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Abstract
In this paper, we analytically and numerically study the dynamics of a stochastic
toxin-producing phytoplankton–fish system with harvesting. Mathematically, we give
the existence and stability of the positive equilibrium in the deterministic system (i.e.,
the system without environmental noise fluctuations). In the case of the stochastic
system (i.e., the system with environmental noise fluctuations), in addition to the
existence and uniqueness of the positive solution, we provide the properties of the
stochastic dynamics including the stochastic extinction and persistence in the mean,
almost sure permanence and uniform boundedness, and the existence of ergodic
stationary distribution for the phytoplankton and fish. Ecologically, via numerical
analysis, we find that (1) the small random environmental fluctuations can ensure the
persistence of phytoplankton and fish, but the larger one can result in the extinction
of these populations; (2) an appropriate increase in harvest rate can reduce the
irregular random variation of phytoplankton and fish; (3) the increase of toxin liberate
rate is capable to decrease the height of probability density function of
phytoplankton. These results may help us to better understand the
phytoplankton–fish dynamics.
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1 Introduction
In recent years, phytoplankton blooms, especially harmful algal blooms, occur frequently
in lakes, reservoir, wetland and marine, such as Erie Lake [1], Taihu Lake and Asia-Pacific
region [2]. Phytoplankton blooms can threaten drinking water, human health, and even the
ecological balance [3]. For example, when harmful algal blooms emerge, a large amount of
toxic substances will be released into water body, and then some fishes or shellfish may die.
At present, the unpredictability of phytoplankton blooms still remains, so the control and
management of phytoplankton blooms are mainly algae removal. However, there is a time
lag between the occurrence of phytoplankton blooms and algae removal, so phytoplankton
blooms are still the threat to the public health and ecosystem. Hence, it is very important to
understand the dynamic mechanisms of phytoplankton growth, by which we can predict
the evolution of phytoplankton in time and space.
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Mathematical models, as powerful tools to give an important insight into understanding
of the dynamic mechanisms of phytoplankton blooms, have drawn increasing attention in
recent years [4–8]. By introducing functional responses, we can use different modifica-
tions of the classical prey–predator models to model nutrient-phytoplankton-herbivore
dynamics for various aquatic environments. Due to the eutrophication, nutrient is abun-
dant enough to support uptake of phytoplankton in water body, so nutrient may not be
the main factor limiting phytoplankton growth under this case. Then the phytoplankton-
herbivore model becomes the focus to study dynamics of phytoplankton growth. In nature,
many phytoplankton population (e.g. Cyanobacteria) have the capacity to produce toxic
substances, and then the toxin released by phytoplankton not only affects themselves but
may also restrains the growth of their herbivore. The work from Chattopadhayay et al.
[9] shows that toxin-producing phytoplankton may act as a biological control for the ter-
mination of phytoplankton blooms based on field observe and mathematical modelling.
The results by Banerjee et al. [10] indicate that toxin released by phytoplankton may affect
the growth of zooplankton, but it does not drive the zooplankton to go extinct. Currently,
many researchers have been taking interest in the ecotoxicological effects of toxicant re-
leased by phytoplankton population, one may refer to [10–20].

In the present paper, we consider a phytoplankton–fish model where the growth of fish
population is affected by some toxicant released by phytoplankton. Additionally, the non-
selective harvesting of both populations is taken into consideration. Recently, many re-
search results related to how harvesting efforts affect plankton-fish dynamics or predator–
prey dynamics have been reported [21–26]. Panja et al. [22] indicate that the harvesting
effort plays an important role in the stability of the phytoplankton-zooplankton-fish sys-
tem. Upadhyay et al. [23] summarized that a variation of harvesting term can generate rich
dynamics such as limit cycles and chaos in plankton system. Then the following dynamical
system proposed as a simple model of phytoplankton–fish interaction:

⎧
⎨

⎩

dP(t)
dt = rP – d1P2 – αPF – Eq1P,

dF(t)
dt = βPF – μ1F – d2F2 – ρPF

γ +P – Eq2F ,
(1)

where P(t) and F(t) are the densities of toxin-producing phytoplankton and herbivorous
fish at time t, respectively; r is the intrinsic growth rate of phytoplankton; the terms
d1P2 and d2F2 represent intraspecific competition of phytoplankton and fish, respectively,
where d1 and d2 are the corresponding intraspecific competition coefficient; the term αPF
model phytoplankton–fish interaction, which implies that the density (or biomass) of phy-
toplankton consumed by fish per unit time is given by αP; β denotes the rate of biomass
conversion (0 < β < α ≤ 1); μ1 is the death rate of fish; the term ρPF

γ +P [9] represents the
distribution of toxic substances released by phytoplankton that ultimately contributes to
the death of fish population, where γ is a half-saturation constant and ρ is the toxin lib-
eration rate. Also here both the phytoplankton and the fish are subjected to a combined
harvesting effort E, and q1 is the catchability coefficient of the phytoplankton, and q2 is the
catchability coefficient of the fish and E is the harvesting effort. Let h1 = Eq1 and h2 = Eq2.
All the parameters are assumed to be positive.

Additionally, as most aquatic ecosystems are exposed within the open environment, the
randomly fluctuating environmental factors affecting phytoplankton growth may exist,
such as nutrition loading, light availability, water temperature variation [20]. Especially,
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Gard [27] has indicated that these factors can be described by the process of white noise.
Actually, May has also pointed out the fact [28, 29] that many parameters involved in the
system are not constant, but exhibit random fluctuation to a greater or lesser extent be-
cause of the effects of white noise, such as the birth rates, carrying capacity, competition
coefficient, and so on. Recently, some authors have taken white noise perturbations into
account in approaches on the dynamics of plankton systems [30–34]. Mandal et al. [31] in-
dicated that the environmental white noise perturbations play an important role in main-
taining the coexistence of phytoplankton populations. Valenti et al. [32] suggested that the
increase in the strength of random fluctuations is capable to cause the rapid extinction of
picophytoplankton populations. Hence, under the randomly fluctuating environment, it
is reasonable that the deterministic model to describe a phytoplankton–fish system is ex-
tended to a stochastic version by introducing white noise. The application of stochastic
mathematical models in other fields, such as infectious disease dynamics, can be found in
the literature [35–39].

