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Abstract
In this paper, we introduce the concept of square-mean piecewise almost
automorphic function. By using the theory of semigroups of operators and the
contraction mapping principle, the existence of square-mean piecewise almost
automorphic mild solutions for linear and nonlinear impulsive stochastic evolution
equations is investigated. In addition, the exponential stability of square-mean
piecewise almost automorphic mild solutions for nonlinear impulsive stochastic
evolution equations is obtained by the generalized Gronwall–Bellman inequality.
Finally, we provide an illustrative example to justify the results.
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1 Introduction
The concept of the almost automorphic function is proposed by Bochner in the paper
[1], which is an important generalization of the classical almost periodic function and is
related to some aspects of differential geometry. Also, the almost automorphic solutions
for differential systems have been extensively investigated in [2–9]. Moreover, the square-
mean almost automorphic function is defined as almost automorphic function in stochas-
tic process, which has more extensive applications (see [10–15]). On the other hand, the
theory of impulsive evolution equations has become an active area of investigation, since
it fully considers the impact of instantaneous changes on the whole process, and has the
characteristics of differential equations and difference equations. There are several inter-
esting results concerning the existence and stability of solutions, especially for piecewise
almost periodic type solutions and piecewise almost automorphic type solutions for im-
pulsive evolution equations (see [16–25]). In [21], the authors introduced a PC-almost
automorphic function and investigated the existence of PC-almost automorphic solution
to impulsive fractional functional differential equations by α-resolvent family of bounded
linear operators, Sadovskii’s fixed point theorem and Schauder’s fixed point theorem. In
[25], by introducing the concept of equipotentially almost automorphic sequence, the def-
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inition of weighted piecewise pseudo almost automorphic function on time scale is pro-
posed, and the existence and stability of the weighted piecewise pseudo almost automor-
phic mild solutions to abstract impulsive dynamic equation on time scale is investigated.

However, besides impulsive effects, stochastic effects likewise exist in real systems.
Therefore, we must import the stochastic effects into the investigation of impulsive evolu-
tion systems. Recently, many authors studied the square-mean piecewise almost periodic
solutions for impulsive stochastic evolution equations (see [26–30]). In [28], the authors
introduced the concept of square-mean piecewise almost periodic functions for impul-
sive stochastic processes, and studied the existence and stability of square-mean piecewise
almost periodic solutions for linear and nonlinear impulsive stochastic differential equa-
tions. Furthermore, Yan et al. [31–34] discussed the square-mean piecewise pseudo almost
periodic solutions and the square-mean piecewise weighted pseudo almost periodic solu-
tions for impulsive stochastic evolution equations. However, there are few studies on the
square-mean piecewise almost automorphic solutions of impulsive stochastic evolution
equations.

Based on this, in this paper, we will construct a square-mean piecewise almost automor-
phic function and study its composite properties. Further we use these properties to prove
the existence of the square-mean piecewise almost automorphic mild solutions for two
types of impulsive stochastic evolution equations. Also, the stability of the square-mean
piecewise almost automorphic mild solutions for impulsive stochastic evolution equations
is studied by the generalized Gronwall–Bellman inequality. In the end, we give an example
to illustrate our results.

2 Preliminaries
Throughout this paper, let (H ,‖ · ‖) be a real and separable Hilbert space. Let (Ω , F , P) be
a complete probability space. Let L2(P, H) be a space of the H-valued random variables
x such that E‖x‖2 =

∫
Ω

‖x‖2 dP < ∞, and (L2(P, H),‖ · ‖2) is a Hilbert space when it is
equipped with the norm ‖x‖2 = (

∫
Ω

‖x‖2 dP)1/2.

Definition 2.1 A stochastic process x : R → L2(P, H) is said to be stochastically bounded
if there exists M > 0 such that E‖x(t)‖2 ≤ M for all t ∈ R.

Definition 2.2 A stochastic process x : R → L2(P, H) is said to be stochastically continu-
ous, if

lim
t→s

E
∥
∥x(t) – x(s)

∥
∥2 = 0

for all s ∈ R.

Let T = {{ti}i∈Z | γ = infi∈Z(ti+1 – ti) > 0}. For {ti}i∈Z ∈ T , let PC(R, L2(P, H)) be the
space consisting of all stochastically bounded piecewise continuous functions f : R →
L2(P, H) such that f is stochastically continuous in t �= ti, i ∈ Z, and f (t+

i ), f (t–
i ) exist,

f (ti) = f (t–
i ). Let PC(R × L2(P, H), L2(P, H)) be the space formed by all stochastically uni-

formly bounded piecewise continuous functions f : R × L2(P, H) → L2(P, H) such that
f (·, x) ∈ PC(R, L2(P, H)) and f (t, ·) is continuous.

Definition 2.3 A function φ ∈ PC(R, L2(P, H)) is said to be square-mean piecewise almost
automorphic if the following conditions are fulfilled:
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(i) {tj
i : i ∈ Z}j∈Z are equipotentially almost automorphic, that is, for any sequence

{sn} ⊆ Z, there exists a subsequence {τn} such that

lim
n→∞ tτn

k = ηk

and

lim
n→∞η

–τn
k = tk

for each k ∈ Z.
(ii) For any sequence {s′

n} ⊆ R, there exist a subsequence {sn} ⊆ {s′
n} and

ϕ ∈ PC(R, L2(P, H)) such that

lim
n→∞ E

∥
∥φ(t + sn) – ϕ(t)

∥
∥2 = 0

and

lim
n→∞ E

∥
∥ϕ(t – sn) – φ(t)

∥
∥2 = 0

for all t ∈ R and t �= ti.
Denote by AAT (R, L2(P, H)) the set of all square-mean piecewise almost automorphic

functions.

