörlund matrix and Musielak–Orlicz function. We show that these spaces
are complete paranormed spaces. Section three is devoted to determining the α-, β-,
and γ -duals of these spaces, and in the fourth section, we discuss the matrix transfor-
mations on these spaces. Finally, the rotundity of the Nörlund–Orlicz sequence spaces
N t(F ,�m

n ,μ, q) is characterized, and some properties of these spaces are given.

2 Nörlund–Orlicz sequence space N t(F ,�m
n ,μ, q) and its properties

The current section contains completeness and introduction of Nörlund–Orlicz se-
quence space N t(F ,�m

n ,μ, q). We also show that the Nörlund–Orlicz sequence space
and �(q,�m

n ) are linearly isomorphic and determine the basis for the space.
Let F = (Fj) be a Musielak–Orlicz function, q = (qk) be a bounded sequence of positive

real numbers, and μ = (μj) be a sequence of positive real numbers. Then we define new
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difference sequence space N t(F ,�m
n ,μ, q) as follows:

N t(F ,�m
n ,μ, q

)
=

{
x = (xk) ∈ w :

∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

< ∞,

for some ρ > 0

}

with 0 < qk ≤ D < ∞, k ∈N. With the definition of matrix domain (1), the sequence space
N t(F ,�m

n ,μ, q) may be redefined as

N t(F ,�m
n ,μ, q

)
=

{
�
(
q,�m

n
)}

N t (F ,μ),

where N t(F ,μ) denotes the matrix N t(F ,μ) = at
nk(F ,μ) defined by

at
nk(F ,μ) =

⎧
⎨

⎩

1
Tn

Fn( |μntn–k |
ρ

), if 0 ≤ k ≤ n,

0, if k > n.

Define y = (yk) = (�m
n yk) to be a sequence used as the N t(F ,μ)-transform of sequence

x = (xk) = (�m
n xk), so we have

y = (yk) =
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)
. (2)

Theorem 1 For Musielak–Orlicz function F = (Fj) and let μ = (μj) be a sequence of pos-
itive real numbers. Then N t(F ,�m

n ,μ, q) is a complete paranormed linear metric space
given by

g(x) =

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk ) 1
H

with 0 ≤ qk ≤ D < ∞ and H = max{1, D}.

Proof The linearity of N t(F ,�m
n ,μ, q) follows from the following inequality. For x = (xj),

y = (yj) ∈N t(F ,�m
n ,μ, q) (see [12], p. 30),

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n (xj + yj)|
ρ

)∣∣∣∣∣

qk ) 1
H

≤
(

∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk ) 1
H

+

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n yj|

ρ

)∣∣∣∣∣

qk ) 1
H

(3)
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and

|β|qk ≤ max
(
1, |β|H)

, ∀β ∈R (see [11]). (4)

Clearly g(x) ≥ 0 for x = (xk) ∈ N t(F ,�m
n ,μ, p). Since Mk(0) = 0, we get g(0) = 0 and g(x) =

g(–x). Therefore, inequalities (3) and (4) give the subadditivity of g and

g(βx) ≤ max
(
1, |β|)g(x).

Let {xn} ∈N t(F ,�m
n ,μ, q) be any sequence, then

g
(
xn – x

) → 0,

and let (βn) be a sequence of scalars such that βn → β . Thus

g
(
βnxn – βx

)
=

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n (βnxn

j – βxj)|
ρ

)∣∣∣∣∣

qk ) 1
H

≤ |βn – β| 1
H g

(
xn) + |β| 1

H g
(
xn – x

)

→ 0 as n → ∞.