Motivated by all this, in this paper we introduce the white noise into system (1) using the
method in [40], that is, it is assumed that the environmental noise is proportional to these
variables. For small �t, it is appreciate to model X(t) = (P(t), F(t))T as a Markov process
with the following specifications [41]:

E
[
P(t + �t) – P(t)|X(t) = x

] ≈ P(r – d1P – αF – h1)�t,

E
[
F(t + �t) – F(t)|X(t) = x

] ≈ F
(

βP – μ1 – d2F –
ρP

γ + P
– h2

)

�t,

and

Var
[
P(t + �t) – P(t)|X(t) = x

] ≈ δ2
1P2�t,

Var
[
F(t + �t) – F(t)|X(t) = x

] ≈ δ2
2F2�t.

Then system (1) can be rewritten as the following form:

⎧
⎨

⎩

dP(t) = (rP – d1P2 – αPF – h1P) dt + δ1P(t) dB1(t),

dF(t) = (βPF – μ1F – d2F2 – ρPF
γ +P – h2F) dt + δ2F(t) dB2(t),

(2)

where Bj(t) are mutually independent standard Brownian motions defined on the proba-
bility space (Ω ,F , {F}t≥0,P) with a filtration {F}t≥0 satisfying the usual conditions (i.e.,
it is increasing and right continuous with F0 contains all P-null sets) and δ2

j denotes the
intensity of the white noise, j = 1, 2.

The rest of this paper is organized as follows: In Sect. 2, we analyze the existence and
stability of positive equilibrium in system (1). And then we state the existence of the pos-
itive solutions with respect to system (2) in Sect. 3. Section 4 is devoted to studying the
existence of a unique ergodic stationary distribution of system (2). In Sect. 5, based on ge-
ometric structure of invariant set, we investigate the almost sure permanence and uniform
boundedness of the system. In Sect. 6, the sufficient conditions, which guarantee stochas-
tic extinction and persistence in the mean of each population, are explored. In Sect. 7,
some numerical simulations are carried out to analyze dynamics of system (2) in depth.
Finally, the paper ends with conclusions in Sect. 8.
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2 Existence and stability of positive equilibrium in system (1)
In this section, it is stated first that the first quadrant is positive invariant in system (1),
and then the following lemma holds.

Lemma 1 For any initial condition P(0) = P0 > 0 and F(0) = F0 > 0, the solution of system
(1) is positive invariant.

Proof For system (1), we have P(t) > 0 and F(t) > 0 for all t ∈ [0, τ ], where τ is any positive
real number. Suppose that is not true. Then there exists 0 < tτ < τ such that, for all t ∈
[0, tτ ], P(t) > 0, F(t) > 0 and either P(tτ ) = 0 or F(tτ ) = 0.

Define

(
f (P, F), g(P, F)

)
=

(

r – h1 – dP – αF ,βP – d2F –
ρP

γ + P
– μ1 – h2

)

.

Then, from system (1), we have P(t) = P(0) exp(
∫ t

0 (f (P, F)) ds) and F(t) = F(0) exp(
∫ t

0 g(P,
F) ds). Since (P, F) are defined and continuous on [0, tτ ], there is a N ≥ 0 such that, for
all t in [0, tτ ], P(t) = P(0) exp(

∫ t
0 (f (P, F)) ds) ≥ P(0) exp(–tτ N) and F(t) = F(0) exp(

∫ t
0 (g(P,

F)) ds) ≥ F(0) exp(–tτ N).
Obviously, if t → tτ , we can obtain P(tτ ) ≥ P(0) exp(–tτ N) > 0 and F(tτ ) ≥ F(0) ×

exp(–tτ N) > 0, which contradicts the fact that either P(tτ ) = 0 or F(tτ ) = 0. Hence, for all
t ∈ [0, τ ], P(t) > 0 and F(t) > 0.

This completes the proof. �

From system (1), it is not difficult to find that there is always a trivial equilibrium E0(0, 0)
and the boundary equilibrium E1( r–h1

d1
, 0) exists under r > h1. Obviously, the existence of

E1 depends on the harvesting level. When the condition, r ≤ h1, holds, the phytoplankton
population will become extinct from the first equation of system (1), and then the fish
population also will become extinct. Hence, it is always assumed that the condition, r > h1,
holds in the rest of this paper.

Moreover, a unique positive equilibrium, E∗(P∗, F∗), can be obtained when r > h1 and
d1P∗ < r – h1, where F∗ = (r – h1 – d1P∗)/α and P∗ is the positive root of the following
equation:

(αβ + d1d2 + d1ρ)P2 –
(
(d2 + ρ)(r – h1) + α(h2 + μ1) – γ (αβ + d1d2)

)
P

– γ d2(r – h1) – γα(h2 + μ1) = 0. (3)

From Eq. (3), it is obvious that there must be a positive root which is unique when the
condition, r > h1, holds. Hence, F∗ > 0 when the condition, d1P∗ < r – h1, holds, that is, the
unique positive equilibrium E∗ exists. Then we can obtain the following theorem.

Theorem 1 When the condition, r > h1, holds, there exists a unique positive equilibrium
E∗(P∗, F∗) in system (1) if the condition, d1P∗ < r – h1, holds, which is locally asymptotically
stable.

Proof From the above analysis, the existence and uniqueness of positive equilibrium E∗

is clear. Now, we will prove its locally asymptotical stability. By system (1), we can get the
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Jacobian matrix at E∗, as follows:

J(E∗) =

[
–d1P∗ –αP∗

βF∗ – ργ F∗
(γ +P∗)2 –d2F∗

]

.

And then we can obtain the corresponding characteristic equation, as follows:

λ2 – tr
(
J(E∗)

)
λ + det

(
J(E∗)

)
= 0, (4)

where tr(J(E∗)) = –(d1P∗ + d2F∗) < 0 and det(J(E∗)) = d1P∗d2F∗ + αP∗(βF∗ – ργ F∗
(γ +P∗)2 ).

