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Abstract
In this paper, we study the local and global existence, and uniqueness of mild
solution to initial value problems for fractional semilinear evolution equations with
compact and noncompact semigroup in Banach spaces. In particular, we derive the
form of fundamental solution in terms of semigroup induced by resolvent and
ψ -function from Caputo fractional derivatives. These results generalize previous work
where the classical Caputo fractional derivative is considered. Moreover, we prove the
Mittag-Leffler–Ulam–Hyers stability result. Finally, we give examples of time-fractional
heat equation to illustrate the result.
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1 Introduction
Fractional differential equations have been applied in many fields, such as economics,
engineering, chemistry, physics, finance, aerodynamics, electrodynamics of complex
medium, polymer rheology, control of dynamical systems (see [1–16]). The research on
fractional calculus has become a focus area of study due to the fact that some dynamical
models can be described more accurately with fractional derivatives than the ones with
integer-order derivatives. In particular, it is shown that fractional calculus provides more
realistic models demonstrating hidden aspects in a model of spring pendulum [13], the
free motion of a particle in a circular cavity [11] and some epidemic models [15, 17].

Several researchers are interested in investigating various aspects of fractional differen-
tial equations such as existence and uniqueness of solutions, exact solutions, stability of
solutions, and methods for explicit and numerical solutions [17–20]. The common tech-
niques used to display the existence and uniqueness of solutions are fixed point theorem,
upper-lower solutions, iterative method and numerical method. For stability of solutions,
there is a concept of data dependence, which becomes one of significant topics in the anal-
ysis of fractional differential equations, called the Ulam–Hyers stability (see [21–23]).
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One of the main research focuses on fractional calculus is the theory of fractional evo-
lution equations since they are abstract formulation for many problems arising in en-
gineering and physics. Evolution equations are commonly used to describe the systems
that change or evolve over time. A number of studies have been conducted on the ex-
istence and unique of solutions for fractional evolution equations based on semigroup
and fixed point theory (see [24–32]). On the other hand, there has been some studies
about fundamental solution for homogeneous fractional evolution equations [33, 34].
Recently, [19] applied the homotopy analysis transform method (HATM) for solving
time-fractional Cauchy reaction–diffusion equations. In addition, Wang and Zhou [35]
presented four kind of stabilities of the mild solution of the fractional evolution equa-
tion in Banach space, namely Mittag-Leffler–Ulam–Hyers stability, generalized Mittag-
Leffler–Ulam–Hyers stability, Mittag-Leffler–Ulam–Hyers–Rassias stability and general-
ized Mittag-Leffler–Ulam–Hyers–Rassias stability.

There is variation in the definition of fractional differential operators found in the liter-
ature, including Riemann–Liouville, Caputo, Hilfer, Riesz, Erdelyi–Kober, and Hadamard
[2, 36] operators. The common definitions that triggered attention from many researchers
are Riemann–Liouville and Caputo fractional calculus. In Riemann–Liouville fractional
differential modeling, the initial condition involves limit values of fractional derivatives,
which is difficult to interpret. The Caputo fractional derivative has the advantage of being
suitable for physical models with initial condition because the physical interpretation of
the prescribed data is clear and it is in general possible to provide these data by suitable
measurements [37].

Almeida [38] generalized the definition of Caputo fractional derivative by considering
the Caputo fractional derivative of a function with respect to another function ψ and stud-
ied some useful properties of the fractional calculus. The advantage of this new definition
of the fractional derivative is that a higher accuracy of the model could be achieved by
choosing a suitable function ψ .

Recently, Jarad and Abdeljawad [39] introduced the generalized Laplace transform with
respect to another function and the inverse version of the Laplace transform with respect
to another function. This can be used to solve some fractional differential equations in the
framework of generalized Caputo fractional derivative.

Motivated by the work of [25, 39], we consider the following fractional evolution equa-
tion in a Banach space E:

⎧
⎨

⎩

C
0 Dα

ψu(t) = Au(t) + f (t, u(t)), t ∈ (0, T],

u(0) = u0,
(1)

where 0 < α < 1, T < ∞, A is the infinitesimal generator of a C0-semigroup of uniformly
bounded linear operators {T(t)}t≥0 on E, u0 ∈ E and f : [0,∞) × E → E is given function.
The fractional derivative C

0 Dα
ψ considered in this work is in the sense of Caputo fractional

derivative with respect to a function ψ which gives a more general framework to the results
in the literature. Moreover, this problem is more general than the work in [39] where we
consider the evolution operator A instead of a constant.

In this paper, we aim to establish a mild solution for the problem (1) in terms of semi-
group depending on a function ψ from the generalized Caputo derivative. In addition, we
prove the existence and uniqueness results of mild solution for the problem (1) in local and
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global time under the condition that {T(t)}t≥0 is both compact and noncompact operator.
The results obtained in this work are in the abstract form which can be applied for further
investigation such as the evolution equations with perturbation, delay and nonlocal term.

This paper will be organized as follows. In Sect. 2, we will briefly recall some basic defi-
nitions and some preliminary concepts about fractional calculus and auxiliary results used
in the following sections. We then construct a mild solution by using semigroup for the
problem in Sect. 3. We prove the existence and uniqueness of mild solutions of the prob-
lem (1) under compact and noncompact analytic semigroup by the Schauder fixed point
theorem in Sects. 4 and 5, respectively. In Sect. 6 we present Mittag-Leffler–Ulam–Hyers
stability result for the problem (1). Finally, we give some examples to illustrate the appli-
cation of the results obtained in Sect. 7 and our conclusion in Sect. 8.

2 Preliminaries
In this section, we introduce preliminary background which is used throughout this paper.

Let E be a Banach space with the norm ‖ · ‖ and let C(J , E) be the Banach space of con-
tinuous functions from J to E with the norm ‖u‖C = supt∈J ‖u(t)‖.

Definition 2.1 (ψ-Riemann–Liouville fractional integral [39]) Let α > 0, f be an inte-
grable function defined on [a, b] and ψ ∈ C1([a, b]) be an increasing function with ψ ′(t) �= 0
for all t ∈ [a, b]. The ψ-Riemann–Liouville fractional integral operator of order α of a func-
tion f is defined by

(
aIα

ψ f
)
(t) =

1
Γ (α)

∫ t

a

(
ψ(t) – ψ(s)

)α–1f (s)ψ ′(s) ds. (2)

It is obvious that when ψ(t) = t, (2) is the classical Riemann–Liouville’s fractional integral.

Definition 2.2 (ψ-Riemann–Liouville fractional derivative [39]) Let n – 1 < α < n, f be
an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be an increasing function with
ψ ′(t) �= 0 for all t ∈ [a, b]. The ψ-Riemann–Liouville fractional derivative of order α of a
function f is defined by

(
aDα

ψ f
)
(t) =

(
1

ψ ′(t)
d
dt

)n(
aIn–α

ψ f
)
(t)

=
( 1
ψ ′(t)

d
dt )n

Γ (n – α)

∫ t

a

(
ψ(t) – ψ(s)

)n–α–1f (s) ds, (3)

where n = [α] + 1.
From the definition, when α = n ∈ N, we have

(
aDα

ψ f
)
(t) =

(
1

ψ ′(t)
d
dt

)n

f (t).

Definition 2.3 Let ψ ∈ Cn([a, b]) be such that ψ ′(t) > 0 on [a, b]. Then

ACn
ψ

(
[a, b]

)
=

{

f : [a, b] →C and f [n–1] =
(

1
ψ ′(t)

d
dt

)n–1

f
}

.
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Lemma 2.4 ([39, 40]) Let α > 0 and β > 0, then
(i) aIα

ψ (ψ(x) – ψ(a))β–1(t) = Γ (β)
Γ (β+α) (ψ(t) – ψ(a))β+α–1;

(ii) aDα
ψ (ψ(x) – ψ(a))β–1(t) = Γ (β)

Γ (β–α) (ψ(t) – ψ(a))β+α–1.