Hence g is paranorm.
Let {xi} ∈ N t(F ,�m

n ,μ, q) be any Cauchy sequence, where xi = {xi
0, xi

1, . . .}. Given ε > 0
there exists a positive integer n0(ε) such that

g
(
xi – xj) < ε ∀i, j ≥ n0(ε). (5)

For each fixed k ∈N,

∣∣(N t(F ,μ)xi)
k –

(
N t(F ,μ)xj)

k

∣∣

≤
(∑

k

∣∣(N t(F ,μ)xi)
k –

(
N t(F ,μ)xj)

k

∣∣qk
) 1

H
< ε for all i, j ≥ n0(ε),

which yields a Cauchy sequence of real numbers {(N t(F ,μ)x0)k , (N t(F ,μ)x1)k , . . .} for
each fixed k ∈N. Since R is complete so that

(
N t(F ,μ)xi)

k → (
N t(F ,μ)x

)
k as i → ∞.

By using (N t(F ,μ)x)0, (N t(F ,μ)x)1, . . . , infinitely many limits, we define {(N t(F ,μ)x)0,
(N t(F ,μ)x)1, . . .}. For each t ∈N and i, j ≥ n0(ε), from (5)

t∑

k=0

∣∣(N t(F ,μ)xi)
k –

(
N t(F ,μ)xj)

k

∣∣qk ≤ g
(
xi – xj)H < εH . (6)

Taking j → ∞ in (6) and then t → ∞, we obtain g(xi – x) ≤ ε.
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Taking ε = 1 in (6) with i ≥ n0(1), we have

[ t∑

k=0

∣∣(N t(F ,μ)x
)

k

∣∣qk

] 1
H

≤ g
(
xi – x

)
+ g

(
xi)

≤ 1 + g
(
xi)

gives x ∈ N t(F ,�m
n ,μ, q). We know g(x – xi) ≤ ε for all i ≥ n0(ε), therefore xi → x as

i → ∞. Hence, the space N t(F ,�m
n ,μ, q) is complete. �

Theorem 2 Let F = (Fj) be a Musielak–Orlicz function and μ = (μj) be a sequence of
positive real numbers. Then the sequence space N t(F ,�m

n ,μ, q) of non-absolute type is
linearly isomorphic to �(q,�m

n ), where 0 < qk ≤ H < ∞.

Proof To demonstrate that the spaces N t(F ,�m
n ,μ, q) and �(q,�m

n ) are linearly isomor-
phic, we have to prove that there exists a linear bijection between these spaces. Define a
linear transformation T : N t(F ,�m

n ,μ, q) → �(q,�m
n ) by x → y = Tx = N t(F ,�m

n ,μ, q)x
by using equation (2). So, linearity of T is trivial. Clearly, x = θ whenever Tx = θ and there-
fore T is injective.

Suppose any sequence y ∈ �(q,�m
n ) and define the sequence x = (xk) = (�m

n xk) by

x = (xk) =
k∑

i=0

1
Fj

(
1
μj

(–1)k–iDk–iρTi�
m
n yi

)
for k ∈N.

Thus,

g(x) =

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk ) 1
H

=

(
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj(
∑k

i=0
1
Fj

( 1
μj

(–1)k–iDk–iρTi�
m
n yi)|

ρ

)∣∣∣∣∣

qk ) 1
H

=
(∑

k

|yk|qk

) 1
H

< ∞.

This means that x ∈N t(F ,�m
n ,μ, q). Hence, the proof is completed. �

Theorem 3 Define sequence b(k)(t) = {b(k)
n (t)}n∈N of the elements of N t(F ,�m

n ,μ, q) for ev-
ery fixed k ∈ N by

b(k)
n (t) =

⎧
⎨

⎩

1
Fk

( 1
μk

(–1)n–kDn–kρTk), 0 ≤ k ≤ n,

0, k > n.
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Then the sequence {b(k)(t)}k∈N is a basis for N t(F ,�m
n ,μ, q) and any x ∈ N t(F ,�m

n ,μ, q)
has a unique representation of the form

x =
∑

k

λk(t)b(k)(t), (7)

where λk(t) = (N t(F ,μ)x)k , ∀k ∈N and 0 < qk ≤ D < ∞.