From the second equation of system (1), it is not difficult to find that the condition,
βF∗ – ργ F∗

(γ +P∗)2 > βF∗ – ρF∗
γ +P∗ > 0, holds, so det(J(E∗)) > 0. Hence, the positive equilibrium

E∗ is locally asymptotically stable by Eq. (4).
This completes the proof. �

Theorem 2 If the positive equilibrium E∗ exists in system (1), then it is globally asymptot-
ically stable.

Proof In order to prove the globally asymptotical stability of E∗, we consider the following
Dulac function:

B(P, F) =
1

PF
, (5)

and let (L1, L2) = (rP – d1P2 – αPF – h1P,βPF – μ1F – d2F2 – ρPF
γ +P – h2F). Obviously, the

function B ∈ C1(R20
+ ) and B > 0, where R

20
+ is the interior of R2

+. Furthermore, we have

G =
∂

∂P
(BL1) +

∂

∂F
(BL2)

=
1
F

∂

∂P
(r – d1P – αF – h1) +

1
P

∂

∂F

(

βP – μ1 – d2F –
ρP

γ + P
– h2

)

= –
(

d1

F
+

d2

P

)

. (6)

Due to the positivity of P(t) and F(t), it can be got that ∂(BL1)
∂P + ∂(BL2)

∂F = –( d1
F + d2

P ) < 0 for
any (P, F) ∈ R

2
+, and hence, by virtue of Dulac–Bendixon criterion, system (1) has no limit

cycle in the positive plane. Because there exists a unique positive equilibrium of system (1)
in this positive plane, and all the positive solutions of phytoplankton and fish tend to E∗.
Considering the local asymptotic stability of again (see Theorem 1), it can be concluded
that the positive equilibrium is globally asymptotically stable if it exists. This completes
the proof. �

3 Existence and uniqueness of the positive solution in system (2)
In this section, we will discuss the existence and uniqueness of the positive solution in
system (2), which can be presented using the following theorem.

Theorem 3 For any given initial value (P(0), F(0)) ∈ R
2
+, there exists a unique positive so-

lution (P(t), F(t)) on t ≥ 0 in system (2), and the solution will remain in R
2
+ with probability

one.
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Proof Since the coefficients of system (2) satisfy the local Lipschitz condition, then, for any
initial values (P(0), F(0)) ∈R

2
+, there exists a unique local solution (P(t), F(t)) on t ∈ [0, τe),

where τe denotes the explode time [42]. To show that this solution is global in R
2
+, we need

to prove τe = ∞ a.s. Hence, we choose a sufficiently large non-negative number ε0 such
that P(0) and F(0) lie within the interval [ 1

ε0
, ε0]. For each integer ε, we can define the

stopping time:

τε = inf

{

t ∈ [0, τe) : P(t) /∈
(

1
ε

, ε
)

or F(t) /∈
(

1
ε

, ε
)}

,

where inf∅ = ∞ (as usual ∅ denotes the empty set). τε is increasing as ε → ∞. Set τ∞ =
limε→∞ τε , then τ∞ ≤ τε a.s.

In the following, we need to show that τe = ∞ a.s. If this statement is violated, there exist
two constants T > 0 and σ ∈ (0, 1) such that P{τ∞ ≤ T} > σ . Hence, we can find an integer
ε1 ≥ ε0 such that P{τε ≤ T} ≥ σ for all ε > ε1.

Define a C2-function V : R2
+ → R+ by

V (P, F) = P + 1 – ln P +
α

β
(F + 1 – ln F).

Considering that z + 1 – lnz ≥ 0 for all z > 0, the function V (·) is positive definite for all
(P, F) ∈ R

2
+. Calculating the differential of V along the solution trajectories of system (2)

using Itô’s formula, we can get

dV (P, F) = LV (P, F) dt + (P – 1)δ1 dB1(t) +
α

β
(F – 1)δ2 dB2(t),

where

LV (P, F)

=
(

1 –
1
P

)
(
rP – d1P2 – αPF – h1P

)
+

1
2
δ2

1

+
(F – 1)α

Fβ

(

βPF – μ1F – d2F2 –
ρPF
γ + P

– h2F
)

+
δ2

2α

2β

= rP – d1P2 – αPF – h1P – r + d1P + αF + h1 +
δ2

1
2

+ αFP –
μ1αF

β

–
d2αF2

β
–

αρPF
(γ + P)β

–
αh2F

β
– αP +

αμ1

β
+

αd2F
β

+
ραP

(γ + P)β
+

αh2

β
+

δ2
2α

2β

≤ (
–d1P2 + rP – h1P + d1P – αP

)
+

(

–
d2αF2

β
–

μ1αF
β

+ αF –
αh2F

β
+

αd2F
β

)

+ h1 – r +
δ2

1
2

+
αμ1

β
+

αh2

β
+

δ2
2α

2β
+

ρα

β

≤ (r – h1 + d1 – α)2

4d1
+

β

4d2α

(

α –
μ1α

β
–

αh2

β
+

αd2

β

)2

+ h1 – r +
δ2

1
2

+
αμ1

β
+

αh2

β
+

δ2
2α

2β
+

ρα

β
:= K ,
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where K is a positive constant. The remainder of this proof is similar to reasoning in an-
other study (e.g., see [43]) and hence is omitted here. Therefore, the solution with the
initial value (P(0), F(0)) ∈ R

2
+ is positive and will remain in R

2
+ with probability one. This

completes the proof. �

4 Existence of ergodic stationary distribution for system (2)
In this section, we mainly study the existence of a unique ergodic stationary distribution
for system (2).

Let X(t) be a regular temporally homogeneous Markov process in El ⊂ Rl described by
the stochastic differential equation

dX(t) = F(X, t) dt +
k∑

r=1

σr(X) dBr(t),

and the diffusion matrix is defined as follows:

A(x) =
(
aij(x)

)
, aij(x) =

k∑

r=1

σ i
r (x)σ j

r (x).

Based on system (2), the diffusion matrix is A(x) = diag(δ2
1P2, δ2

2F2).

Lemma 2 ([44]) Assume that there exists a bounded domain U ⊂ El with regular bound-
ary, which has the following properties:

(a) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(b) If x ∈ El \ U , the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈Q Exτ < ∞ for every compact subset Q ⊂ El .

If assumptions (a) and (b) hold, the Markov process X(t) has a unique stationary distri-
bution π (·) and it has ergodic property.