Definition 2.5 (ψ-Caputo fractional derivative [38, 39]) Let n – 1 < α < n, f ∈ Cn([a, b])
and ψ ∈ Cn([a, b]) be an increasing function with ψ ′(t) �= 0 for all t ∈ [a, b]. The ψ-Caputo
fractional derivative of order α of a function f is defined by

(C
a Dα

ψ f
)
(t) =

(
aIn–α

ψ f [n])(t)

=
1

Γ (n – α)

∫ t

a

(
ψ(t) – ψ(s)

)n–α–1f [n](s)ψ ′(s) du, (4)

where n = [α] + 1 and f [n](t) := ( 1
ψ ′(t)

d
dt )nf (t) on [a, b].

From the definition, it is clear that, when α = n ∈N,

(C
a Dα

ψ f
)
(t) = f [n](t).

Remark 2.6 ([38, 39]) The relationship between the ψ-Caputo and the ψ-Riemann–
Liouville derivatives can be written as follows:

(C
a Dα

ψ f
)
(t) =

(
aDα

ψ f
)
(t) –

n–1∑

k=0

f [k](a+)
Γ (k – α + 1)

(
ψ(t) – ψ(a)

)k–α

= aDα
ψ

(

f (s) –
n–1∑

k=0

f [k](a+)
k!

(
ψ(s) – ψ(a)

)k
)

(t),

where t > a and n = [α] + 1.

Theorem 2.7 ([38]) Let f ∈ Cn([a, b]) and α > 0. Then we have

aIα
ψ

C
a Dα

ψ f (t) = f (t) –
n–1∑

k=0

f [k](a+)
k!

(
ψ(t) – ψ(a)

)k .

In particular, given α ∈ (0, 1), we have

aIα
ψ

C
a Dα

ψ f (t) = f (t) – f (a).

Definition 2.8 ([39]) Let u,ψ : [a,∞) →R be real valued functions such that ψ(t) is con-
tinuous and ψ ′(t) > 0 on [0,∞). The generalized Laplace transform of f is denoted by

Lψ

{
u(t)

}
(s) =

∫ ∞

a
e–s(ψ(t)–ψ(a))u(t)ψ ′(t) dt (5)

for all s.

Definition 2.9 ([39]) Let u and v be two functions which are piecewise continuous at each
interval [0, T] and of exponential order. We define the generalized convolution of u and v
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by

(u ∗ψ v)(t) =
∫ t

a
u(τ )v

(
ψ–1(ψ(t) + ψ(a) – ψ(τ )

))
ψ ′(τ ) dτ .

Theorem 2.10 ([39]) Let α > 0 and f be a piecewise continuous function on each interval
[a, t] and ψ(t)-exponential order. Then

Lψ

{
aIα

ψu(t)
}

(s) =
aIα

ψu(t)
sα

.

Theorem 2.11 (Gronwall’s inequality [41, 42]) Let u, v be two integrable functions and h
be a continuous function on [a, b]. Let ψ ∈ C1([a, b]) be an increasing function such that
ψ ′(t) �= 0 for all t ∈ [a, b]. Assume that

(1) u and v are nonnegative;
(2) h is nonnegative and nondecreasing.

If

u(t) ≤ v(t) + h(t)
∫ t

a

(
ψ(t) – ψ(s)

)α–1u(s)ψ ′(s) ds,

then

u(t) ≤ v(t) +
∫ t

a

∞∑

k=1

[h(t)Γ (α)]k

Γ (nα)
(
ψ(t) – ψ(s)

)kα–1v(s)ψ ′(s) ds,

for all t ∈ [a, b].

Corollary 2.12 Under the hypotheses of Theorem 2.11, let v be a nondecreassing function
on [a, b]. Then we have

u(t) ≤ v(t)Eα

(
h(t)Γ (α)

[
ψ(t) – ψ(a)

]α)

for all t ∈ [a, b], where Eα(z) =
∑∞

k=0
zk

Γ (kα+1) is the Mittag-Leffler function with one param-
eter for z ∈ C and α > 0.

Definition 2.13 ([43, 44]) The Wright type function is given by

φα(z) =
∞∑

k=0

(–z)k

k!Γ (–αk + 1 – α)

=
∞∑

k=0

(–z)kΓ (α(k + 1)) sin(π (k + 1)α)
k!

for 0 < α < 1 and z ∈C.

Proposition 2.14 ([43, 44]) The Wright function φα is an entire function and has the fol-
lowing properties:

(i) φα(θ ) ≥ 0 for θ ≥ 0 and
∫ ∞

0
φα(θ ) dθ = 1;
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(ii)
∫ ∞

0
φα(θ )θ r dθ =

Γ (1 + r)
Γ (1 + αr)

for r > –1;

(iii)
∫ ∞

0
φα(θ )e–zθ dθ = Eα(–z), z ∈C;

(iv) α

∫ ∞

0
θφα(θ )e–zθ dθ = Eα,α(–z), z ∈C.

Next, we introduce the definition for Kuratowski measure of noncompactness, which
will be used in the proof of our main results.

Definition 2.15 ([45]) Let E be a Banach space and B(E) be the bounded subset of E. The
Kuratowski measure of noncompactness is the map μ : B(E) → [0,∞) define by

μ(B) = inf

{

ε > 0 : B ⊂
∞⋃

j=1

Bj, diam(Bj) < ε for i = 1, 2, . . . , n

}

,

where diam(Bj) = sup{|x – y| : x, y ∈ Bj}.

The following properties of the Kuratowski measure of noncompactness are well known.

Lemma 2.16 ([45, 46]) Let E be Banach spaces and U , V ⊂ E be bounded. Then the non-
compactness measure has the following properties:

(i) μ(U) = 0 if and only if U is compact, where U means the closure hull of U ;
(ii) μ(λU) = |λ|μ(U), where λ ∈R;

(iii) μ(U) = μ(U) = μ(conv U), where conv U means the convex hull of U ;
(iv) μ(U ∪ V ) = max{μ(U),μ(V )};
(v) μ(U) ≤ μ(V ) if U ⊂ V ;

(vi) μ(U + V ) ≤ μ(U) + μ(V ); where U + V = {x | x = y + z, y ∈ U , z ∈ V };
(vii) μ(U + x) = μ(U), for any x ∈ E;

(viii) If the map Q : dom(Q) ⊂ E → X is Lipschitz continuous with constant k, then
μ(Q(S)) ≤ kμ(S) for any bounded subset S ⊂ dom(Q), where X is another Banach
space.

Lemma 2.17 ([47]) Let E be a Banach space, and let D ⊂ E be bounded. Then there exists
a countable set D0 ⊂ D such that μ(D) ≤ 2μ(D0).

Lemma 2.18 ([45, 46]) Let E be a Banach space, and B ⊂ C(J , E), B(t) = {u(t) : u ∈ B}
(t ∈ J). If B is bounded and equicontinuous, then μ(B(t)) is continuous on J , and μ(B) =
maxt∈J μ(B(t)) = μ(B(J)).

Lemma 2.19 ([48]) Let E be a Banach space, and let B ⊂ C(J , E) be bounded and equicon-
tinuous. Then μ(B(t)) is continuous on J , and

μ

({∫

J
u(t) dt

∣
∣
∣ u ∈ B

})

≤
∫

J
μ

(
B(t)

)
dt. (6)
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Lemma 2.20 ([49]) Let E be a Banach space, and let B = {un}∞n=1 ⊂ C(J , E) be a bounded
and countable set. Then μ(B(t)) is Lebesgue integrable on J , and

μ

({∫

J
un(t) dt

}∞

n=1

)

≤ 2
∫

J
μ

(
B(t)

)
dt. (7)

Lemma 2.21 ([50]) If B ⊂ C(J , E) is bounded and equicontinuous, then Co B ⊂ C(J , E) is
also bounded and equicontinuous.

Lemma 2.22 ([45]) Let E be a Banach space. Assume that D ⊂ E is a bounded closed and
convex set on E, Q : D → D is condensing. Then Q has at least one fixed point in D.

Lemma 2.23 (Schauder’s fixed point theorem) Let E be a Banach space and D ⊂ E, a
convex, closed and bounded set. If T : D → D is a continuous operator such that T(D) ⊂ E,
T(D) is relatively compact, then T has at least one fixed point in D.

Next, we give some facts about the semigroups of linear operators. These results can be
found in [51, 52].