Definition 2.4 A function f ∈ PC(R×L2(P, H), L2(P, H)) is said to be square-mean piece-
wise almost automorphic in t ∈ R uniformly in x ∈ L2(P, H), if for any t ∈ R and t �= ti,
x ∈ L2(P, H) such that f (·, x) ∈ AAT (R, L2(P, H)). Denote by AAT (R × L2(P, H), L2(P, H))
the set of all such functions.

Theorem 2.1 Let φ ∈ AAT (R, L2(P, H)), then R(φ) is a relatively compact set of L2(P, H).

Proof Let {φ(xn)} ⊆ L2(P, H). Since φ ∈ AAT (R, L2(P, H)), by Definition 2.3, there exists a
subsequence {x′

n} ⊆ {xn} such that limn→∞ E‖φ(x′
n) – ϕ(0)‖2 = 0, that is, {φ(x′

n)} is the con-
vergent subsequence of {φ(xn)} in L2(P, H). Therefore, R(φ) = {φ(x) : x ∈ R} is a relatively
compact set of L2(P, H). �

Theorem 2.2 Assume f ∈ AAT (R × L2(R, H), L2(P, H)), and that f satisfies the following
Lipschitz continuous condition: there exists a number L > 0 such that, for any x, y ∈ L2(P, H),

E
∥
∥f (t, x) – f (t, y)

∥
∥2 ≤ LE‖x – y‖2, t ∈ R, t �= ti.

If g ∈ AAT (R, L2(P, H)), then f (·, g(·)) ∈ AAT (R, L2(P, H)).

Proof Since g ∈ AAT (R, L2(P, H)) and f ∈ AAT (R × L2(R, H), L2(P, H)), for any sequence
{sn} ⊆ Z, there exists a subsequence {s′

n} ⊆ {sn} such that

lim
n→∞ E

∥
∥f

(
t + s′

n, x
)

– f̃ (t, x)
∥
∥2 = 0, (1)
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lim
n→∞ E

∥
∥̃f

(
t – s′

n, x
)

– f (t, x)
∥
∥2 = 0, (2)

lim
n→∞ E

∥
∥g

(
t + s′

n
)

– g̃(t)
∥
∥2 = 0, (3)

lim
n→∞ E

∥
∥̃g

(
t – s′

n
)

– g(t)
∥
∥2 = 0. (4)

Let F(t) = f (t, g(t)), G(t) = f̃ (t, g̃(t)), therefore, we only need to prove

lim
n→∞ E

∥
∥F

(
t + s′

n
)

– G(t)
∥
∥2 = 0

and

lim
n→∞ E

∥
∥G

(
t – s′

n
)

– F(t)
∥
∥2 = 0.

Since E‖f (t, x) – f (t, y)‖2 ≤ LE‖x – y‖2, we have

E
∥
∥F

(
t + s′

n
)

– G(t)
∥
∥2

= E
∥
∥f

(
t + s′

n, g
(
t + s′

n
))

– f̃
(
t, g̃(t)

)∥∥2

= E
∥
∥f

(
t + s′

n, g
(
t + s′

n
))

– f
(
t + s′

n, g̃(t)
)

+ f
(
t + s′

n, g̃(t)
)

– f̃
(
t, g̃(t)

)∥∥2

≤ 2E
∥
∥f

(
t + s′

n, g
(
t + s′

n
))

– f
(
t + s′

n, g̃(t)
)∥
∥2 + 2E

∥
∥f

(
t + s′

n, g̃(t)
)

– f̃
(
t, g̃(t)

)∥
∥2

≤ 2LE
∥
∥g

(
t + s′

n
)

– g̃(t)
∥
∥2 + 2E

∥
∥f

(
t + s′

n, g̃(t)
)

– f̃
(
t, g̃(t)

)∥
∥2. (5)

Combining (1), (3) and (5), we have

lim
n→∞ E

∥
∥F

(
t + s′

n
)

– G(t)
∥
∥2 = 0.

Similarly,

lim
n→∞ E

∥
∥G

(
t – s′

n
)

– F(t)
∥
∥2 = 0.

Therefore, f (·, g(·)) ∈ AAT (R, L2(P, H)). �

Lemma 2.1 If φ ∈ AAT (R, L2(P, H)), then {φ(ti) : i ∈ Z} is a square-mean almost automor-
phic sequence.

The proof of Lemma 2.1 is similar to the proof of Lemma 3.12 in [25], one may refer to
[25] for more details.

Theorem 2.3 Assume φ ∈ AAT (R, L2(P, H)), {Ii(·) : i ∈ Z} is a square-mean almost auto-
morphic function sequence, that is, for any x ∈ L2(P, H), {Ii(x) : i ∈ Z} is a square-mean
almost automorphic sequence, if Ii satisfies the following Lipschitz continuous condition:
there exists a number L > 0, for any x, y ∈ L2(P, H), i ∈ Z,

E
∥
∥Ii(x) – Ii(y)

∥
∥2 ≤ LE‖x – y‖2,

then {Ii(φ(ti)) : i ∈ Z} is a square-mean almost automorphic sequence.
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Proof Since φ ∈ AAT (R, L2(P, H)), by Lemma 2.1, {φ(ti) : i ∈ Z} is a square-mean almost
automorphic sequence. Let

I(t, x) = Ii(x) + (t – i)
[
Ii+1(x) – Ii(x)

]
, i ≤ t < i + 1, i ∈ Z

and

Φ(t) = φ(ti) + (t – i)
[
φ(ti+1) – φ(ti)

]
, i ≤ t < i + 1, i ∈ Z.