Then we have the following result.

Theorem 4 Let θ = α
β

and c1 = 0.5δ2
1P∗ + 0.5δ2

2θF∗, if the condition c1 ≤ min{d1(P∗)2,
d2θ (F∗)2} holds, there exists a unique stationary distribution π (·) for system (2) with any
initial value (P0, F0) ∈R

2
+, and it is ergodic.

Proof In the deterministic system (1), there exists a positive equilibrium E∗(P∗, F∗) and
therefore

r – h1 = d1P∗ + αF∗, μ1 + h2 = βP∗ – d2F∗ –
ρP∗

γ + P∗ . (7)

Set V : R2
+ →R+,

V (P, F) = 0.5
(

P – P∗ – P∗ ln
P
P∗

)2

+ θ

(

F – F∗ – F∗ ln
F
F∗

)

:= V1 + θV2, (8)
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where θ is positive constant will be determined in later. Taking the derivative of (8) and
making use of (7), we have

LV1 =
(
P – P∗)(r – h1 – d1P – αF) + 0.5P∗δ2

1

=
(
P – P∗)(d1P∗ + αF∗ – d1P – αF

)
+ 0.5P∗δ2

1

= –d1
(
P – P∗)2 – α

(
P – P∗)(F – F∗) + 0.5δ2

1P∗

and

LV2 =
(
F – F∗)

(

βP – (μ1 + h2) – d2F –
ρP

γ + P

)

+ 0.5δ2
2F∗

=
(
F – F∗)

(

β
(
P – P∗) – d2

(
F – F∗) –

ργ (P – P∗)
(γ + P∗)(γ + P)

)

+ 0.5δ2
2F∗.

Then we have

LV = LV1 + θLV2

≤ –d1
(
P – P∗)2 + (θβ – α)

(
P – P∗)(F – F∗) – d2θ

(
F – F∗)2

+ 0.5δ2
1P∗ + 0.5δ2

2F∗θ .

Let θ = α
β

, we can get

LV ≤ –d1
(
P – P∗)2 – d2θ

(
F – F∗)2 + 0.5δ2

1P∗ + 0.5δ2
2F∗θ .

We define c1 = 0.5δ2
1P∗ + 0.5δ2

2θF∗, and if c1 ≤ min{d1(P∗)2, d2θ (F∗)2}, then the ellipsoid

–d1
(
P – P∗)2 – d2θ

(
F – F∗)2 + c1 = 0

lies entirely in R
2
+. One can take U as any neighborhood of the ellipsoid such that Û ⊂R

2
+,

where Û is a closure of U . Thus, we have LV < 0 for any (P, F) ∈ R
2
+ \ U , which implies

that the condition (b) in Lemma(2) holds. On the other hand, there is a constant M0 > 0
such that

2∑

i,j

aij(P, F)ξiξj = δ2
1P2ξ 2

1 + δ2
2F2ξ 2

2 ≥ M0|ξ |2, (9)

for all (P, F) ∈ Û , ξ ∈ R
2,which indicates that the condition (a) in Lemma (2) is also sat-

isfied. Hence, system (2) has a unique stationary distribution π (·) and it is ergodic. This
completes the proof. �

Remark 1 Making use of Itô’s formula on (8), we can get

dV ≤
[

–d1
(
P – P∗)2 –

d2α

β

(
F – F∗)2 + 0.5P∗δ2

1 + 0.5
α

β
F∗δ2

2

]

dt

+ 0.5δ2
1P∗ + 0.5

α

β
δ2

2F∗. (10)
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Integrating Eq. (10) from 0 to t on both sides, and then taking the expectation gives

EV (t) – EV (0) ≤ E

∫ t

0

(

–d1
(
P(s) – P∗)2 –

αd2

β

(
F(s) – F∗)2

)

ds

+
(

0.5P∗δ2
1 + 0.5

α

β
F∗δ2

2

)

t.

Thus, let � = min{d1, αd2
β

} and then we can derive

lim sup
t→∞

1
t
E

∫ t

0

((
P(s) – P∗)2 +

(
F(s) – F∗)2)ds ≤ 0.5P∗δ2

1 + 0.5 α
β

F∗δ2
2

�
.

That is, the positive solution of the stochastic system (2) oscillates around the positive
equilibrium E∗ in the deterministic system (1). Moreover, the small noise intensity can
derive the solution of the stochastic system (2) to approach the positive equilibrium E∗ in
the deterministic system (1).

5 Almost sure permanence and uniform boundedness of system (2)
Theorem 4 signifies that there exists a unique stationary distribution of the solutions in
system (2). In this section, we shall show that the stationary distribution of the solutions lie
in the interior of the first quadrant by using the geometric structure of invariant set, which
implies that the solutions of the system maintain almost sure permanence and uniform
boundedness.

Based on the proof of Theorem 4, we have

LV (P, F) = –d1
(
P – P∗)2 – d2θ

(
F – F∗)2 + 0.5δ2

1P∗ + 0.5δ2
2F∗θ

–
θργ (P – P∗)(F – F∗)

(γ + P∗)(γ + P)
.

By introducing the following notations:

Θ := 0.5δ2
1P∗ + 0.5δ2

2F∗θ ,

Vm := 1.5d1
(
P – P∗)2 + 1.5d2θ

(
F – F∗)2 +

θργ (P – P∗)(F – F∗)
γ (γ + P∗)

,

VM := 0.5d1
(
P – P∗)2 + 0.5d2θ

(
F – F∗)2,

we get

–Vm + Θ ≤LV (P, F) ≤ –VM + Θ .

Let

ξ1(P, F) =
{

(P, F) : VM(P, F) ≤ Θ
}

.

Then LV (P, F) < 0 on the exterior of ξ1(P, F). For any ε ∈ (0,Θ), define

ξε
1 (P, F) =

{
(P, F) : VM(P, F) ≤ Θ + ε

}
,

therefore, LV (x, y) < –ε on the exterior of ξε
1 .
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The derivation goes through two steps.
Step 1: Solution (P(t), F(t)) to the stochastic system (2) starts from the exterior of ξ1(P, F)

will almost surely enter the interior of ξ1(P, F) in finite time.