For a strongly continuous semigroup (i.e., C0-semigroup) {T(t)}t≥0, the infinitesimal
generator of {T(t)}t≥0 is defined by

Ax = lim
t→0+

T(t)x – x
x

, x ∈ E.

We denote by D(A) the domain of A, that is,

D(A) =
{

x ∈ E : lim
t→0+

T(t)x – x
x

exists
}

.

Lemma 2.24 ([51, 52]) Let {T(t)}t≥0 be a C0-semigroup, then there exist constants C ≥ 1
and a ≥ 0 such that ‖T(t)‖ ≤ Ceat for all t ≥ 0.

Lemma 2.25 ([51, 52]) A linear operatorA is the infinitesimal generator of a C0-semigroup
if and only if

(i) A is closed and D(A) = E.
(ii) The resolvent set ρ(A) of A contains R+ and, for every λ > 0, we have

∥
∥R(λ,A)

∥
∥ ≤ 1

λ
,

where R(λ,A) := (λαI – A)–1x =
∫ ∞

0 e–λα tT(t)x dt.

Throughout this paper, let A be the infinitesimal generator of a C0-semigroup of uni-
formly bounded linear operators {T(t)}t≥0 on E. Then there exists M ≥ 1 such that
M = supt∈[0,∞) ‖T(t)‖.
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3 Representation of mild solution using semigroup
According to Definition 2.5 and Theorem 2.7, it is suitable to rewrite the Cauchy problem
in the equivalent integral equation

u(t) = u0 +
1

Γ (α)

∫ t

0

(
ψ(t) – ψ(τ )

)α–1(Au(τ ) + f
(
τ , u(τ )

))
ψ ′(τ ) dτ . (8)

Lemma 3.1 If (8) holds, then we have

u(t) =
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ

+ α

∫ t

0

∫ ∞

0
φα(θ )

(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds. (9)

Proof Let λ > 0. Applying the generalized Laplace transforms to (8), we have

U(λ) =
u0

λ
+

1
λα

(
AU(λ) + F(λ)

)
,

where

U(λ) =
∫ ∞

0
e–λ(ψ(τ )–ψ(0))u(τ )ψ ′(τ ) dτ

and

F(λ) =
∫ ∞

0
e–λ(ψ(τ )–ψ(0))f

(
τ , u(τ )

)
ψ ′(τ ) dτ .

It follows that

U(λ) = λα–1(λαI – A
)–1u0 +

(
λαI – A

)–1F(λ)

= λα–1
∫ ∞

0
e–λαsT(s)u0 ds +

∫ ∞

0
e–λα sT(s)F(λ) ds

= α

∫ ∞

0
(λt̂)α–1e–(λt̂)α T

(
t̂α

)
u0 dt + α

∫ ∞

0
t̂α–1e–(λt)α T

(
t̂α

)
F(λ) dt

=: I1 + I2.

Taking t̂ = ψ(t) – ψ(0), we obtain

I1 = α

∫ ∞

0
λα–1(ψ(t) – ψ(0)

)α–1e–(λ(ψ(t)–ψ(0)))α T
((

ψ(t) – ψ(0)
)α)

u0ψ
′(t) dt

=
∫ ∞

0
–

1
λ

d
dt

(
e–(λ(ψ(t)–ψ(0)))α )T

((
ψ(t) – ψ(0)

)α)
u0 dt

and

I2 =
∫ ∞

0
α
(
ψ(t) – ψ(0)

)α–1e–(λ(ψ(t)–ψ(0)))α T
((

ψ(t) – ψ(0)
)α)

F(λ)ψ ′(t) dt

=
∫ ∞

0

∫ ∞

0
α
(
ψ(t) – ψ(0)

)α–1e–(λ(ψ(t)–ψ(0)))α T
((

ψ(t) – ψ(0)
)α)

e–(λ(ψ(s)–ψ(0)))f
(
s, u(s)

)
ψ ′(s)ψ ′(t) ds dt.
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We consider the following one-sided stable probability density in [53]:

ρα(θ ) =
1
π

∞∑

k=1

(–1)k–1θ–αk–1 Γ (αk + 1)
k!

sin(kπα), θ ∈ (0,∞)

whose integration is given by

∫ ∞

0
e–λθρα(θ ) dθ = e–λα

, where α ∈ (0, 1). (10)

Using (10), we get

∫ ∞

0
–

1
λ

d
dt

(
e–(λ(ψ(t)–ψ(0)))α )T

((
ψ(t) – ψ(0)

)α)
u0 dt

=
∫ ∞

0

∫ ∞

0
θρα(θ )e–λ(ψ(t)–ψ(0))θ T

((
ψ(t) – ψ(0)

)α)
u0ψ

′(t) dθ dt

=
∫ ∞

0
e–λ(ψ(t)–ψ(0))

(∫ ∞

0
ρα(θ )T

(
(ψ(t) – ψ(0))α

θα

)

u0 dθ

)

ψ ′(t) dt

and
∫ ∞

0

∫ ∞

0
α
(
ψ(t) – ψ(0)

)α–1e–(λ(ψ(t)–ψ(0)))α T
((

ψ(t) – ψ(0)
)α)

e–(λ(ψ(s)–ψ(0)))

f
(
s, u(s)

)
ψ ′(s)ψ ′(t) ds dt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
α
(
ψ(t) – ψ(0)

)α–1
ρα(θ )e–λ(ψ(t)–ψ(0))θT

((
ψ(t) – ψ(0)

)α)

e–λ(ψ(s)–ψ(0))f
(
s, u(s)

)
ψ ′(s)ψ ′(t) dθ ds dt

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
αe–λ(ψ(t)+ψ(s)–2ψ(0)) (ψ(t) – ψ(0))α–1

θα
ρα(θ )T

(
(ψ(t) – ψ(0))α

θα

)

f
(
s, u(s)

)
ψ ′(s)ψ ′(t) dθ ds dt

=
∫ ∞

0

∫ ∞

t

∫ ∞

0
αe–λ(ψ(τ )–ψ(0))ρα(θ )

(ψ(t) – ψ(0))α–1

θα
T

(
(ψ(t) – ψ(0))α

θα

)

f
(
ψ–1(ψ(τ ) – ψ(t) + ψ(0)

)
, u

(
ψ–1(ψ(τ ) – ψ(t) + ψ(0)

)))

× ψ ′(τ )ψ ′(t) dθ dτ dt

=
∫ ∞

0

∫ τ

0

∫ ∞

0
αe–λ(ψ(τ )–ψ(0))ρα(θ )

(ψ(t) – ψ(0))α–1

θα
T

(
(ψ(t) – ψ(0))α

θα

)

f
(
ψ–1(ψ(τ ) – ψ(t) + ψ(0)

)
, u

(
ψ–1(ψ(τ ) – ψ(t) + ψ(0)

)))

× ψ ′(τ )ψ ′(t) dθ dt dτ

=
∫ ∞

0
e–λ(ψ(τ )–ψ(0))

×
(∫ τ

0

∫ ∞

0
αρα(θ )

(ψ(τ ) – ψ(s))α–1

θα
T

(
(ψ(τ ) – ψ(s))α

θα

)

f
(
s, u(s)

)
ψ ′(s) dθ ds

)

× ψ ′(τ ) dτ .
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Then we get

U(λ)

=
∫ ∞

0
e–λ(ψ(t)–ψ(0))

(∫ ∞

0
ρα(θ )T

(
(ψ(t) – ψ(0))α

θα

)

u0 dθ

)

ψ ′(t) dt

+
∫ ∞

0
e–λ(ψ(τ )–ψ(0))

×
(∫ τ

0

∫ ∞

0
αρα(θ )

(ψ(τ ) – ψ(s))α–1

θα
T

(
(ψ(τ ) – ψ(s))α

θα

)

f
(
s, u(s)

)
ψ ′(s) dθ ds

)

× ψ ′(τ ) dτ .