Since {Ii(x) : i ∈ Z} is a square-mean almost automorphic sequence, by Lemma 2.1, I ∈
AA(R × L2(P, H), L2(P, H)), Φ ∈ AA(R, L2(P, H)).

For any t ∈ R, there exists i ∈ Z such that |t – i| ≤ 1, then

E
∥
∥I(t, x) – I(t, y)

∥
∥2

= E
∥
∥Ii(x) + (t – i)

[
Ii+1(x) – Ii(x)

]
– Ii(y) – (t – i)

[
Ii+1(y) – Ii(y)

]∥∥2

≤ E
∥
∥Ii(x) – Ii(y) + |t – i|[Ii+1(x) – Ii+1(y)

]
+ |t – i|[Ii(x) – Ii(y)

]∥
∥2

≤ 3E
∥
∥Ii(x) – Ii(y)

∥
∥2 + 3|t – i|2E

∥
∥Ii+1(x) – Ii+1(y)

∥
∥2

+ 3|t – i|2E
∥
∥Ii(x) – Ii(y)

∥
∥2

≤ 3LE‖x – y‖2 + 3|t – i|2LE‖x – y‖2 + 3|t – i|2LE‖x – y‖2

≤ 9LE‖x – y‖2.

By the composite property of the square-mean almost automorphic function, we have
I(·,Φ(·)) ∈ AA(R, L2(P, H)).

Thus, {I(i,Φ(i)) : i ∈ Z} is a square-mean almost automorphic sequence, that is,
{Ii(φ(ti)) : i ∈ Z} is a square-mean almost automorphic sequence. �

We list the following result for a square-mean piecewise almost automorphic function,
one may refer to [21] for more details.

Lemma 2.2 Assume f , g ∈ AAT (R, L2(P, H)), the sequence {xi}i∈Z is a square-mean almost
automorphic, then, for any ε > 0 and {s′

n} ⊆ R, {τ ′
n} ⊆ Z, there exist subsequences {sn} ⊆ {s′

n},
{τn} ⊆ {τ ′

n} and f̃ , g̃ ∈ PC(R, L2(P, H)), {yi}i∈Z such that
(i) E‖f (t + sn) – f̃ (t)‖2 < ε and E‖̃f (t – sn) – f (t)‖2 < ε for all t ∈ R, |t – ti| > ε, {sn} ⊆ R,

i ∈ Z.
(ii) E‖g(t + sn) – g̃(t)‖2 < ε and E‖̃g(t – sn) – g(t)‖2 < ε for all t ∈ R, |t – ti| > ε, {sn} ⊆ R,

i ∈ Z.
(iii) E‖xi+τn – yi‖2 < ε and E‖yi–τn – xi‖2 < ε for all {τn} ⊆ Z, i ∈ Z.
(iv) E‖ti+τn – ti – sn‖2 < ε for all {τn} ⊆ Z, {sn} ⊆ R, i ∈ Z.

3 Square-mean piecewise almost automorphic mild solutions for impulsive
stochastic evolution equations

In this part, we study the existence and stability of the square-mean piecewise almost
automorphic mild solution for impulsive stochastic evolution equations.
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3.1 Linear impulsive stochastic evolution equations
Consider the following linear impulsive stochastic evolution equations:

⎧
⎨

⎩

dx(t) = [Ax(t) + f (t)] dt + g(t) dw(t), t ∈ R, t �= ti, i ∈ Z,

�x(ti) = x(t+
i ) – x(t–

i ) = βi, i ∈ Z,
(6)

where A is an infinitesimal generator of C0-semigroup {T(t) : t ≥ 0} such that, for all t ≥ 0,
‖T(t)‖ ≤ Me–δt with M, δ > 0, and w(t) is a two-sided standard one-dimensional Brownian
motion, which is defined on the filtered probability space (Ω , F , P, Fσ ) with Ft = σ {w(u) –
w(v) : u, v ≤ t}.

Definition 3.1 A function x ∈ PC(R, L2(P, H)) is called a mild solution of linear impulsive
stochastic evolution equations (6), if

x(t) = T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f (s) ds +
∫ t

σ

T(t – s)g(s) dw(s) +
∑

σ<ti<t
T(t – ti)βi,

where t > σ , σ �= ti, i ∈ Z. If x ∈ AAT (R, L2(P, H)), then x is called the square-mean piece-
wise almost automorphic mild solution of Eq. (6).

Theorem 3.1 Assume f , g ∈ AAT (R, L2(P, H)), {βi : i ∈ Z} is a square-mean almost au-
tomorphic sequence, then Eq. (6) has a square-mean piecewise almost automorphic mild
solution.

Proof From semigroup theory, we know

x(t) = T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f (s) ds +
∫ t

σ

T(t – s)g(s) dw(s), t > σ

is a mild solution to

dx(t) =
[
Ax(t) + f (t)

]
dt + g(t) dw(t).