Lemma 3 For any initial value (P0, F0) /∈ ξ1(P, F), one has

P

{
inf

(P0,F0) /∈ξ1(P,F)

[
t ≥ 0 :

(
P(t), F(t)

) ∈ ξ1(P, F)
]

< ∞
}

= 1.

Proof For any ε ∈ (0,Θ), we will show a similar conclusion for ξε
1 (x, y) at first, i.e.

P

{
inf

(P0,F0) /∈ξε
1 (P,F)

[
t ≥ 0 :

(
P(t), F(t)

) ∈ ξε
1 (P, F)

]
< ∞

}
= 1. (11)

Then this conclusion holds because of the arbitrariness of ε. Now, we are position to show
Eq. (11). Define the first arrive time at ξε

1 as τ a
1 , i.e.

τ a
1 = inf

(P0,F0) /∈ξε
1 (P,F)

{
t ≥ 0 :

(
P(t), F(t)

) ∈ ξε
1 (P, F)

}
.

We only need to show τ a < ∞ a.s. Define

ρε
k (P, F) =

{
(P, F) : Θ + ε < VM(P, F) < Vm(P, F) < kΘ + Θ

}
, k = 1, 2, . . . ,

and the first exit time of the set ρε
k (P, F) as τ e

k , i.e.

τ e
k = inf

(P0,F0) /∈ξε
1 (P,F)

{
t ≥ 0 :

(
P(t), F(t)

)
/∈ ρε

k (P, F)
}

.

For any positive integer k, ρε
k (P, F) is a bounded set. Making use of Dynkin’s formula yields

E
[
V

(
P
(
τ e

k
)
, F

(
τ e

k
))]

= V (P0, F0) + E

∫ τ e
k

0
LV

(
P(s), F(s)

)
ds ≤ V (P0, F0). (12)

Let

Pk = P
{

VM
(
P
(
τ e

k
)
, F

(
τ e

k
))

= Θ + ε
}

, M1 = min
VM(P,F)=Θ+ε

{
V (P, F)

}
,

qk = P
{

Vm
(
P
(
τ e

k
)
, F

(
τ e

k
))

= kΘ + Θ
}

, M2(k) = min
Vm(P,F)=kΘ+Θ

{
V (P, F)

}
.

Then we have

V (F0, P0) ≥ E
[
V

(
P
(
τ e

k
)
, F

(
τ e

k
))] ≥ PkM1 + qkM2(k).

Let k → ∞ and this implies that qk → 0 since M2(k) → ∞, consequently, τ e
k → τ a

1 as
k → ∞. Therefore

lim
k→∞

E
[
V

(
P
(
τ e

k
)
, F

(
τ e

k
))]

= E
[
V

(
P
(
τ a

1
)
, F

(
τ a

1
))]

, (13)
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which follows from the dominated convergence theorem. On the other hand, it follows
from τ e

k → τ a
1 as k → ∞ that

lim
k→∞

∫ τ e
k

0
LV

(
P(s), F(s)

)
ds =

∫ τa
1

0
LV

(
P(s), F(s)

)
ds.

Consequently

lim
k→∞

E

[∫ τ e
k

0
LV

(
P(s), F(s)

)
ds

]

= E

[∫ τa
1

0
LV

(
P(s), F(s)

)
ds

]

. (14)

Equations (12), (13), and (14) imply that

0 ≤ E
[
V

(
P
(
τ a

1
)
, F

(
τ a

1
))]

= V (P0, F0) + E

∫ τa
1

0
LV

(
P(s), F(s)

)
ds ≤ V (P0, F0). (15)

This states τ a
1 < ∞ a.s. since LV (P(s), F(s)) < –ε when s ∈ [0, τ a

1 ].
From the condition min{d1(P∗)2, d2θ (F∗)2} ≥ (0.5δ2

1P∗ + 0.5δ2
2θF∗) and the definition

of ξ1(P, F), we see that ξ1(P, F) lies in the interior of the first quadrant. Denote n1 =
min(P,F)∈ξ1(P,F){P, F}, then n1 > 0. Let

ξ2(P, F) =
{

M : d
(
M, ξ1(P, F)

) ≤ n1

3

}

,

then there is a positive constant ε0 such that LV (P, F) < –ε0 for (P, F) /∈ ξ2(P, F). Denote
n2 = max(P,F)∈ξ2(P,F){V (P, F)}, then n2 < +∞ since ξ2(P, F) is a bounded closed set in R

2
+. Let

Bn2 (P, F) =
{

(P, F) : V (P, F) ≤ n2
}

,

which implies ξ2(P, F) ⊂ Bn2 (P, F) and LV (P, F) < –ε0 when (P, F) /∈ Bn2 (x, y). The defini-
tion also indicates Bn2 (P, F) lies in the interior of the first quadrant.

Step 2: Solution (P(t), F(t)) to the stochastic system (2) starts from the interior of
Bn2 (P, F) will almost surely lie in the interior of Bn2 (P, F) in any finite time. �

Lemma 4 For any initial value (P0, F0) ∈ Bn2 (P, F), it has

P

{
inf

P0,F0∈Bn2 (P,F)

{
t ≥ 0 :

(
P(t), F(t) /∈ Bn2 (P, F)

)}
= ∞

}
= 1. (16)

Proof If Eq. (16) fails to hold, there is a set Ω̄ ⊆ Ω such that

0 < P

{
inf

(P0,F0)∈Bn2 (P,F)

{
t ≥ 0 :

(
P(t), F(t)

)
/∈ Bn2 (x, y)

}
< ∞

}
= P{Ω̄} < 1. (17)

Define

ηe = inf
{

t ≥ 0 :
(
P(t), F(t) /∈ Bn2 (P, F)

)}
,

ηa = inf
{

t > ηe :
(
P(t), F(t)

) ∈ Bn2 (P, F)
}

.
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For any t ≥ 0, using Dynkin’s formula from ηe ∧ t to ηa ∧ t, we have

E
[
V

(
P(ηa ∧ t), F(ηa ∧ t)

)]

= E
[
V

(
P(ηe ∧ t), F(ηe ∧ t)

)]
+ E

∫ ηa∧t

ηe∧t
LV

(
P(s), F(s)

)
ds. (18)