Now, we can invert the Laplace transform to get

u(t) =
∫ ∞

0
ρα(θ )T

(
(ψ(t) – ψ(0))α

θα

)

u0 dθ

+ α

∫ t

0

∫ ∞

0
ρα(θ )

(ψ(t) – ψ(s))α–1

θα
T

(
(ψ(t) – ψ(s))α

θα

)

f
(
s, u(s)

)
ψ ′(s) dθ ds

=
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ

+ α

∫ t

0

∫ ∞

0
θφα(θ )

(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds,

where φα(θ ) = 1
α
θ–1– 1

α ρα(θ– 1
α ) is the probability density function defined on (0,∞). �

For any u ∈ E, define operators Sα
ψ (t, s) and Tα

ψ (t, s) by

Sα
ψ (t, s)u =

∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(s)

)α
θ
)
u dθ

and

Tα
ψ (t, s)u = α

∫ ∞

0
θφα(θ )T

((
ψ(t) – ψ(s)

)α
θ
)
u dθ

for 0 ≤ s ≤ t ≤ T .

Lemma 3.2 The operators Sα
ψ and Tα

ψ have the following properties:
(i) For any fixed t ≥ s ≥ 0, Sα

ψ (t, s) and Tα
ψ (t, s) are bounded linear operators with

∥
∥Sα

ψ (t, s)(u)
∥
∥ ≤ M‖u‖ and

∥
∥Tα

ψ (t, s)(u)
∥
∥ ≤ αM

Γ (1 + α)
‖u‖ =

M
Γ (α)

‖u‖

for all u ∈ E.
(ii) The operators Sα

ψ (t, s) and Tα
ψ (t, s) are strongly continuous for all t ≥ s ≥ 0, that is,

for every u ∈ E and 0 ≤ s ≤ t1 < t2 ≤ T we have

∥
∥Sα

ψ (t2, s)u – Sα
ψ (t1, s)u

∥
∥ → 0 and

∥
∥Tα

ψ (t2, s)u – Tα
ψ (t1, s)u

∥
∥ → 0

as t1 → t2.
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(iii) If T(t) is compact operator for every t > 0, then Sα
ψ (t, s) and Tα

ψ (t, s) are compact for
all t, s > 0.

(iv) If Sα
ψ (t, s) and Tα

ψ (t, s) are compact strongly continuous semigroup of bounded linear
operators for t, s > 0, then Sα

ψ (t, s) and Tα
ψ (t, s) are continuous in the uniform

operator topology.

Proof The proof follows the argument of [26]. �

Definition 3.3 A function u ∈ C([0, T], E) is called a mild solution of (1) if it satisfies

u(t) = Sα
ψ (t, 0)u0 +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds, t ∈ [0, T].

Before starting and proving the main results, we introduce the following hypotheses.
(H1) T(t) is compact operator for every t > 0.
(H2) The function f : [0, T] × E → E is Carathéodory function, that is:

(C1) For each t ∈ [0, T] the function f (t, ·) : E → E is continuous.
(C2) For each u ∈ E the function f (·, u) : [0, T] → E is measurable.

(H3) For any r > 0, there exists a function hr ∈ L∞([0, T], E) such that

sup
‖u‖≤r

∥
∥f (t, u)

∥
∥ ≤ hr(t), a.e. t ∈ [0, T],

and there is a constant L > 0 such that

lim sup
r→∞

‖hr(t)‖L∞

r
= L.

(H4) For any r > 0, there exists k(t) ∈ L∞([0, T], E) such that

∥
∥f

(
t, u1(t)

)
– f

(
t, u2(t)

)∥
∥ ≤ k(t)‖u1 – u2‖

for all u1, u2 ∈ Ωr .
(H5) There exist continuous functions g1, g2 on [0,∞) such that

∥
∥f (t, u)

∥
∥ ≤ g1(t) + g2(t)‖u‖

for t ≥ 0 and u ∈ E.
(H6) For any r > 0 and T > 0, there exists a positive constant K such that, for any equicon-

tinuous and countable set D ⊂ Ωr = {u ∈ E | ‖u‖ ≤ r},

μ
(
f (t, D)

) ≤ Kμ(D), t ∈ [0, T].

4 Existence and uniqueness of mild solution under compact analytic
semigroup

In this section, we begin by proving a theorem concerning the existence and uniqueness
of mild solution for the problem (1) under the condition of compact analytic semigroup.
The discussions are based on fractional calculus and Schauder fixed point theorem. Our
main results are as follows.
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Theorem 4.1 Assume that conditions (H1)–(H3) hold. Then the problem (1) has at least
mild solution provided that

ML
Γ (1 + α)

(
ψ(T) – ψ(0)

)α < 1. (11)

Proof For any r > 0, let Ωr = {u ∈ C([0, T], E) : ‖u‖ ≤ r}. Then Ωr is bounded closed convex
subset of C([0, T], E). Define an operator K : Ωr → C([0, T], E) by

(Ku)(t) := Sα
ψ (t, 0)u0 +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds,

for t ∈ [0, T].
Step 1: We will prove that K : Ωr → Ωr , that is, there exists r > 0 such that K(Ωr) ⊂ Ωr ,

We assume that for each r > 0, there exists ur ∈ Ωr and t ∈ [0, T], such that ‖(Ku)(t)‖ > r.
According to Lemma 3.2(i) and (H3), we have

r <
∥
∥(Kur)(t)

∥
∥ ≤ ∥

∥Sα
ψ (t, 0)u0

∥
∥ +

∫ t

0

∥
∥
(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, ur(s)

)
ψ ′(s)

∥
∥ds

≤ M‖u0‖ +
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)f

(
s, ur(s)

)∥
∥ψ ′(s) ds

≤ M‖u0‖ +
M

Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥f
(
s, ur(s)

)∥
∥ψ ′(s) ds

≤ M‖u0‖ +
M

Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1hr(s)ψ ′(s) ds

≤ M‖u0‖ +
M‖hr(t)‖L∞

Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s) ds

= M‖u0‖ +
M‖hr(t)‖L∞

Γ (1 + α)
(
ψ(t) – ψ(s)

)α

≤ M‖u0‖ +
M‖hr(t)‖L∞

Γ (1 + α)
(
ψ(T) – ψ(0)

)α .

Dividing to both side by r and taking the limit supremum as r → ∞, we obtain

1 ≤ lim sup
r→∞

M
r

‖u0‖ + lim sup
r→∞

M‖hr(t)‖L∞

rΓ (1 + α)
(
ψ(T) – ψ(0)

)α

=
ML

Γ (1 + α)
(
ψ(T) – ψ(0)

)α < 1,

which is contradiction. Therefore K : Ωr → Ωr .
Step 2: We will prove that K : Ωr → Ωr is continuous. Let {un} ⊂ Ωr with un → u ∈ Ωr

as n → ∞.
From the assumptions (H2) and (H3), we have, for each t ∈ [0, T],

f
(
t, un(t)

) → f
(
t, u(t)

)
as n → ∞

and

∥
∥f

(
t, un(t)

)
– f

(
t, u(t)

)∥
∥ ≤ 2hr(t) for all n ∈N.
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By the Lebesgue dominated convergence theorem, for any t ∈ [0, T] we have

∥
∥(Kun)(t) – (Ku)(t)

∥
∥

≤
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

[
f
(
s, un(s)

)
– f

(
s, u(s)

)]∥
∥ψ ′(s) ds

≤ M
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥f
(
s, un(s)

)
– f

(
s, u(s)

)∥
∥ψ ′(s) ds → 0

as n → ∞. Therefore, ‖(Kun)(t) – (Ku)(t)‖C → 0 as n → ∞. Hence K : Ωr → Ωr is con-
tinuous.