For any t ∈ (σ , ti],

x
(
t–
1
)

= T(t1 – σ )x(σ ) +
∫ t1

σ

T(t1 – s)f (s) ds +
∫ t1

σ

T(t1 – s)g(s) dw(s),

by using �x(ti) = x(t+
i ) – x(t–

i ) = βi, we get

x
(
t+
1
)

= T(t1 – σ )x(σ ) +
∫ t1

σ

T(t1 – s)f (s) ds +
∫ t1

σ

T(t1 – s)g(s) dw(s) + β1.

If t ∈ (t1, t2], then

x(t) = T(t – t1)x
(
t+
1
)

+
∫ t

t1

T(t – s)f (s) ds +
∫ t

t1

T(t – s)g(s) dw(s)

= T(t – t1)
[

T(t1 – σ )x(σ ) +
∫ t1

σ

T(t1 – s)f (s) ds
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+
∫ t1

σ

T(t1 – s)g(s) dw(s) + β1

]

+
∫ t

t1

T(t – s)f (s) ds +
∫ t

t1

T(t – s)g(s) dw(s)

= T(t – σ )x(σ ) +
∫ t1

σ

T(t – s)f (s) ds +
∫ t1

σ

T(t – s)g(s) dw(s)

+ T(t – t1)β1 +
∫ t

t1

T(t – s)f (s) ds +
∫ t

t1

T(t – s)g(s) dw(s)

= T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f (s) ds +
∫ t

σ

T(t – s)g(s) dw(s)

+ T(t – t1)β1.

Since

x
(
t–
2
)

= T(t2 – σ )x(σ ) +
∫ t2

σ

T(t2 – s)f (s) ds +
∫ t2

σ

T(t2 – s)g(s) dw(s) + T(t2 – t1)β1,

by �x(ti) = x(t+
i ) – x(t–

i ) = βi, we get

x
(
t+
2
)

= x
(
t–
2
)

+ β2

= T(t2 – σ )x(σ ) +
∫ t2

σ

T(t2 – s)f (s) ds +
∫ t2

σ

T(t2 – s)g(s) dw(s)

+ T(t2 – t1)β1 + β2.

If t ∈ (t2, t3], then

x(t) = T(t – t2)x
(
t+
2
)

+
∫ t

t2

T(t – s)f (s) ds +
∫ t

t2

T(t – s)g(s) dw(s)

= T(t – t2)
[

T(t2 – σ )x(σ ) +
∫ t2

σ

T(t2 – s)f (s) ds

+
∫ t2

σ

T(t2 – s)g(s) dw(s) + T(t2 – t1)β1 + β2

]

+
∫ t

t2

T(t – s)f (s) ds +
∫ t

t2

T(t – s)g(s) dw(s)

= T(t – σ )x(σ ) +
∫ t2

σ

T(t – s)f (s) ds +
∫ t2

σ

T(t – s)g(s) dw(s)

+ T(t – t1)β1 + T(t – t2)β2 +
∫ t

t2

T(t – s)f (s) ds +
∫ t

t2

T(t – s)g(s) dw(s)

= T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f (s) ds +
∫ t

σ

T(t – s)g(s) dw(s)

+ T(t – t1)β1 + T(t – t2)β2.
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Therefore, reiterating this procedure, we get

x(t) = T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f (s) ds +
∫ t

σ

T(t – s)g(s) dw(s)

+
∑

σ<ti<t
T(t – ti)βi. (7)

By Definition 3.1, (7) is a mild solution of Eq. (6), therefore, we only need to prove the
above (7) is a square-mean piecewise almost automorphic process.

Let σ → –∞, then ‖T(t – σ )‖ ≤ Me–δ(t–σ ) = Me–δteδσ → 0, by Definition 2.1, x(σ ) is
stochastically bounded, so (7) can be defined as

x(t) =
∫ t

–∞
T(t – s)f (s) ds +

∫ t

–∞
T(t – s)g(s) dw(s) +

∑

ti<t
T(t – ti)βi

�= x1(t) + x2(t) + x3(t).

Next we show that x ∈ AAT (R, L2(P, H)). The following verification procedure is divided
into three steps.

Step 1. x1 ∈ AAT (R, L2(P, H))
Since f ∈ AAT (R, L2(P, H)), by Definition 2.3, for any sequence {s′

n} ⊆ R, there exist a
subsequence {sn} ⊆ {s′

n} and f̃ ∈ PC(R, L2(P, H)) such that

lim
n→∞ E

∥
∥f (t + sn) – f̃ (t)

∥
∥2 = 0

and

lim
n→∞ E

∥
∥̃f (t – sn) – f (t)

∥
∥2 = 0

for every t ∈ R and t �= ti.
Let x̃1(t) =

∫ t
–∞ T(t – s)̃f (s) ds, then

E
∥
∥x1(t + sn) – x̃1(t)

∥
∥2

= E
∥
∥
∥
∥

∫ t+sn

–∞
T(t + sn – s)f (s) ds –

∫ t

–∞
T(t – s)̃f (s) ds

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∫ t

–∞
T(t – s)f (s + sn) ds –

∫ t

–∞
T(t – s)̃f (s) ds

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∫ t

–∞
T(t – s)

[
f (s + sn) – f̃ (s)

]
ds

∥
∥
∥
∥

2

≤ E
(∫ t

–∞

∥
∥T(t – s)

∥
∥
∥
∥f (s + sn) – f̃ (s)

∥
∥ds

)2

≤ E
(∫ t

–∞
Me–δ(t–s)∥∥f (s + sn) – f̃ (s)

∥
∥ds

)2

≤ E
(∫ t

–∞
M2e–δ(t–s) ds

∫ t

–∞
e–δ(t–s)∥∥f (s + sn) – f̃ (s)

∥
∥2 ds

)
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=
∫ t

–∞
M2e–δ(t–s) ds

∫ t

–∞
e–δ(t–s)E

∥
∥f (s + sn) – f̃ (s)

∥
∥2 ds

≤ M2

δ

∫ t

–∞
e–δ(t–s)E

∥
∥f (s + sn) – f̃ (s)

∥
∥2 ds.