Proof Clearly, {b(k)(t)} ⊂N t(F ,�m
n ,μ, q), also

N t(F ,μ)b(k)(t) = e(t) ∈ �
(
q,�m

n
)

for all k ∈N, (8)

where e(t) is the sequence whose only nonzero term is 1 in the kth place for each k ∈ N

and 0 < qk ≤ D < ∞. Let x ∈N t(F ,�m
n ,μ, q). For every nonnegative integer m, we take

x[m] =
m∑

k=0

λk(t)b(k)(t). (9)

Then, by applying N t(F ,μ) to (9) with (8), we have

N t(F ,μ)x[m] =
m∑

k=0

λk(t)N t(F ,μ)b(k)(t)

=
m∑

k=0

(
N t(F ,μ)x

)
ke(k).

Now, for i, m ∈N,

{
N t(F ,μ)

(
x – x[m])}

i =

⎧
⎨

⎩
0, 0 ≤ i ≤ m,

(N t(F ,μ)x)i, i > m.

For ε > 0 given, there is an integer m0 such that

[ ∑

i=m+1

∣∣(N t(F ,μ)x
)

i

∣∣qk
]1/H

< ε, ∀(m + 1) ≥ m0.

Therefore,

g
[
N t(F ,μ)

(
x – x[m])] =

[ ∞∑

i=m+1

∣∣(N t(F ,μ)x
)

i

∣∣qk

]1/H

≤
[ ∞∑

i=m0

∣∣(N t(F ,μ)x
)

i

∣∣qk

]1/H

< ε,

for all (m + 1) ≤ m0. To show the unique representation for x ∈ N t(F ,�m
n ,μ, q), suppose

that there exists a representation x =
∑

k ηk(t)b(k)(t). Since T is continuous from Theo-
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rem 2, we have

(
N t(F ,μ)x

)
n =

∑

k

ηk(t)
{
N t(F ,μ)b(k)(t)

}
n

=
∑

k

ηk(t)e(k)
n = ηn(t)

for every natural number n which contradicts that (N t(F ,μ)x)n = λn(t), ∀n ∈ N. Hence,
the result. �

3 Toeplitz duals of the space N t(F ,�m
n ,μ, q)

For the sequence spaces X and Y , define the set

S(X : Y ) =
{

z = (zk) : xz = (xkzk) ∈ Y for all x = (xk) ∈ X
}

.

The α-, β-, and γ -duals of a sequence space X, respectively denoted by Xα , Xβ , and Xγ ,
are defined by

Xα = S(X : �1), Xβ = S(X : cs) and Xγ = S(X : bs).

Firstly, we state some lemmas which are required in this section.

Lemma 3.1 (see [7], Theorem 5.1.0)
(i) Suppose that 1 < qk ≤ D < ∞ for all k. Then A = (ank) ∈ (�(q) : �1) iff there exists an

integer B > 1 such that

sup
K∈G

∑

k

∣∣∣∣
∑

n∈K

ankB–1
∣∣∣∣
q′

k
< ∞. (10)

(ii) Let 0 < qk ≤ 1. Then A = (ank) ∈ (�(q) : �1) iff

sup
K∈G

sup
k

∣∣∣∣
∑

n∈K

ank

∣∣∣∣
qk

< ∞. (11)

Lemma 3.2 (see [9], Theorem 1) The following statements hold:
(i) Let 1 < qk ≤ D < ∞ for all k. Then A = (ank) ∈ (�(q) : �∞) iff there exists an integer

B > 1 such that

sup
n

∑

k

∣∣ankB–1∣∣q′
k < ∞. (12)

(ii) Let 0 < qk ≤ 1 for every k ∈N. Then A = (ank) ∈ (�(q) : �∞) iff

sup
n,k

|ank|qk < ∞. (13)

Lemma 3.3 (see [9], Theorem 1) Let 0 < qk ≤ D < ∞ for every k ∈ N. Then A = (ank) ∈
(�(q) : c) iff (12) and (13) hold along with there is βk ∈ C such that limn ank = βk for every
natural number k.