Step 3: We will prove that K(Ωr) is equicontinuous. For any u ∈ Ωr and 0 ≤ t1 < t2 ≤ T ,
we have

∥
∥(Ku)(t2) – (Ku)(t1)

∥
∥

≤ ∥
∥Sα

ψ (t2, 0)u0 – Sα
ψ (t1, 0)u0

∥
∥

+
∥
∥
∥
∥

∫ t2

0

(
ψ(t2) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

–
∫ t1

0

(
ψ(t1) – ψ(s)

)α–1Tα
ψ (t1, s)f

(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

=
∥
∥Sα

ψ (t2, 0)u0 – Sα
ψ (t1, 0)u0

∥
∥

+
∥
∥
∥
∥

∫ t1

0

(
ψ(t2) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

+
∫ t2

t1

(
ψ(t2) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

+
∫ t1

0

(
ψ(t1) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

–
∫ t1

0

(
ψ(t1) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

–
∫ t1

0

(
ψ(t1) – ψ(s)

)α–1Tα
ψ (t1, s)f

(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

≤ ∥
∥Sα

ψ (t2, 0)u0 – Sα
ψ (t1, 0)u0

∥
∥

+
∥
∥
∥
∥

∫ t2

t1

(
ψ(t2) – ψ(s)

)α–1Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0

[(
ψ(t2) – ψ(s)

)α–1 –
(
ψ(t1) – ψ(s)

)α–1]Tα
ψ (t2, s)f

(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

0

(
ψ(t1) – ψ(s)

)α–1[Tα
ψ (t2, s) – Tα

ψ (t1, s)
]
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

=: I1 + I2 + I3 + I4.

By Lemma 3.2, it is clear that I1 → 0 as t1 → t2 and we obtain

I2 ≤ M‖hr‖L∞

Γ (α + 1)
(
ψ(t2) – ψ(t1)

)α
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and

I3 ≤ M‖hr‖L∞

Γ (α + 1)
[(

ψ(t2)
)α –

(
ψ(t1)

)α –
(
ψ(t2) – ψ(t1)

)α]

and hence I2 → 0 and I3 → 0 as t2 → t1. For t1 = 0 and 0 < t2 ≤ T , it easy to see that I4 = 0.
Then, for any ε ∈ (0, t1), we have

I4 ≤
∥
∥
∥
∥

∫ t1–ε

0

(
ψ(t1) – ψ(s)

)α–1[Tα
ψ (t2, s) – Tα

ψ (t1, s)
]
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1

t1–ε

(
ψ(t1) – ψ(s)

)α–1[Tα
ψ (t2, s) – Tα

ψ (t1, s)
]
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

≤ ‖hr‖L∞

α

[(
ψ(t1) – ψ(0)

)α –
(
ψ(t1) – ψ(t1 – ε)

)α]
sup

0≤s<t1–ε

∥
∥Tα

ψ (t2, s) – Tα
ψ (t1, s)

∥
∥

+
2M‖hr‖L∞

Γ (α + 1)
[(

ψ(t1) – ψ(t1 – ε)
)α]

.

It follows that I4 → 0 as t2 → t1 and ε → 0 by Lemma 3.2(iv) and (iii). Therefore,

∥
∥(Ku)(t2) – (Ku)(t1)

∥
∥ → 0 independently of u ∈ Ωr as t2 → t1.

which means that K(Ωr) is equicontinuous.
Step 4: We will prove that, for any t ∈ [0, T], K(t) = {(Ku)(t) : u ∈ Ωr} is relatively com-

pact in E.
Obviously, K(0) is relatively compact in E. Let 0 ≤ t ≤ T be fixed. Then, for every ε > 0

and δ > 0, let u ∈ Ωr and define an operator Kε,δ on Ωr by

(Kε,δu)(t)

=
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ

+ α

∫ t–ε

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds

=
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ

+ α

∫ t–ε

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ + εαδ – εαδ
)

f
(
s, u(s)

)
ψ ′(s) dθ ds

=
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ

+ α

∫ t–ε

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1[T
(
εαδ

)
T

((
ψ(t) – ψ(0)

)α
θ – εαδ

)]

f
(
s, u(s)

)
ψ ′(s) dθ ds

=
∫ ∞

0
φα(θ )T

((
ψ(t) – ψ(0)

)α
θ
)
u0 dθ
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+ αT
(
εαδ

)
∫ t–ε

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ – εαδ
)

f
(
s, u(s)

)
ψ ′(s) dθ ds.

Then, by the compactness of T(εαδ) for εαδ > 0, we see that the set Kε,δ(t) = {(Kε,δu)(t) :
u ∈ Ωr} is relatively compact in E for all ε > 0 and δ > 0. Furthermore, for any u ∈ Ωr , we
have

∥
∥(Ku)(t) – (Kε,δu)(t)

∥
∥

= α

∥
∥
∥
∥

∫ t

0

∫ δ

0
θφα(θ )

(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds

+
∫ t

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds

+
∫ t–ε

0

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds

∥
∥
∥
∥

≤ α

∥
∥
∥
∥

∫ t

0

∫ δ

0
θφα(θ )

(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)
f
(
s, u(s)

)
ψ ′(s) dθ ds

∥
∥
∥
∥

+ α

∥
∥
∥
∥

∫ t

t–ε

∫ ∞

δ

θφα(θ )
(
ψ(t) – ψ(s)

)α–1T
((

ψ(t) – ψ(0)
)α

θ
)

f
(
s, u(s)

)
ψ ′(s) dθ ds

∥
∥
∥
∥θ ds

≤ αM‖hr‖L∞
(∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s) ds

)(∫ δ

0
θφα(θ ) dθ

)

+ αM‖hr‖L∞
(∫ t

t–ε

(
ψ(t) – ψ(s)

)α–1
ψ ′(s) ds

)(∫ ∞

δ

θφα(θ ) dθ

)

= M‖hr‖L∞
(
ψ(t) – ψ(0)

)α

(∫ δ

0
θφα(θ ) dθ

)

+ M‖hr‖L∞
(
ψ(t) – ψ(t – ε)

)α

(∫ ∞

δ

θφα(θ ) dθ

)

≤ M‖hr‖L∞
(
ψ(t) – ψ(0)

)α

(∫ δ

0
θφα(θ ) dθ

)

+ M‖hr‖L∞
(
ψ(t) – ψ(t – ε)

)α

(∫ ∞

0
θφα(θ ) dθ

)

= M‖hr‖L∞
(
ψ(t) – ψ(0)

)α

(∫ δ

0
θφα(θ ) dθ

)

+
M‖hr‖L∞

Γ (α + 1)
(
ψ(t) – ψ(t – ε)

)α

≤ M‖hr‖L∞
(
ψ(T) – ψ(0)

)α

(∫ δ

0
θφα(θ ) dθ

)

+
M‖hr‖L∞

Γ (α + 1)
(
ψ(t) – ψ(t – ε)

)α

→ 0 as ε, δ → 0+.

Therefore, there are relatively compact sets arbitrarily close to the set K(t) for t > 0. Hence,
K(t) is relatively compact in E.
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Therefore, by the Arzelá–Ascoli theorem K(Ωr) is relatively compact in C([0, T], E).
Thus, the continuity of K and relatively compact of K(Ωr) imply that K is a completely
continuous. By the Schauder fixed point theorem, we see that K has a fixed point u∗ in
Ωr , which is a mild solution of (1). The proof is complete. �

Remark 4.2 From Theorem 4.1, we notice that if ψ is bijection function then the problem
(1) has at least mild solution provided that

T < ψ–1
[(

Γ (1 + α)
ML

) 1
α

+ ψ(0)
]

.

Theorem 4.3 Assume (H4) holds. Then the problem (1) has a unique mild solution.

Proof Let u1 and u2 be the solutions of the problem (1) in Ωr . Then, for each i ∈ {1, 2}, the
solution ui satisfies

(Kui)(t) := Sα
ψ (t, 0)u0 +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, ui(s)

)
ψ ′(s) ds.

Then, for any t ∈ [0, T], we have

∥
∥u1(t) – u2(t)

∥
∥ =

∥
∥(Ku1)(t) – (Ku2)(t)

∥
∥

≤
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)f

(
s, u1(s)

)
– f

(
s, u2(s)

)∥
∥ψ ′(s) ds

≤ M
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥
[
f
(
s, u1(s)

)
– f

(
s, u2(s)

)]∥
∥ψ ′(s) ds

≤ M
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1k(s)
∥
∥u1(s) – u2(s)

∥
∥ψ ′(s) ds

≤ Mk∗

Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥u1(s) – u2(s)
∥
∥ψ ′(s) ds,

where k∗ = sup0≤t≤T |k(t)|. By using the Gronwall inequality (Lemma 2.11), we obtain

∥
∥u1(t) – u2(t)

∥
∥ = 0 for all t ∈ [0, T]

which implies that u1 ≡ u2. Therefore, the problem (1) has a unique mild solution u∗ ∈
Ωr . �

Theorem 4.4 Suppose that conditions (H1)–(H3) hold. Then, for any u0 ∈ E, the problem
(1) has a mild solution u on a maximal interval of existence [0, Tmax). If Tmax < ∞, then
limt→T–

max ‖u(t)‖ = ∞.