Similarly,

E
∥
∥x̃1(t – sn) – x1(t)

∥
∥2 ≤ M2

δ

∫ t

–∞
e–δ(t–s)E

∥
∥̃f (s – sn) – f (s)

∥
∥2 ds.

So, by Lebesgue’s dominated convergence theorem, we get

lim
n→∞ E

∥
∥x1(t + sn) – x̃1(t)

∥
∥2 ≤ M2

δ

∫ t

–∞
e–δ(t–s) lim

n→∞ E
∥
∥f (s + sn) – f̃ (s)

∥
∥2 ds

and

lim
n→∞ E

∥
∥x̃1(t – sn) – x1(t)

∥
∥2 ≤ M2

δ

∫ t

–∞
e–δ(t–s) lim

n→∞ E
∥
∥̃f (s – sn) – f (s)

∥
∥2 ds.

Since limn→∞ E‖f (t + sn) – f̃ (t)‖2 = 0 and limn→∞ E‖̃f (t – sn) – f (t)‖2 = 0, x1 ∈ AAT (R,
L2(P, H)).

Step 2. x2 ∈ AAT (R, L2(P, H))
Since g ∈ AAT (R, L2(P, H)), by Lemma 2.2, for the above sequence {s′

n} ⊆ R, there exist a
subsequence {sn} ⊆ {s′

n} and g̃ ∈ PC(R, L2(P, H)) such that

lim
n→∞ E

∥
∥g(t + sn) – g̃(t)

∥
∥2 = 0

and

lim
n→∞ E

∥
∥̃g(t – sn) – g(t)

∥
∥2 = 0

for every t ∈ R and t �= ti.
Let x̃2(t) =

∫ t
–∞ T(t – s)̃g(s) dw(s), by the Ito integral, then

E
∥
∥x2(t + sn) – x̃2(t)

∥
∥2

= E
∥
∥
∥
∥

∫ t+sn

–∞
T(t + sn – s)g(s) dw(s) –

∫ t

–∞
T(t – s)̃g(s) dw(s)

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∫ t

–∞
T(t – s)g(s + sn) dw(s + sn) –

∫ t

–∞
T(t – s)̃g(s) dw(s)

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∫ t

–∞
T(t – s)

[
g(s + sn) – g̃(s)

]
dw̃(s)

∥
∥
∥
∥

2

≤
∫ t

–∞
E
∥
∥T(t – s)

[
g(s + sn) – g̃(s)

]∥∥2 ds

≤
∫ t

–∞
M2e–2δ(t–s)E

∥
∥g(s + sn) – g̃(s)

∥
∥2 ds.
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Similarly,

E
∥
∥x̃2(t – sn) – x2(t)

∥
∥2 ≤

∫ t

–∞
M2e–2δ(t–s)E

∥
∥̃g(s – sn) – g(s)

∥
∥2 ds.

So, by Lebesgue’s dominated convergence theorem, we get

lim
n→∞ E

∥
∥x2(t + sn) – x̃2(t)

∥
∥2 ≤

∫ t

–∞
M2e–2δ(t–s) lim

n→∞ E
∥
∥g(s + sn) – g̃(s)

∥
∥2 ds

and

lim
n→∞ E

∥
∥x̃2(t – sn) – x2(t)

∥
∥2 ≤

∫ t

–∞
M2e–2δ(t–s) lim

n→∞ E
∥
∥̃g(s – sn) – g(s)

∥
∥2 ds.

Since limn→∞ E‖g(t + sn) – g̃(t)‖2 = 0 and limn→∞ E‖̃g(t – sn) – g(t)‖2 = 0, x2 ∈ AAT (R,
L2(P, H)).

Step 3. x3 ∈ AAT (R, L2(P, H))
Since βi is a square-mean almost automorphic sequence, by Lemma 2.2, for any se-

quence {τ ′
n} ⊆ Z, there exists a subsequence {τn} ⊆ {τ ′

n} and β̃i is a stochastically bounded
piecewise continuous function sequence such that

lim
n→∞ E‖βi+τn – β̃i‖2 = 0

and

lim
n→∞ E‖β̃i–τn – βi‖2 = 0

for every i ∈ Z.
For ti < t ≤ ti+1, |t – ti| > ε, |t – ti+1| > ε, i ∈ Z, by Lemma 2.2, we have

t + sn > ti + ε + sn > ti+τn

and

ti+τn+1 > ti+1 + sn – ε > t + sn.

Therefore,

ti+τn+1 > t + sn > ti+τn .