For any χ ∈ Ω̄c, we have ηe = ∞ which yields ηa = ∞, then

∫

Ω̄c
V

(
P(ηa ∧ t), F(ηa ∧ t)

)
dP(χ )

=
∫

Ω̄c
V

(
P(ηe ∧ t), F(ηe ∧ t)

)
dP(χ ) =

∫

Ω̄c

[
V

(
P(t), F(t)

)]
dP(χ ) (19)

and

∫

Ω̄c

[∫ ηa∧t

ηe∧t
LV

(
P(s), F(s)

)
]

dP(χ ) = 0. (20)

For any χ ∈ Ω̄ and s ∈ [ηe,ηa], we have LV (P(s), F(s)) < –ε0 since (P(s), F(s)) /∈ Bn2 (P, F).
Then Eqs. (18), (19), and (20) imply

∫

Ω̄

V
(
P(ηa ∧ t), F(ηa ∧ t)

)
dP(χ )

=
∫

Ω̄

V
(
P(ηe ∧ t), F(ηe ∧ t)

)
dP(χ ) +

∫

Ω̄

[∫ ηa∧t

ηe∧t
LV

(
P(s), F(s)

)
ds

]

P(χ )

<
∫

Ω̄

[
V

(
P(ηe ∧ t), F(ηe ∧ t)

)
– ε0(ηa ∧ t – ηe ∧ t)

]
dP(χ ).

Let t → ∞, this leads to a contradiction, since V (P(ηe), F(ηe)) = V (P(ηa), F(ηa)) = n2 for
any χ ∈ Ω̄ .

This completes the proof �

From Lemma 3 and Lemma 4 and based on the fact that Bn2 (P, F) lies in the interior of
the first quadrant we conclude to the following theorem.

Theorem 5 Under conditions of Theorem 4, for any initial value (P0, F0) ∈ R
2
+, system (2)

is almost sure permanent, that is, there two positive constants m and M such that

m ≤ P(t) ≤ M, m ≤ F(t) ≤ M a.s.,

for any 0 ≤ t ≤ ∞. This also indicates that system (2) is uniformly ultimately bounded
almost surely.

6 Stochastic extinction and persistence in the mean for system (2)
This section is devoted to investigating the stochastic extinction and persistence in the
mean of each population for system (2).
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Before presenting the main results, we first give the following notations, lemma and
definition:

ϕ1 = r – h1 – 0.5δ2
1 , ϕ2 = μ + h2 + 0.5δ2

2 , m(i)(t) =
∫ t

0
δi dBi(s), i = 1, 2.

Definition 1 ([45])
(a) The population x(t) is said to be extinct if limt→+∞ x(t) = 0 a.s.
(b) If limt→+∞ inf 1

t
∫ t

0 x(s) ds > 0 a.s., the population x(t) is said to be strongly persistent
in the mean.

(c) If limt→+∞ sup 1
t
∫ t

0 x(s) ds > 0 a.s., the population x(t) is said to be weakly persistent
in the mean.

Lemma 5 ([46]) Let X(t) ∈ C(Ω × [0, +∞), (0, +∞)).
(i) If there exist three positive constants T , τ and τ0 such that, for all t ≥ T ,

ln X(t) ≤ τ t – τ0

∫ t

0
X(s) ds +

n∑

i=1

α1Bi,

where αi (1 ≤ i ≤ n) are constants, then limt→+∞ sup t–1 ∫ t
0 X(s) ds ≤ τ

τ0
, a.s.

(ii) If there exist three positive constants T , τ and τ0 such that, for all t > T ,

ln X(t) ≥ τ t – τ0

∫ t

0
X(s) ds +

n∑

i=1

α1Bi,

where αi (1 ≤ i ≤ n) are constants, then limt→+∞ inf t–1 ∫ t
0 X(s) ds ≥ τ

τ0
, a.s.

Now we are in the position to give our main result in this section.

Theorem 6 For any given initial value (P(0), F(0)) ∈ R
2
+, any solution (P(t), F(t)) ∈ R

2
+ of

system (2) satisfies

(1) lim
t→+∞ sup

ln P(t)
t

≤ ϕ1 a.s.,

lim
t→+∞ P(t) = 0 a.s., provided ϕ1 < 0,

lim
t→+∞ sup

1
t

∫ t

0
P(s) ds ≤ ϕ1

d1
a.s., provided ϕ1 > 0,

namely, if ϕ1 < 0, the P(t) of system (2) goes to extinction with probability one and is persis-
tent in the mean if ϕ1 > 0.

(2) lim
t→+∞ sup

ln F(t)
t

≤ βϕ1

d1
– ϕ2 a.s.,

lim
t→+∞ F(t) = 0 a.s., provided ϕ1 < 0,

lim
t→+∞ sup

1
t

∫ t

0
F(s) ds ≤ βϕ1 – ϕ2d1

d1d2
a.s., provided βϕ1 ≥ ϕ2d1,
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namely, if ϕ1 < 0, the F(t) of system (2) goes to extinction with probability one and is persis-
tent in the mean if βϕ1 > ϕ2d1

Proof (1) Making use of Itô’s formula on system (2) yields

ln P(t) – ln P(0) = ϕ1t – d1

∫ t

0
P(s) ds – α

∫ t

0
F(s) ds + m1(t), (21)

ln F(t) – ln F(0) = β

∫ t

0
P(s) ds – d2

∫ t

0
F(s) ds – ρ

∫ t

0

P(s)
γ + P(s)

ds – ϕ2t + m2(t). (22)

From Eq. (21), we get

ln P(t)
t

≤ ϕ1 +
m1(t)

t
+

ln P(0)
t

.

By virtue of the large number theorem for local martingales [42], we have

lim
t→+∞

m1(t)
t

= 0 a.s.

Therefore, we have

lim
t→+∞ sup

ln P(t)
t

≤ ϕ1 a.s.

If ϕ1 < 0, then limt→+∞ P(t) = 0 a.s., namely, the phytoplankton population dies out almost
surely. Furthermore, from Eq. (21), we can also get

ln P(t)
t

≤ ϕ1 – d1
1
t

∫ t

0
P(s) ds +

m1(t)
t

.