Proof We notice that a mild solution u of the problem (1) defined on [0, T] can be extended
to a larger interval [0, T + δ] with δ > 0, by defining v(t) = u(t + T), where v(t) is a mild
solution of

⎧
⎨

⎩

C
0 Dα

ψv(t) = Av(t) + f (t, v(t)), t ∈ (T , T + δ],

v(0) = u(T).
(12)
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Therefore, repeating the procedure and using the methods of steps in Theorem 4.1, we
can prove that there exists a maximal interval [0, Tmax) such that the mild solution u of
the problem (1). We want to prove that if Tmax < ∞ then limt→T–

max ‖u(t)‖ = ∞.
First, we will prove that lim supt→T–

max ‖u(t)‖ = ∞. Assume by contradiction that
lim supt→T–

max ‖u(t)‖ < ∞. Then there exists K > 0 such that ‖u(t)‖ ≤ K for 0 ≤ t < Tmax.
For 0 < t < t′ < Tmax, we have

∥
∥u

(
t′) – u(t)

∥
∥

≤ ∥
∥Sα

ψ

(
t′, 0

)
u0 – Sα

ψ (t, 0)u0
∥
∥

+
∥
∥
∥
∥

∫ t′

t

(
ψ

(
t′) – ψ(s)

)α–1Tα
ψ

(
t′, s

)
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0

[(
ψ

(
t′) – ψ(s)

)α–1 –
(
ψ(t) – ψ(s)

)α–1]Tα
ψ

(
t′, s

)
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0

(
ψ(t) – ψ(s)

)α–1[Tα
ψ

(
t′, s

)
– Tα

ψ (t, s)
]
f
(
s, u(s)

)
ψ ′(s) ds

∥
∥
∥
∥

=: I1 + I2 + I3 + I4.

Similar to Step 3 of Theorem 4.1, we can prove that ‖u(t′) – u(t)‖ → 0 as t′, t → Tmax

Therefore, by the Cauchy criteria we see that limt→T–
max u(t) = u1 exists. By the first part of

the proof, there exists a δ > 0 such that the solution can be extended to [0, Tmax + δ) and
we know that to the fractional evolution equation

⎧
⎨

⎩

C
0 Dα

ψu(t) = Au(t) + f (t, u(t)), 0 ≤ t < δ,

u(Tmax) = u1,
(13)

there exists a mild solution on [Tmax, Tmax + δ). This means that the mild solution of the
problem (1) can be extended to [0, Tmax + δ), which contradicts with the maximal interval
[0, Tmax). Hence, lim supt→T–

max ‖u(t)‖ = ∞.
Now, we will prove that if Tmax < ∞, then limt→T–

max ‖u(t)‖ = ∞. If this is not true, then
there exist a constant K > 0 and a sequence tn → Tmax such that ‖u(tn)‖ ≤ K for all n. Since
t → ‖u(t)‖ is continuous and lim supt→T–

max ‖u(t)‖ = ∞, we can find a sequence an such
that an → 0 as n → ∞, ‖u(t)‖ ≤ M(K + 1) for tn ≤ t ≤ tn + an and ‖u(tn + an)‖ = M(K + 1)
for all n sufficiently large. But we have

M(K + 1) =
∥
∥u(tn + an)

∥
∥

≤ ∥
∥Sα

ψ (an, 0)u(tn)
∥
∥

+
∫ tn+an

tn

∥
∥
(
ψ(tn + an) – ψ(s)

)α–1Tα
ψ (tn + an, s)f

(
s, u(s)

)
ψ ′(s)

∥
∥ds

≤ MK +
M

Γ (α)
∥
∥hr(t)

∥
∥

L∞

∫ tn+an

tn

(
ψ(tn + an) – ψ(s)

)α–1
ψ ′(s) ds

≤ MK +
M

Γ (α + 1)
∥
∥hr(t)

∥
∥

L∞
(
ψ(tn + an) – ψ(tn)

)α ,
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which implies that M(K + 1) ≤ MK as an → 0, a contradiction. Therefore, we find that if
Tmax < ∞, then limt→T–

max ‖u(t)‖ = ∞. �

Next, we discuss the existence of a global mild solution for the problem (1). To this end,
we need replace the assumption (H3) by (H5).

Theorem 4.5 Assume that conditions (H1)–(H2) and (H5) hold, then for every u0 ∈ E the
problem (1) has a global mild solution u ∈ C([0,∞), E).

Proof It is clearly that (H5) implies (H3). Therefore, by Theorem 4.4 we know that the
problem (1) has a mild solution u on a maximal interval of existence [0, Tmax). By the
proof process of Theorem 4.4, we can see that the problem (1) has a global mild solution
if u(t) is bounded for every t in the interval of existence of u. If suffices to show that u(t)
is bounded for every t ∈ [0, Tmax) with Tmax < ∞.

Then for any 0 ≤ t ≤ Tmax we have

∥
∥u(t)

∥
∥ ≤ ∥

∥Sα
ψ (t, 0)u0

∥
∥ +

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)f

(
s, u(s)

)∥
∥ψ ′(s) ds

≤ M‖u0‖ +
αM

Γ (α + 1)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥f
(
s, u(s)

)∥
∥ψ ′(s) ds

≤ M‖u0‖ +
αM

Γ (α + 1)

∫ t

0

(
ψ(t) – ψ(s)

)α–1(g1(t) + g2(t)‖u‖)ψ ′(s) ds

≤ M‖u0‖ +
M

Γ (α + 1)
C1

(
ψ(t) – ψ(0)

)α

+
M

Γ (α)
C2

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥u(s)
∥
∥ψ ′(s) ds

≤ M‖u0‖ +
M

Γ (α + 1)
C1

(
ψ(Tmax) – ψ(0)

)α

+
M

Γ (α)
C2

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥u(s)
∥
∥ψ ′(s) ds

:= K1 + K2

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥u(s)
∥
∥ψ ′(s) ds,

where

C1 = sup
0≤t≤Tmax

g1(t), C2 = sup
0≤t≤Tmax

g2(t),

and

K1 = M‖u0‖ +
M

Γ (α + 1)
C1

(
ψ(Tmax) – ψ(0)

)α , K2 =
M

Γ (α)
C2.

By Corollary 2.12, we obtain

∥
∥u(t)

∥
∥ ≤ K1Eα

(
K2Γ (α)

[
ψ(t) – ψ(0)

]α)

≤ K1Eα

(
K2Γ (α)

[
ψ(Tmax) – ψ(0)

]α)
,

which means that u(t) is bounded for every t ∈ [0, Tmax). �
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5 Existence and uniqueness of mild solution under noncompact analytic
semigroup

In this section, we will prove the existence of mild solution for the problem (1) under the
condition of a noncompact analytic semigroup.

Theorem 5.1 Assume that conditions (H2)–(H3) and (H6) hold. Then the problem (1) has
at least one mild solution provided that

ML
Γ (1 + α)

(
ψ(T) – ψ(0)

)α < 1 and
4MK

Γ (1 + α)
(
ψ(T) – ψ(0)

)α < 1.

Proof For any r > 0, let Ωr = {u ∈ C([0, T], E) : ‖u‖ ≤ r}.
Then, Ωr is bounded closed convex subset of C([0, T], E). Define an operator K : Ωr →

C([0, T], E) by

(Ku)(t) := Sα
ψ (t, 0)u0 +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds, t ∈ [0, T].

Using the same argument in Theorem 4.1, we obtainK : Ωr → Ωr is continuous andK(Ωr)
is equicontinuous. Then it is sufficient to prove that K : Ωr → Ωr is condensing.

Let D = CoK(Ωr), where Co is the closure of convex hull. Then, by Lemma 2.21 we
obtain CoK(Ωr) ⊂ Ωr is bounded and equicontinuous. Now, we will prove thatK : D → D
is a condensing operator. For any D ⊂ CoK(Ωr), by Lemma 2.17, we see that there exists
a countable set D0 = {un} ⊂ D such that

μ
(
K(D)

) ≤ 2μ
(
K(D0)

)
.