Kılıçman and Raj Advances in Difference Equations        (2020) 2020:110 Page 9 of 16

Theorem 4 Let 1 < qk ≤ D < ∞ and F = (Fj) be a Musielak–Orlicz function. Define the
sets D1(F ,�m

n ,μ, q) and D2(F ,�m
n ,μ, q) as follows:

D1
(
F ,�m

n ,μ, q
)

=
{

a = (ak) ∈ w : sup
K∈G

∑

k∈N

∣∣∣∣
∑

n∈K

1
Fk

(
1
μk

(–1)n–kanDn–kρTkB–1
)∣∣∣∣

q′
k

< ∞
}

and

D2
(
F ,�m

n ,μ, q
)

=

{
a = (ak) ∈ w : sup

n∈N

∑

k

∣∣∣∣∣

n∑

i=k

1
Fk

(
1
μk

(–1)i–kaiDi–kρTkB–1
)∣∣∣∣∣

q′
k

< ∞
}

.

Then
(i) {N t(F ,�m

n ,μ, q)}α = D1(F ,�m
n ,μ, q);

(ii) {N t(F ,�m
n ,μ, q)}γ = D2(F ,�m

n ,μ, q);
(iii) {N t(F ,�m

n ,μ, q)}β = D2(F ,�m
n ,μ, q) ∩ cs.

Proof Suppose a = (ak) ∈ w. Therefore, by using (1) we have

anxn =
n∑

k=0

1
Fk

(
1
μk

(–1)n–kDn–kρTk�
m
n anyk

)
= (Fy)n, (14)

where F = (fnk) is defined as follows:

fnk =

⎧
⎨

⎩

1
Fk

( 1
μk

(–1)n–kDn–kρTkan), if 0 ≤ k ≤ n,

0, if k > n,

for all n, k ∈ N. Thus, by combining equation (14) with part (i) of Lemma 3.1, we have
ax = (anxn) ∈ �1 whenever x = (xk) ∈ N t(F ,�m

n ,μ, q) iff Fy ∈ �1 whenever y ∈ �(q,�m
n ).

This gives the result {N t(F ,�m
n ,μ, q)}α = D1(F ,�m

n ,μ, q).
Further take

n∑

k=0

akxk =
n–1∑

k=0

n∑

i=k

1
Fk

(
1
μk

(–1)i–kDi–kρTk�
m
n aiyk

)
+

1
Fk

(
1
μk

Tn�
m
n anyn

)

= (Ey)n for all n ∈ N, (15)

here E = (enk) with

enk =

⎧
⎪⎪⎨

⎪⎪⎩

∑n
i=k

1
Fk

( 1
μk

(–1)i–kDi–kρTkai), if 0 ≤ k ≤ n – 1,
1

Fk
( 1
μk

Tnan), if k = n,

0, if k > n,

for all n, k ∈ N. Thus, from Lemma 3.2 with equality (15) we have ax = (anxn) ∈ bs when-
ever x = (xk) ∈N t(F ,�m

n ,μ, q) iff Ey ∈ �∞ whenever y ∈ �(q,�m
n ). Hence, from Lemma 3.2

we have {N t(F ,�m
n ,μ, q)}γ = D2(F ,�m

n ,μ, q).
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It is seen immediately that ax = (anxn) ∈ cs whenever x = (xk) ∈N t(F ,�m
n ,μ, q) iff Ey ∈ c

whenever y = (yk) ∈ �(q,�m
n ). Using by Lemma 3.3, the proof of the theorem is com-

pleted. �

Theorem 5 Let 0 < qk ≤ 1 and let F = (Fj) be a Musielak–Orlicz function. Define the sets
D3(F ,�m

n ,μ, q) and D4(F ,�m
n ,μ, q) by

D3
(
F ,�m

n ,μ, q
)

=
{

a = (ak) ∈ w : sup
K∈G

∑

k∈N

∣∣∣∣
∑

n∈K

1
Fk

(
1
μk

(–1)n–kanDn–kρTk

)∣∣∣∣
qk

< ∞
}

and

D4
(
F ,�m

n ,μ, q
)

=

{
a = (ak) ∈ w : sup

n∈N

∑

k

∣∣∣∣∣

n∑

i=k

1
Fk

(
1
μk

(–1)i–kaiDi–kρTk

)∣∣∣∣∣

qk

< ∞
}

.