Let x̃3(t) =
∑

ti<t T(t – ti)β̃i, by Lemma 2.2, then

E
∥
∥x3(t + sn) – x̃3(t)

∥
∥2 = E

∥
∥
∥
∥

∑

ti<t+sn

T(t + sn – ti)βi –
∑

ti<t
T(t – ti)β̃i

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

∑

ti–sn<t
T

(
t – (ti – sn)

)
βi –

∑

ti<t
T(t – ti)β̃i

∥
∥
∥
∥

2
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= E
∥
∥
∥
∥
∑

tj<t
T(t – tj)βj+τn –

∑

ti<t
T(t – ti)β̃i

∥
∥
∥
∥

2

= E
∥
∥
∥
∥
∑

ti<t
T(t – ti)βi+τn –

∑

ti<t
T(t – ti)β̃i

∥
∥
∥
∥

2

= E
∥
∥
∥
∥
∑

ti<t
T(t – ti)(βi+τn – β̃i)

∥
∥
∥
∥

2

≤ E
(∑

ti<t

∥
∥T(t – ti)

∥
∥‖βi+τn – β̃i‖

)2

≤ E
(∑

ti<t
Me–δ(t–ti)‖βi+τn – β̃i‖

)2

≤ E
(∑

ti<t
M2e–δ(t–ti)

∑

ti<t
e–δ(t–ti)‖βi+τn – β̃i‖2

)

≤ M2

1 – e–δγ

∑

ti<t
e–δ(t–ti)E‖βi+τn – β̃i‖2.

So, by Lebesgue’s dominated convergence theorem, we get

lim
n→∞ E

∥
∥x3(t + sn) – x̃3(t)

∥
∥2 ≤ M2

1 – e–δγ

∑

ti<t
e–δ(t–ti) lim

n→∞ E‖βi+τn – β̃i‖2

and

lim
n→∞ E

∥
∥x̃3(t – sn) – x3(t)

∥
∥2 ≤ M2

1 – e–δγ

∑

ti<t
e–δ(t–ti) lim

n→∞ E‖β̃i–τn – βi‖2.

Since limn→∞ E‖βi+τn – β̃i‖2 = 0 and limn→∞ E‖β̃i–τn – βi‖2 = 0, x3 ∈ AAT (R, L2(P, H)).
Thus, x ∈ AAT (R, L2(P, H)). �

3.2 Nonlinear impulsive stochastic evolution equations
Consider the following nonlinear impulsive stochastic evolution equation:

⎧
⎨

⎩

dx(t) = [Ax(t) + f (t, x(t))] dt + g(t, x(t)) dw(t), t ∈ R, t �= ti, i ∈ Z,

�x(ti) = x(t+
i ) – x(t–

i ) = Ii(x(ti)), i ∈ Z,
(8)

where f , g : R × L2(P, H) → L2(P, H), Ii : L2(P, H) → L2(P, H), i ∈ Z, and w(t) is a two-sided
standard one-dimensional Brownian motion defined on the filtered probability space
(Ω , F , P, Fσ ) with Ft = σ {w(u) – w(v) : u, v ≤ t}.

Definition 3.2 A function x ∈ PC(R, L2(P, H)) is called a mild solution of Eq. (8), if x sat-
isfies

x(t) = T(t – σ )x(σ ) +
∫ t

σ

T(t – s)f
(
s, x(s)

)
ds +

∫ t

σ

T(t – s)g
(
s, x(s)

)
dw(s)

+
∑

σ<ti<t
T(t – ti)Ii

(
x(ti)

)
,
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where t > σ , σ �= ti, i ∈ Z. If x ∈ AAT (R, L2(P, H)), then x is called a square-mean piecewise
almost automorphic mild solution of Eq. (8).

Theorem 3.2 Suppose Eq. (8) satisfies the following conditions:
(i) The operator A : D(A) ⊆ L2(P, H) → L2(P, H) is the infinitesimal generator of a

C0-semigroup {T(t) : t ≥ 0}, that is, there exist M, δ > 0 such that ‖T(t)‖ ≤ Me–δt ,
t ≥ 0.

(ii) The functions f , g ∈ AAT (R × L2(P, H), L2(P, H)), {Ii(·) : i ∈ Z} is a square-mean
almost automorphic function sequence, and there exist positive numbers L1, L2, L
such that

E
∥
∥f (t, x) – f (t, y)

∥
∥2 ≤ L1E‖x – y‖2,

E
∥
∥g(t, x) – g(t, y)

∥
∥2 ≤ L2E‖x – y‖2

and

E
∥
∥Ii(x) – Ii(y)

∥
∥2 ≤ LE‖x – y‖2.

If 3M2

δ2 L1 + 3M2

2δ
L2 + 3M2

(1–e–δγ )2 L < 1, then Eq. (8) has a square-mean piecewise almost auto-
morphic mild solution.

Proof Let

Γ ϕ(t) =
∫ t

–∞
T(t – s)f

(
s,ϕ(s)

)
ds +

∫ t

–∞
T(t – s)g

(
s,ϕ(s)

)
dw(s)

+
∑

ti<t
T(t – ti)Ii

(
ϕ(ti)

)
.

For any ϕ ∈ AAT (R, L2(P, H)), by (ii) and Theorem 2.2, we have f (·,ϕ(·)), g(·,ϕ(·)) ∈
AAT (R, L2(P, H)), by Theorem 2.3, {Ii(ϕ(ti)) : i ∈ Z} is a square-mean almost automorphic
sequence. Similar to the proof of Theorem 3.1, we have Γ ϕ(t) ∈ AAT (R, L2(P, H)).