By the equicontinuity of D, we know that D0 ⊂ D is also equicontinuous. Therefore, by
Lemma 2.20, we have

μ
(
K(D0)(t)

)
= μ

({

Sα
ψ (t, 0)u0 +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, un(s)

)
ψ ′(s) ds

})

≤ μ
({

Sα
ψ (t, 0)u0

})

+ μ

({∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, un(s)

)
ψ ′(s) ds

})

≤ 2
∫ t

0
μ

({(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, un(s)

)
ψ ′(s)

})
ds

≤ 2M
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
μ

({
f
(
s, un(s)

)})
ψ ′(s) ds

≤ 2M
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1Kμ
(
D0(s)

)
ψ ′(s) ds

=
2MK
Γ (α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s) ds · μ(D)

=
2MK

Γ (α + 1)
(
ψ(t) – ψ(0)

)α
μ(D)

≤ 2MK
Γ (α + 1)

(
ψ(T) – ψ(0)

)α
μ(D).
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Since K(D0) ⊂ D is bounded and equicontinuous, we obtain

μ
(
K(D0)

)
= max

t∈J
μ

(
D0(t)

)

by Lemma (2.18). It follows that

μ
(
K(D)

) ≤ 2μ
(
K(D0)

)

≤ 4MK
Γ (α + 1)

(
ψ(T) – ψ(0)

)α · μ(D)

< μ(D).

Thus, K : D → D is a condensing operator. Therefore, by Lemma 2.22, K has at least one
fixed point u∗ in Ωr , which is a mild solution of (1). The proof is complete. �

Remark 5.2 From Theorem 5.1, we notice that if ψ is bijection function then the problem
(1) has at least one mild solution provided that

T < min

{

ψ–1
[(

Γ (1 + α)
ML

) 1
α

+ ψ(0)
]

,ψ–1
[(

Γ (1 + α)
4MK

) 1
α

+ ψ(0)
]}

.

Theorem 5.3 Assume that conditions (H2)–(H3) and (H6) hold. Then, for any u0 ∈ E, the
problem (1) has a mild solution u on a maximal interval of existence [0, Tmax). If Tmax < ∞,
then limt→T–

max ‖u(t)‖ = ∞.

Proof The proof uses the same argument as in Theorem 4.4. �

Theorem 5.4 Assume that conditions (H2) and (H5) hold, then for every u0 ∈ E the prob-
lem (1) has a global mild solution u ∈ C([0,∞), E).

Proof The proof uses the same argument as in Theorem 4.5. �

6 Mittag-Leffler–Ulam–Hyers stability
For f ∈ ([0, T] × E, E), ϕ ∈ C([0, T],R+) and ε > 0 we consider the equation

C
0 Dα

ψu(t) = Au(t) + f
(
t, u(t)

)
, t ∈ [0, T], (14)

and the inequalities

∣
∣C
0 Dα

ψu(t) – Au(t) – f
(
t, u(t)

)∣
∣ ≤ ε, t ∈ [0, T], (15)

∣
∣C
0 Dα

ψu(t) – Au(t) – f
(
t, u(t)

)∣
∣ ≤ ϕ(t), t ∈ [0, T], (16)

∣
∣C
0 Dα

ψu(t) – Au(t) – f
(
t, u(t)

)∣
∣ ≤ εϕ(t), t ∈ [0, T]. (17)

Definition 6.1 Equation (14) is Mittag-Leffler–Ulam–Hyers stable, with respect to Eα ,
if there exists a real number C > 0 such that for each ε > 0 and for each solution v ∈
C1([0, T], E) of inequality (15) there exists a mild solution u ∈ C([0, T], E) of Eq. (14) with

∣
∣v(t) – u(t)

∣
∣ ≤ CεEα(t), t ∈ [0, T].
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Definition 6.2 Equation (14) is generalized Mittag-Leffler–Ulam–Hyers stable, with re-
spect to Eα , if there exists a function θ ∈ C(R+,R+), θ (0) = 0, such that for each ε > 0 and for
each solution v ∈ C1([0, T], E) of inequality (15) there exists a mild solution u ∈ C([0, T], E)
of Eq. (14) with

∣
∣v(t) – u(t)

∣
∣ ≤ Cθ (ε)Eα(t), t ∈ [0, T].

Definition 6.3 Equation (14) is Mittag-Leffler–Ulam–Hyers–Rassias stable, with respect
to ϕEα , if there exists a real number Cϕ > 0 such that for each ε > 0 and for each solution
v ∈ C1([0, T], E) of inequality (17) there exists a mild solution u ∈ C([0, T], E) of Eq. (14)
with

∣
∣v(t) – u(t)

∣
∣ ≤ Cϕεϕ(t)Eα(t), t ∈ [0, T].

Definition 6.4 Equation (14) is generalized Mittag-Leffler–Ulam–Hyers–Rassias stable,
with respect to ϕEα , if there exists a real number Cϕ > 0 such that for each solution v ∈
C1([0, T], E) of inequality (16) there exists a mild solution u ∈ C([0, T], E) of Eq. (14) with

∣
∣v(t) – u(t)

∣
∣ ≤ Cϕϕ(t)Eα(t), t ∈ [0, T].

Remark 6.5 It is clear that Definition 6.1 implies 6.2 and 6.3 implies 6.4.

Remark 6.6 A function u ∈ C1([0, T], E) is a solution of the inequality (15) if and only if
there exists a function g ∈ C1([0, T], E) (which depend on u) such that

(i) |g(t)| ≤ ε for t ∈ [0, T],
(ii) C

0 Dα
ψu(t) = Au(t) + f (t, u(t)) + g(t), t ∈ [0, T].

Remark 6.7 If v ∈ C1([0, T], E) is a solution of inequality (15), v is a solution of the follow-
ing integral inequality:

∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤ ε

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

∥
∥ψ ′(s) ds.

Theorem 6.8 Assume that f ∈ C([0, T] × E, E) and there exists Lf > 0 such that

∣
∣f (t, u1) – f (t, u2)

∣
∣ ≤ Lf |u1 – u2|

for all t ∈ [0, T] and u1, u2 ∈ E. Then, Eq. (14) is Mittag-Leffler–Ulam–Hyers stable.

Proof Let v ∈ C1([0, T], E) be a solution of inequality (15). Let us denote by u ∈ C([0, T], E)
the unique mild solution of the Cauchy problem

⎧
⎨

⎩

C
0 Dα

ψu(t) = Au(t) + f (t, u(t)), t ∈ (0, T],

u(0) = v(0).
(18)
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We have

u(t) = Sα
ψ (t, 0)v(0) +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds, t ∈ [0, T].

Then we get

∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤ ε

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

∥
∥ψ ′(s) ds

≤ αMε

Γ (1 + α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1
ψ ′(s) ds

=
M

Γ (1 + α)
(
ψ(t) – ψ(0)

)α
ε

≤ M
Γ (1 + α)

(
ψ(T) – ψ(0)

)α
ε.

It follows that

∣
∣v(t) – u(t)

∣
∣

≤
∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

–
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

+
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

∥
∥
∣
∣f

(
s, v(s)

)
– f

(
s, u(s)

)∣
∣ψ ′(s) ds

≤ M
Γ (1 + α)

(
ψ(T) – ψ(0)

)α
ε

+
αMLf

Γ (1 + α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∣∣v(s) – u(s)
∣
∣ψ ′(s) ds.

By Corollary 2.12, we obtain

∣
∣v(t) – u(t)

∣
∣ ≤ M

Γ (1 + α)
(
ψ(T) – ψ(0)

)αEα

(
MLf

[
ψ(t) – ψ(0)

]α)
ε.