Applying Lemma 5, we can derive

lim
t→+∞ sup

1
t

∫ t

0
P(s) ds ≤ ϕ1

d1
a.s., (23)

provided ϕ1 > 0.
(2) For Eq. (22), by applying Eq. (23), we can get

ln F(t)
t

≤ β lim
t→+∞ sup

1
t

∫ t

0
P(s) ds – d2

1
t

∫ t

0
F(s) ds – ϕ2 +

m2(t)
t

.

Because of limt→+∞ m2(t)
t = 0 a.s., thus we can get

lim
t→+∞ sup

ln F(t)
t

≤ β lim
t→+∞ sup t–1

∫ t

0
P(s) ds – ϕ2 =

βϕ1

d1
– ϕ2 a.s.

If ϕ1 < 0, then limt→+∞ F(t) = 0 a.s., that is, the fish population goes to extinction with
probability one. Applying Lemma 5 again, if βϕ1 ≥ ϕ2d1, we have

lim
t→+∞ sup

1
t

∫ t

0
F(s) ds ≤ β limt→+∞ sup t–1 ∫ t

0 P(s) ds – ϕ2

d2
=

βϕ1 – ϕ2d1

d1d2
a.s.

This completes the proof. �
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Remark 2 From (1) of Theorem 6, one can find that ϕ1 is a threshold that determines
whether phytoplankton will die out or survive in the future. From (2) of Theorem 6, it is
worth noting that if the phytoplankton population is extinct, the fish population that live
on the phytoplankton will eventually go to extinction with probability one.

7 Numerical simulations
In this part, we numerically study the resulting dynamics of system (1) and system (2) ob-
tained in previous sections, in order to further explore the phytoplankton–fish dynamics.
As an example, we choose such set of parameter values as follows: α = 0.8, β = 0.6, γ = 4,
ρ = 0.5, d2 = 0.8, d1 = 0.2, μ1 = 0.8, r = 1.5, h1 = 0.3 and h2 = 0.8, where some of the pa-
rameters are derived from the literature [47]. These parameters are used for the following
numerical simulations.

We first analyze the dynamics of system (1) in the absence of noise perturbations. For the
parameters selected above, based on Theorem 1, dy direct calculations, it is not difficult
to derive E∗ = (3.8, 0.55). Taking ρ and h1 as control parameters, the positive equilibrium
point E∗ in system (1) with respect to parameters ρ and h1 are displayed in Fig. 1. From
Fig. 1(a), it is evident that the parameter ρ can promote the growth of phytoplankton
population. The growth of fish population, by contrast, is restrained by the parameter ρ

(see Fig. 1(b)). This result indicates that toxin released by phytoplankton is advantage for
the growth of phytoplankton but is disadvantage for the growth of fish. For parameter h1,
Figs. 1(c) and 1(d) indicate that both the growth of phytoplankton and fish are restrained
by parameter h1. Obviously, the growth of phytoplankton and fish in system (1) can be
significantly influenced by the toxin liberation rate and harvesting level. From Theorem 2,
we see that all the trajectories of P(t) and F(t) in system (1) converge to the positive equi-
librium E∗ = (3.8, 0.55) as time goes on, which implies that it is globally asymptotically
stable, as is shown in Fig. 2. Next, we focus on the effects of white noise on the dynamics
of system (2) using the method in [48]. Taking δ1 and δ2 as control parameters, the param-

Figure 1 Bifurcation diagrams of phytoplankton and fish in the deterministic system (1) with respect to toxin
liberation rate ρ and harvesting level h1. (a) For phytoplankton related to ρ . (b) For fish related to ρ . (c) For
phytoplankton related to h1. (d) For fish related to h1
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Figure 2 The global asymptotical stability of the positive equilibrium E∗(3.8, 0.55) in deterministic system (1).
(a) Time series diagram. (b) Phase diagram. The parameters are α = 0.8, β = 0.6, γ = 4, ρ = 0.5, d2 = 0.8,
d1 = 0.2, μ1 = 0.8, r = 1.5, h1 = 0.3 and h2 = 0.8

Figure 3 Persistence and stochastic extinction of phytoplankton and fish in system (2). (a) Bifurcation
diagram related to δ1 and δ2, where I denotes that phytoplankton is persistent but fish are extinct, II implies
that phytoplankton and fish are persistent and III indicates that phytoplankton and fish are extinct. (b) The
solutions of system (2) with different noise intensities, where (1) for (δ1,δ2) = (0.1, 1.4), (2) for (δ1,δ2) = (0.1, 0.2)
and (3) for (δ1,δ2) = (1.3, 1.4)

eter plane δ1 – δ2 can be divided into three parts according to Theorem 6 (see Fig. 3(a)).
In region I of Fig. 3(a), the phytoplankton population is persistent, but extinction of fish
population occurs. However, phytoplankton population and fish population are both per-
sistent in the mean in region II. When noise intensity δ1 is beyond the critical value (i.e.
entering region III), both phytoplankton population and fish population will be extinct
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Figure 4 The existence of stationary distribution for system (2). (a) Bifurcation diagram with respect to δ1 and
δ2, where I indicates that there is no stationary distribution for system (2) and II denotes that there is a
stationary distribution for system (2). (b) The histogram of probability density function of phytoplankton and
fish for system (2), where the gray smoothed curve signifies the probability density function of phytoplankton
or fish

with probability one. More specifically, we take (δ1, δ2) = (0.1, 1.4), (0.1, 0.2), (1.3, 1.4), then
the corresponding numerical solutions of system (2) are given in Fig. 3(b).

When we analyze the existence of a stationary distribution, it is shown from Fig. 4(a)
that the parameter plane δ1 – δ2 can be divided into two regions, where the station-
ary distribution does not exist in region I but exists in region II. For further investiga-
tion, in the persistent case of both phytoplankton and fish populations, we further adopt
(δ1, δ2) = (0.1, 0.2), (0.3, 0.2), (0.5, 0.2) and (0.7, 0.2). By Theorem 4, the existence condi-
tions for the stationary distribution are satisfied. Consequently, the stationary distribu-
tion of phytoplankton P(t) and fish F(t) are obtained from 10,000 numerical simulations
at time 200. The corresponding distributions are presented in Fig. 4(b). From (i) to (iv),
it can be seen that the significant change in the stationary distribution with the increas-
ing magnitude of noise intensities, which indicates that the mean value and skewness of
the distribution for P(t) and F(t) are varying as the noise intensities increase. More pre-
cisely, for the phytoplankton population, when (δ1, δ2) = (0.1, 0.2), the distribution appears
closer to the normal distribution (see (i) in Fig. 4(b)), but as noise intensities increase to
(δ1, δ2) = (0.7, 0.2), the distribution is positively skewed (see (ii) in Fig. 4(b)).