Then
(i) {N t(F ,�m

n ,μ, q)}α = D3(F ,�m
n ,μ, q);

(ii) {N t(F ,�m
n ,μ, q)}γ = D4(F ,�m

n ,μ, q);
(iii) {N t(F ,�m

n ,μ, q)}β = cs ∩ D4(F ,�m
n ,μ, q).

Proof We can find easily the proof of the theorem as in the proof of Theorem 4 through
Lemma 3.1, Lemma 3.2, and Lemma 3.3. �

4 Characterizations of matrix transformations on the space N t(F ,�m
n ,μ, q)

This segment deals with portrayal of the matrix mappings from the space N t(F ,�m
n ,μ, q)

into any specified space η and from a given sequence space η.

Theorem 6 Let F = (Fj) be a Musielak–Orlicz function. Let the elements of the infinite
matrices A = (ank) and B = (bnk) be connected with

bnk =
∞∑

j=k

1
Fj

(
1
μj

(–1)j–kDj–kρTkank

)
(16)

for all n, k ∈ N and sequence space η be given. Thus A ∈ (N t(F ,�m
n ,μ, q) : η) iff An ∈

{N t(F ,�m
n ,μ, q)}β ∀n, k ∈N and B ∈ (�(q,�m

n ) : η).

Proof Let η be any sequence space, relation (16) holds between the elements of the ma-
trices A = (ank) and B = (bnk) since the space N t(F ,�m

n ,μ, q) and �(q,�m
n ) are linearly

isomorphic.
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Suppose A ∈ (N t(F ,�m
n ,μ, q) : η) and choose any y ∈ �(q,�m

n ). Then

(
BN t(F ,μ)

)
nk =

∞∑

j=k

bnjat
nk(F ,μ)

=
∞∑

j=k

1
Fj

(
1
μj

(–1)j–kDj–kρTkank

)
1
Tj

Fj

( |μjtj–k|
ρ

)

= ank .

Therefore, BN t(F ,μ) exists and An ∈ {N t(F ,�m
n ,μ, q)}β , which gives that Bn ∈ �1 for each

n ∈N. Thus, By exists and hence

∞∑

k

bnkyk =
∞∑

j=k

1
Fj

(
1
μj

(–1)j–kDj–kρTkank

)
× 1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)

=
∑

k

ankxk

for all n ∈ N. Therefore, we have By = Ax, which leads to the consequence B ∈ (�(q,�m
n ) :

η).
On the contrary, let An ∈ {N t(F ,�m

n ,μ, q)}β for every natural number n and B ∈
(�(q,�m

n ) : η), let us choose x = (xk) ∈N t(F ,�m
n ,μ, q). Then Ax exists. Thus, we have

∑

k

ankxk =
∑

k

ank

[
1
Fj

(
1
μj

(–1)k–iDk–iρTi�
m
n yi

)]

=
∞∑

k

bnkyk for all n ∈N,

which gives Ax = By and gives A ∈ (N t(F ,�m
n ,μ, q) : η). �

5 The rotundity of the space N t(F ,�m
n ,μ, q)

In this section we use the concept of rotundity and give some conditions to prove the
rotundity of the space N t(F ,�m

n ,μ, q). For details about rotundity, Opial property, mod-
ularity, see [3, 4, 13, 26].

Definition 5.1 Let S(X) be the unit sphere of a Banach space X. Then a point x ∈ S(X) is
called an extreme point if 2x = y + z implies y = z for every y, z ∈ S(X). A Banach space X
is said to be rotund (strictly convex) if every point of S(X) is an extreme point.