For any ϕ,ψ ∈ AAT (R, L2(P, H)), by (a + b + c)2 ≤ 3(a2 + b2 + c2) and Cauchy–Schwarz
inequality, we have

E
∥
∥Γ ϕ(t) – Γ ψ(t)

∥
∥2

= E
∥
∥
∥
∥

∫ t

–∞
T(t – s)

[
f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)]
ds

+
∫ t

–∞
T(t – s)

[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]
dw(s)

+
∑

ti<t
T(t – ti)

[
Ii
(
ϕ(ti)

)
– Ii

(
ψ(ti)

)]
∥
∥
∥
∥

2

≤ 3E
∥
∥
∥
∥

∫ t

–∞
T(t – s)

[
f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)]
ds

∥
∥
∥
∥

2

+ 3E
∥
∥
∥
∥

∫ t

–∞
T(t – s)

[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]
dw(s)

∥
∥
∥
∥

2
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+ 3E
∥
∥
∥
∥
∑

ti<t
T(t – ti)

[
Ii
(
ϕ(ti)

)
– Ii

(
ψ(ti)

)]
∥
∥
∥
∥

2

≤ 3E
[∫ t

–∞

∥
∥T(t – s)

∥
∥
∥
∥f

(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥∥ds
]2

+ 3
∫ t

–∞
E
∥
∥T(t – s)

[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]∥
∥2 ds

+ 3E
[∑

ti<t

∥
∥T(t – ti)

∥
∥
∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥
]2

≤ 3E
[∫ t

–∞
Me–δ(t–s)∥∥f

(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥
∥ds

]2

+ 3
∫ t

–∞
M2e–2δ(t–s)E

∥
∥g

(
s,ϕ(s)

)
– g

(
s,ψ(s)

)∥∥2 ds

+ 3E
[∑

ti<t
Me–δ(t–ti)

∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥
]2

≤ 3
∫ t

–∞
M2e–δ(t–s) ds

∫ t

–∞
e–δ(t–s)E

∥
∥f

(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥
∥2 ds

+ 3
∫ t

–∞
M2e–2δ(t–s)E

∥
∥g

(
s,ϕ(s)

)
– g

(
s,ψ(s)

)∥
∥2 ds

+ 3
(∑

ti<t
M2e–δ(t–ti)

)(∑

ti<t
e–δ(t–ti)E

∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥2

)

≤ 3M2

δ

∫ t

–∞
e–δ(t–s)L1E

∥
∥ϕ(s) – ψ(s)

∥
∥2 ds

+ 3M2
∫ t

–∞
e–2δ(t–s)L2E

∥
∥ϕ(s) – ψ(s)

∥
∥2 ds

+
3M2

1 – e–δγ

∑

ti<t
e–δ(t–ti)LE

∥
∥ϕ(ti) – ψ(ti)

∥
∥2

≤
[

3M2

δ

∫ t

–∞
e–δ(t–s)L1 ds + 3M2

∫ t

–∞
e–2δ(t–s)L2 ds

+
3M2

1 – e–δγ

∑

ti<t
e–δ(t–ti)L

]

E‖ϕ – ψ‖2

≤
[

3M2

δ2 L1 +
3M2

2δ
L2 +

3M2

(1 – e–δγ )2 L
]

E‖ϕ – ψ‖2.

Since 3M2

δ2 L1 + 3M2

2δ
L2 + 3M2

(1–e–δγ )2 L < 1, Γ is a contraction. Therefore, Eq. (8) has a square-
mean piecewise almost automorphic mild solution. �

Lemma 3.1 (Generalized Gronwall–Bellman inequality) Assume u ∈ PC(R, R) satisfies
the following inequality:

0 ≤ u(t) ≤ C +
∫ t

t′
ν(τ )u(τ ) dτ +

∑

t′<ti<t

βiu(ti), t ≥ t′,
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where C ≥ 0, βi ≥ 0, ν(τ ) > 0, then the following estimate holds for the function u(t):

u(t) ≤ C
∏

t′<ti<t

(1 + βi)e
∫ t

t′ ν(τ ) dτ .

Theorem 3.3 Suppose the conditions of Theorem 3.2 hold, if further that

1
γ

ln

(

1 +
4M2

1 – e–δγ
L
)

+
4M2

δ
L1 + 4M2L2 – δ < 0,

then Eq. (8) has an exponentially stable square-mean piecewise almost automorphic mild
solution.

Proof By Theorem 3.2, ϕ(t) is a solution of Eq. (8), then

ϕ(t) = T(t – σ )ϕ(σ ) +
∫ t

σ

T(t – s)f
(
s,ϕ(s)

)
ds +

∫ t

σ

T(t – s)g
(
s,ϕ(s)

)
dw(s)

+
∑

σ<ti<t
T(t – ti)Ii

(
ϕ(ti)

)
.

Let ψ(t) be a solution of Eq. (8), then

ψ(t) = T(t – σ )ψ(σ ) +
∫ t

σ

T(t – s)f
(
s,ψ(s)

)
ds +

∫ t

σ

T(t – s)g
(
s,ψ(s)

)
dw(s)

+
∑

σ<ti<t
T(t – ti)Ii

(
ψ(ti)

)
.