For the case (δ1, δ2) = (0.1, 0.2) in Fig. 4, we only vary ρ = 0.2, 0.4 and 0.6, it is found that
the height of the probability density function of phytoplankton in system (2) is decreasing
as the toxin liberation rate ρ increases (see Fig. 5). Furthermore, when the parameter h1

varies, it is observed that the biomass of phytoplankton and fish in system (2) decreases
with the increase of h1, which are clearly shown in Fig. 6(a) and Fig. 6(b), respectively; if the
value of h1 continues to increase, both phytoplankton and fish populations will eventually
go to extinction, as are demonstrated in Fig. 6(c) and Fig. 6(d), respectively. Comparing
Fig. 6(a) and Fig. 6(c) (or Fig. 6(b) and Fig. 6(d)), it can be seen that the irregularity of
random variation and the range of the fluctuations of P(t) (or F(t)) decrease as harvest
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Figure 5 Histograms of probability density function for P(t) in system (2) with 10,000 simulation runs and
three different values of ρ . (a) For ρ = 0.2. (b) For ρ = 0.4. (c) For ρ = 0.6

Figure 6 Effects of harvesting on the phytoplankton–fish dynamics in system (2) with different values of h1.
(a)–(b) The red line for h1 = 0.3, green line for h1 = 0.5 and blue line for h1 = 0.7. (c)–(d) The red line for
h1 = 0.8, green line for h1 = 1.2 and blue line for h1 = 1.9

rate h1 increases properly (see red and green curves). This indicates that the appropriate
harvesting strategy may be beneficial to the persistence of phytoplankton and fish popu-
lations. Comparing Fig. 6(c) and Fig. 6(d), one can find that with the increase of h1, the
phytoplankton P(t) is persistent but fish F(t) goes extinct (see the green curve in Fig. 6(c)
and Fig. 6(d)), which suggests that if the phytoplankton on which herbivorous fish lives is
harvested in large quantities, the fish population will not have enough food to survive.

In order to explore the relationships between the positive solution of system (2) and
the positive equilibrium E∗ of system (1), we choose two sets of noise intensity values
(δ1, δ2) = (0.01, 0.02) and (δ1, δ2) = (0.2, 0.4), respectively, and then the corresponding re-
sults are displayed by Fig. 7, which show that the positive solutions of the stochastic sys-
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Figure 7 The evolution of P(t) for the stochastic system (2) and its deterministic system (1) with different
noise intensities. (a) For (δ1,δ2) = (0.01, 0.02). (b) For (δ1,δ2) = (0.2, 0.4)

tem (2) are oscillating around the steady state E∗ = (3.8, 0.55) of system (1) (see Fig. 7).
Furthermore, it can be seen that the irregularity of stochastic variation of the solutions
in Fig. 7(b) is stronger than that in Fig. 7(a), and the range of fluctuation of the solutions
is larger than that in Fig. 7(a). By comparison, it can be asserted that the smaller the ran-
dom environmental fluctuation is, the closer the solutions are to the steady state E∗, which
agrees well with Remark 1.

8 Conclusions
In this paper we proposed a phytoplankton–fish model under random environmental fluc-
tuations (i.e. system (2)), where the effects of harvesting and toxin-producing phytoplank-
ton are both considered. In order to discuss the effect of random environmental fluctua-
tions on phytoplankton–fish dynamics, the phytoplankton–fish model without stochastic
effect was presented firstly (i.e. system (1)), and it was found by analysis that the posi-
tive equilibrium is globally asymptotically stable if it exists in system (1), which implies
that phytoplankton population and fish population can coexist at the positive equilibrium
eventually. In system (1), when the positive equilibrium does not exist, fish population is
always extinct, but the permanence of phytoplankton population depends upon the har-
vesting level.

However, when we take random environmental fluctuations into consideration, popu-
lation extinction can occur from stochastic dynamic viewpoint even if the positive equi-
librium exists in system (1). By constructing stochastic Lyapunov function, it has been
derived that the system (2) has a unique stationary distribution, and the unqiue station-
ary distribution lies in the interior of the first quadrant using the geometric structure of
invariant set, which means that the solutions of the system remain the almost sure per-
manence and uniform boundedness. Furthermore, we obtained the sufficient conditions
guaranteeing the stochastic extinction and persistence in the mean of each population.

Additionally, numerical analysis indicated that the small random environmental fluctua-
tions can ensure the existence of a unique stationary distribution denoting the persistence
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of phytoplankton and fish in system (2), while the large random environmental fluctua-
tions can lead to the extinction of the two populations, even if the unique positive equilib-
rium was globally asymptotically stable in system (1). Furthermore, numerical simulations
shows that the increase of harvest rate can reduce the irregularity of random variation and
the range of fluctuation of the phytoplankton and fish, and the larger harvest rate could
lead these populations to go extinct eventually (see Fig. 6). Consequently, an appropriate
harvesting strategy may be beneficial to the balance of ecosystems.

Moreover, it is worth noting that system (2) almost preserves the property of the global
stability when the white noise intensities are much smaller. In this case, we can ignore the
effects of white noise, and phytoplankton–fish dynamic can be presented approximately
using of system (1). However, the larger intensities of white noise can force the solution of
system (2) to oscillate strongly around the positive steady state E∗, even the extinction of
population can emerge. Therefore, in these cases, we cannot ignore the effects of random
environmental fluctuations.

The numerical simulations are agreement with theoretical results very well, which
indicates that the mathematical models proposed in this paper are feasible to study
phytoplankton–fish dynamics. Nevertheless, some other factors that can affect the growth
of phytoplankton, such as cell size [49], deserve further investigation. These will be left for
our future work.
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