Let F = (Fj) be a Musielak–Orlicz function, μ = (μj) be a sequence of positive real num-
bers, and q = (qk) be a bounded sequence of positive real numbers. We portray σ(F ,�m

n ,μ,q)

on N t(F ,�m
n ,μ, q) by

σ(F ,�m
n ,μ,q)(x) =

∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

.
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If qk ≥ 1 for all k ∈N1 = {1, 2, . . .}, by the convexity of the function t → |t|qk for each k ∈N,
σ(F ,�m

n ,μ,q) is a convex modular onN t(F ,�m
n ,μ, q). We consider N t(F ,�m

n ,μ, q) furnished
with Luxemburg norm

‖x‖ = inf

{
γ > 0 : σ(F ,�m

n ,μ,q)

(
x
γ

)
≤ 1

}
. (17)

The space N t(F ,�m
n ,μ, q) is a complete normed space with above norm. This can be

proved in a similar manner as in the proof of Theorem 7 in [16].

Theorem 7 For all k ∈ N and qk ≥ 1, the modular σ(F ,�m
n ,μ,q) on N t(F ,�m

n ,μ, q) satisfies
the following properties:

(i) If 0 < γ ≤ 1, then γ Kσ(F ,�m
n ,μ,q)(x/γ ) ≤ σ(F ,�m

n ,μ,q)(x) and
σ(F ,�m

n ,μ,q)(γ x) ≤ γ σ(F ,�m
n ,μ,q)(x).

(ii) If γ ≥ 1, then σ(F ,�m
n ,μ,q)(x) ≤ γ Kσ(F ,�m

n ,μ,q)(x/γ ).
(iii) If 0 < γ ≤ 1, then γ σ(F ,�m

n ,μ,q)(x/γ ) ≤ σ(F ,�m
n ,μ,q)(x).

(iv) The modular σ(F ,�m
n ,μ,q) is continuous.

Proof (i) Let 0 < γ ≤ 1. Then γ K /γ qk ≤ 1 for all qk ≥ 1. Therefore, we have

γ Kσ(F ,�m
n ,μ,q)

(
x
γ

)
=

∑

k

γ K

γ qk

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

= σ(F ,�m
n ,μ,q)(x),

σ(F ,�m
n ,μ,p)(γ x) =

∑

k

γ qk

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤ γ
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

= γ σ(F ,�m
n ,μ,q)(x).

(ii) Let γ ≥ 1. Then 1 ≤ γ K /γ qk for all qk ≥ 1. So, we have

σ(F ,�m
n ,μ,p)(x) ≤ γ K

γ pk
σ(F ,�m

n ,μ,p)(x) = γ Kσ(F ,�m
n ,μ,p)

(
x
γ

)
. (18)

(iii) Let γ ≥ 1. Then γ /γ pk ≤ 1 for all qk ≥ 1. Therefore, we have

γ σ(F ,�m
n ,μ,q)

(
x
γ

)
=

∑

k

γ

γ qk

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤
∑

k

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

= σ(F ,�m
n ,μ,q)(x).
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(iv) If γ > 1, then we have

∑

k

γ

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

=
∑

k

γ pk

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤
∑

k

γ K

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

= σ(F ,�m
n ,μ,q)(x).

Therefore,

γ σ(F ,�m
n ,μ,q)(x) ≤ σ(F ,�m

n ,μ,q)(γ x) ≤ γ Kσ(F ,�m
n ,μ,q)(x). (19)

Taking γ as 1+ in (19), we find σ(F ,�m
n ,μ,q)(γ x) → σ(F ,�m

n ,μ,q)(x).
If we consider 0 < γ < 1, we find that

∑

k

γ K

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

=
∑

k

γ pk

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤
∑

k

γ

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

= σ(F ,�m
n ,μ,q)(x),

that is,

γ Kσ(F ,�m
n ,μ,q)(x) ≤ σ(F ,�m

n ,μ,q)(γ x) ≤ γ σ(F ,�m
n ,μ,q)(x). (20)