The proof is complete. �

Theorem 6.9 Assume that the following conditions hold:
(i) f ∈ C([0,∞) × E, E).
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(ii) k(t) is a nonnegative, nondecreasing continuous function defined on t ∈ [0,∞) and

∣
∣f (t, u1) – f (t, u2)

∣
∣ ≤ k(t)|u1 – u2|

for all t ∈ [0,∞) and u1, u2 ∈ E.
(iii) The function ϕ ∈ C([0,∞),R+) is increasing and there exists λ > 0 such that

∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
φ (t, s)

∥
∥ϕ(s)ψ ′(s) ds ≤ λϕ(t)

for all t ∈ [0,∞). Then, Eq. (14) is generalized Mittag-Leffler–Ulam–Hyers–Rassias
stable with respect to ϕEα .

Proof Let v ∈ C1([0, T],∞) be a solution of inequality (16). Then we get

∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

∥
∥ϕ(s)ψ ′(s) ds

≤ λϕ(t),

for all t ∈ [0,∞). Let us denote by u ∈ C([0, T],∞) the unique mild solution of the Cauchy
problem

⎧
⎨

⎩

C
0 Dα

ψu(t) = Au(t) + f (t, u(t)), t ∈ (0,∞),

u(0) = v(0).
(19)

We have

u(t) = Sα
ψ (t, 0)v(0) +

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds, t ∈ [0,∞).

It follows that

∣
∣v(t) – u(t)

∣
∣ ≤

∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

–
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, u(s)

)
ψ ′(s) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣v(t) – Sα

ψ (t, 0)v(0) –
∫ t

0

(
ψ(t) – ψ(s)

)α–1Tα
ψ (t, s)f

(
s, v(s)

)
ψ ′(s) ds

∣
∣
∣
∣

+
∫ t

0

(
ψ(t) – ψ(s)

)α–1∥∥Tα
ψ (t, s)

∥
∥
∣
∣f

(
s, v(s)

)
– f

(
s, u(s)

)∣
∣ψ ′(s) ds

≤ λϕ(t) +
αMk(t)
Γ (1 + α)

∫ t

0

(
ψ(t) – ψ(s)

)α–1∣∣v(s) – u(s)
∣
∣ψ ′(s) ds.
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By Corollary 2.12, we obtain

∣
∣v(t) – u(t)

∣
∣ ≤ λϕ(t)Eα

(
Mk(t)

[
ψ(t) – ψ(0)

]α)
.

The proof is complete. �

7 Examples
In this section, we give examples of fractional differential equation of compact and non-
compact semigroup cases. The main results can be applied for a larger class of Caputo
fractional derivative with respect to ψ . In particular, our results can be reduced to the
examples in [25, 32] when ψ(t) = t.

Example 7.1 Let E = L2([0,π ]) equipped with the norm and inner product defined, re-
spectively, for all u, v ∈ L2([0,π ]) by

‖u‖ =
(∫ π

0

∣
∣u(x)

∣
∣2 dx

) 1
2

and 〈u, v〉 =
∫ π

0
u(x)v(x) dx.

Consider the following initial-boundary value problem of time-fractional parabolic partial
differential equation with nonlinear source term:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

ψu(x, t) – ∂2

∂x2 u(x, t) = f (t, u(x, t)), t ∈ (0, 1], x ∈ [0,π ],

u(0, t) = u(π , t) = 0, t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ [0,π ],

(20)

where α = 2
3 , ψ(t) =

√
t + 1 and f (t, u) = 1

3 e–tu(x, t) + t2α sin(u(x, t)). We define an operator
A : D(A) ⊂ E → E by

D(A) :=
{

v ∈ E : v, v′ are absolutely continuous and v′′ ∈ E, v(0) = v(π ) = 0
}

and

Au =
∂2

∂x2 u.

It is well known that A has a discrete spectrum, the eigenvalue are –n2, n ∈ N, with the
corresponding normalized eigenvectors en(z) =

√
2
π

sin(nz). Then

Ax =
∞∑

n=1

–n2〈x, en〉en, x ∈ D(A).

Furthermore, A generates a uniformly bounded analytic semigroup {T(t)}t≥0 in E and
is given by

T(t)x =
∞∑

n=1

e–n2t〈x, en〉en, x ∈ E
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with ‖T(t)‖ ≤ e–t for all t ≥ 0. Hence, we take M = 1 which implies that supt∈[0,∞) ‖T(t)‖ =
1 and (H1) are satisfies.

Then for t ∈ [0, 1] we have

∥
∥f (t, u)

∥
∥ ≤ 1

3
e–t‖u‖ + t2απ ,

sup
‖u‖≤r

∥
∥f (t, u)

∥
∥ ≤ 1

3
e–tr + t2απ =: hr(t),

lim sup
r→∞

‖hr(t)‖L∞

r
=

1
3

=: L,

and

∥
∥f (t, u1) – f (t, u2)

∥
∥ ≤ 4

3
‖u1 – u2‖ for u1, u2 ∈ Ωr .

Therefore, (H2)–(H4) are satisfied. This yields

ML
Γ (1 + α)

(
ψ(T) – ψ(0)

)α =
1

3Γ ( 5
3 )

(
ψ(1) – ψ(0)

) 2
3 ≈ 0.2052 < 1.

Hence, according to Theorems 4.1 and 4.3, the problem (20) has a unique mild solution
on [0, 1].

Moreover, (H5) is satisfied. Then, by Theorem 4.5, the problem (20) has a global mild
solution u ∈ C([0,∞), E).

Example 7.2 Consider the following initial-boundary value problem of time-fractional
parabolic partial differential equation with nonlinear source term:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

ψu(x, t) – �u(x, t) = f (t, u(x, t)), t ∈ (0, 1], x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

u(x, 0) = u0(x), x ∈ [0, 1],

(21)

where α = 1
2 , ψ(t) = et and f (t, u) = 1

5 e–t|u(x, t)|. Let E = L2([0, 1]) and A : D(A) ⊂ E → E
be an operator defined by

D(A) := H2(0, 1) ∩ H1
0 (0, 1) =

{
v ∈ H2(0, 1) : v(0) = v(1) = 0

}
and Au = �u,

where H2(0, 1) is the completion of the space C2(0, 1) with respect to the norm

‖u‖H2(0,1) =
(∫ 1

0

∑

|μ|≤2

∣
∣Dμu(x)

∣
∣2 dx

) 1
2

,

and C2 is the set of all is the set of all continuous defined on (0, 1) which have continuous
partial derivatives of order less than or equal to 2, and H1

0 (0, 1) is the completion of C1(0, 1)
with respect to the norm ‖u‖H1(0,1).

Then for t ∈ [0, 1] we have

∥
∥f (t, u)

∥
∥ ≤ 1

5
e–t‖u‖,
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sup
‖u‖≤r

∥
∥f (t, u)

∥
∥ ≤ 1

5
e–tr =: hr(t),

lim sup
r→∞

‖hr(t)‖L∞

r
=

1
2

,

∥
∥f (t, u1) – f (t, u2)

∥
∥ ≤ 1

5
‖u1 – u2‖ for u1, u2 ∈ Ωr ,

and

μ
(
f (t, D)

) ≤ 1
5
μ(D), t ∈ [0, 1] and D ∈ Ωr .

Therefore, (H2)–(H3) and (H6) are satisfied. We take M = 1, L = 1
5 and K = 1

5 . This yields

ML
Γ (1 + α)

(
ψ(T) – ψ(0)

)α =
1

25Γ ( 3
2 )

(
ψ(1) – ψ(0)

) 1
2 ≈ 0.0592 < 1

and

4MK
Γ (1 + α)

(
ψ(T) – ψ(0)

)α =
4

25Γ ( 3
2 )

(
ψ(1) – ψ(0)

) 1
2 ≈ 0.2367 < 1.

Hence, according to Theorem 5.1 and 4.3, the problem (21) has unique mild solution on
[0, 1].

Moreover, (H5) is satisfied. Then Theorem 5.4 implies that the problem (21) has a global
mild solution u ∈ C([0,∞), E).

8 Conclusion
We construct a mild solution for fractional evolution equation based on Laplace transform
with respect to ψ-function. We obtain the local and global existence and uniqueness of
mild solution for the problem with ψ-Caputo fractional derivative, which can be reduced
to the classical Caputo fractional derivative in previous work. Furthermore, the form of a
fundamental solution obtained in this work is a foundation result for further investigation
such as the problem with perturbation, delay and a nonlocal term.
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