Take γ as 1– in (20), we get σ(F ,�m
n ,μ,q)(γ x) → σ(F ,�m

n ,μ,q)(x). Hence, σ(F ,�m
n ,μ,q) is continu-

ous. �

Theorem 8 Let F = (Fj) be a Musielak–Orlicz function, μ = (μj) be a sequence of positive
real numbers, and q = (qk) be a bounded sequence of positive real numbers. For any x ∈
N t(F ,�m

n ,μ, q), the following statements hold:
(i) If ‖x‖ < 1, then σ(F ,�m

n ,μ,q)(x) ≤ ‖x‖.
(ii) If ‖x‖ > 1, then σ(F ,�m

n ,μ,q)(x) ≥ ‖x‖.
(iii) ‖x‖ = 1 iff σ(F ,�m

n ,μ,q)(x) = 1.
(iv) ‖x‖ < 1 iff σ(F ,�m

n ,μ,q)(x) < 1.
(v) ‖x‖ > 1 iff σ(F ,�m

n ,μ,q)(x) > 1.
(vi) If 0 < γ < 1 and ‖x‖ > γ , then σ(F ,�m

n ,μ,q)(x) > γ K .
(vii) If γ ≥ 1 and ‖x‖ < γ , then σ(F ,�m

n ,μ,q)(x) < γ K .

Proof Let x ∈N t(F ,�m
n ,μ, q).
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(i) Let us take ε > 0 such that 0 < ε < 1 – ‖x‖. Using (20), there exists γ > 0 such that
σ(F ,�m

n ,μ,q)( x
γ

) ≤ 1 and ‖x‖ + ε > γ . Therefore, we have

σ(F ,�m
n ,μ,q)(x) ≤

∑

k

(‖x‖ + ε

α

)qk
∣∣∣∣∣

1
Tk

k∑

j=0

Fj

( |tk–jμj�
m
n xj|

ρ

)∣∣∣∣∣

qk

≤ (‖x‖ + ε
)
σ(F ,�m

n ,μ,q)

(
x
γ

)
≤ ‖x‖ + ε. (21)

Since ε is arbitrary, we have σ(F ,�m
n ,μ,q)(x) ≤ ‖x‖ from (21).

(ii) Let ε > 0 such that 0 < ε < 1 – 1
‖x‖ , then 1 < (1 – ε)‖x‖ < ‖x‖. Using (20) and part (iii)

of Theorem 7, we have

1 < σ(F ,�m
n ,μ,q)

[
x

(1 – ε)‖x‖
]

≤ 1
(1 – ε)‖x‖σ(F ,�m

n ,μ,q)(x).

Therefore, (1 – ε)‖x‖ < ‖x‖∀ ε ∈ (0, 1 – (1/‖x‖)). Thus, ‖x‖ < σ(F ,�m
n ,μ,q)(x).

(iii) This can be done by the similar way used in the proof of Theorem 4 of [13] and
continuity of σ(F ,�m

n ,μ,q). Similarly, we can find the others. �

Theorem 9 Let F = (Fj) be a Musielak–Orlicz function, μ = (μj) be a sequence of positive
real numbers, and q = (qk) be a bounded sequence of positive real numbers. The space
N t(F ,�m

n ,μ, q) is rotund iff qk > 1 for every natural number k.

Proof LetN t(F ,�m
n ,μ, q) be rotund and take a natural number k such that qk > 1 for every

k < 3. Now, we contemplate the sequences given by

x = (1, –X1, X2, –X3, X4, . . .),

y = (0, Y1, –Y2X1, Y1X2, –Y1X3, . . .).

Clearly, x �= y and σ(F ,�m
n ,μ,q)(x) = σ(F ,�m

n ,μ,q)(y) = σ(F ,�m
n ,μ,q)( x+y

2 ) = 1.
By using (iii) of Theorem 5, x, y, (x + y)/2 ∈ S[N t(F ,�m

n ,μ, q)], which contradicts that
the sequence space N t(F ,�m

n ,μ, q) is not rotund. Therefore, qk > 1 for every natural num-
ber k.

On the contrary, suppose x ∈ S[N t(F ,�m
n ,μ, q)] and r, s ∈ S[N t(F ,�m

n ,μ, q)], where
x = (r + s)/2. By the convexity of σ(F ,�m

n ,μ,q) and Theorem 8, we have

1 = σ(F ,�m
n ,μ,q)(x) ≤ σ(F ,�m

n ,μ,q)(r) + σ(F ,�m
n ,μ,q)(s)

2
= 1,

which gives

σ(F ,�m
n ,μ,q)(x) =

σ(F ,�m
n ,μ,q)(r) + σ(F ,�m

n ,μ,q)(s)
2

. (22)
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Since x = (r + s)/2, we obtain from (22) that

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n (rj + sj)/2|
ρ

)∣∣∣∣∣

qk

=
1
2

(∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n rj|

ρ

)∣∣∣∣∣

qk

+

∣∣∣∣∣
1

Tk

k∑

j=0

Fj

( |tk–jμj�
m
n sj|

ρ

)∣∣∣∣∣

qk )
.

Therefore,

∣∣∣∣
rj + sj

2

∣∣∣∣
qk

=
|rj|qk + |sj|qk

2
(23)

for every natural number k. Since t → |t|qk is strictly convex for all k ∈N, it follows by (23)
that rj = sj for all k ∈N. Thus, r = s and hence N t(F ,�m

n ,μ, q) is rotund. �

Theorem 10 Suppose that F = (Fj) is a Musielak–Orlicz function, μ = (μj) is a sequence
of positive real numbers, and q = (qk) is a bounded sequence of positive real numbers. Let
(xn) be a sequence in N t(F ,�m

n ,μ, q). Then the following statements hold:
(i) limn→∞ ‖xn‖ = 1 implies limn→∞ σ(F ,�m

n ,μ,q)(xn) = 1;
(ii) limn→∞ σ(F ,�m

n ,μ,q)(xn) = 0 implies limn→∞ ‖xn‖ = 0.

Proof This can be proved by the similar way used in the proof of Theorem 10 in [16]. So,
we omit it. �

Theorem 11 Suppose that F = (Fj) is a Musielak–Orlicz function, μ = (μj) is a sequence of
positive real numbers, and q = (qk) is a bounded sequence of positive real numbers. Let x ∈
N t(F ,�m

n ,μ, q) and (x(n)) ⊂N t(F ,�m
n ,μ, q). If σ(F ,�m

n ,μ,q)(x(n)) → σ(F ,�m
n ,μ,q)(x) as n → ∞

and (x(n)
k ) → xk as n → ∞ for all k ∈N, then x(n) → x as n → ∞.

Proof Let ε > 0. Since x ∈N t(F ,�m
n ,μ, q) and (x(n)) ⊂N t(F ,�m

n ,μ, q), we have

σ(F ,�m
n ,μ,q)

(
x(n) – x

)
=

∑

k

∣∣{N t(F ,μ)
(
x(n) – x

)}
k

∣∣ < ∞.

Then, we can find a natural number k0 such that

∞∑

k=k0+1

∣∣{N t(F , u)
(
x(n) – x

)}
k

∣∣ =
ε

2
. (24)

Since x(n)
k → xk as n → ∞, we have

k0∑

k=1

∣∣{N t(F ,μ)
(
x(n) – x

)}
k

∣∣ =
ε

2
. (25)

From (24) and (25), we obtain σ(F ,�m
n ,μ,q)(x(n) – x) < ε. Therefore, σ(F ,�m

n ,μ,q)(x(n) – x) → 0 as
n → ∞. This implies ‖xn – x‖ → 0 as n → ∞ from (ii) of Theorem 7. Hence, the result. �
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