Thus, by Cauchy–Schwarz inequality and the Ito integral, we have

E
∥
∥ϕ(t) – ψ(t)

∥
∥2

= E
∥
∥
∥
∥T(t – σ )

[
ϕ(σ ) – ψ(σ )

]
+

∫ t

σ

T(t – s)
[
f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)]
ds

+
∫ t

σ

T(t – s)
[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]
dw(t)

+
∑

σ<ti<t
T(t – ti)

[
Ii
(
ϕ(ti)

)
– Ii

(
ψ(ti)

)]
∥
∥
∥
∥

2

≤ 4E
∥
∥T(t – σ )

[
ϕ(σ ) – ψ(σ )

]∥
∥2

+ 4E
∥
∥
∥
∥

∫ t

σ

T(t – s)
[
f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)]
ds

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥

∫ t

σ

T(t – s)
[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]
dw(t)

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥

∑

σ<ti<t
T(t – ti)

[
Ii
(
ϕ(ti)

)
– Ii

(
ψ(ti)

)]
∥
∥
∥
∥

2

≤ 4M2e–2δ(t–σ )E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2
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+ 4E
[∫ t

σ

Me–δ(t–s)∥∥f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥∥ds
]2

+ 4
∫ t

σ

E
∥
∥T(t – s)

[
g
(
s,ϕ(s)

)
– g

(
s,ψ(s)

)]∥
∥2 ds

+ 4E
[ ∑

σ<ti<t
Me–δ(t–ti)

∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥
]2

≤ 4M2e–2δ(t–σ )E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2

+ 4E
[∫ t

σ

M2e–δ(t–s) ds
∫ t

σ

e–δ(t–s)∥∥f
(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥∥2 ds
]

+ 4
∫ t

σ

M2e–2δ(t–s)E
∥
∥g

(
s,ϕ(s)

)
– g

(
s,ψ(s)

)∥
∥2 ds

+ 4E
[( ∑

σ<ti<t
M2e–δ(t–ti)

) ∑

σ<ti<t
e–δ(t–ti)

∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥2

]

≤ 4M2e–δ(t–σ )E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2

+
4M2

δ

∫ t

σ

e–δ(t–s)E
∥
∥f

(
s,ϕ(s)

)
– f

(
s,ψ(s)

)∥
∥2 ds

+ 4M2
∫ t

σ

e–2δ(t–s)E
∥
∥g

(
s,ϕ(s)

)
– g

(
s,ψ(s)

)∥∥2 ds

+
4M2

1 – e–δγ

∑

σ<ti<t
e–δ(t–ti)E

∥
∥Ii

(
ϕ(ti)

)
– Ii

(
ψ(ti)

)∥
∥2

≤ 4M2e–δ(t–σ )E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2

+
[

4M2

δ
L1 + 4M2L2

]∫ t

σ

e–δ(t–s)E
∥
∥ϕ(s) – ψ(s)

∥
∥2 ds

+
4M2

1 – e–δγ
L

∑

σ<ti<t
e–δ(t–ti)E

∥
∥ϕ(ti) – ψ(ti)

∥
∥2.

So,

eδtE
∥
∥ϕ(t) – ψ(t)

∥
∥2

≤ 4M2eδσ E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2 +

[
4M2

δ
L1 + 4M2L2

]∫ t

σ

eδsE
∥
∥ϕ(s) – ψ(s)

∥
∥2 ds

+
4M2

1 – e–δγ
L

∑

σ<ti<t
eδti E

∥
∥ϕ(ti) – ψ(ti)

∥
∥2.

Let Υ (t) = eδtE‖ϕ(t) – ψ(t)‖2, then

Υ (t) ≤ 4M2Υ (σ ) +
[

4M2

δ
L1 + 4M2L2

]∫ t

σ

Υ (s) ds +
4M2

1 – e–δγ
L

∑

σ<ti<t
Υ (ti).
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By Lemma 3.1, we get

Υ (t) ≤ 4M2Υ (σ ) +
[

4M2

δ
L1 + 4M2L2

]∫ t

σ

Υ (s) ds +
4M2

1 – e–δγ
L

∑

σ<ti<t
Υ (ti)

≤ 4M2Υ (σ )
∏

σ<ti<t

(

1 +
4M2

1 – e–δγ
L
)

e
∫ t
σ ( 4M2

δ
L1+4M2L2) ds

= 4M2Υ (σ )
∏

σ<ti<t

(

1 +
4M2

1 – e–δγ
L
)

e( 4M2
δ

L1+4M2L2)(t–σ )

= 4M2Υ (σ )
(

1 +
4M2

1 – e–δγ
L
) t–σ

γ

e( 4M2
δ

L1+4M2L2)(t–σ )

= 4M2Υ (σ )e[ 1
γ ln(1+ 4M2

1–e–δγ
L)+ 4M2

δ
L1+4M2L2](t–σ ),

that is,

Υ (t) ≤ 4M2Υ (σ )e[ 1
γ ln(1+ 4M2

1–e–δγ
L)+ 4M2

δ
L1+4M2L2](t–σ ).

Therefore

eδtE
∥
∥ϕ(t) – ψ(t)

∥
∥2

≤ 4M2eδσ E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2e[ 1

γ ln(1+ 4M2
1–e–δγ

L)+ 4M2
δ

L1+4M2L2](t–σ ),

that is,

E
∥
∥ϕ(t) – ψ(t)

∥
∥2

≤ 4M2E
∥
∥ϕ(σ ) – ψ(σ )

∥
∥2e[ 1

γ ln(1+ 4M2
1–e–δγ

L)+ 4M2
δ

L1+4M2L2–δ](t–σ ).

Since

1
γ

ln

(

1 +
4M2

1 – e–δγ
L
)

+
4M2

δ
L1 + 4M2L2 – δ < 0,

Equation (8) has an exponentially stable square-mean piecewise almost automorphic mild
solution. �

4 Applications
Consider the following impulsive stochastic evolution equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t, x) = [ ∂2u(t,x)
∂x2 + 1

6 sin 1
2+cos t+cos

√
2t sin u(t, x)] dt

+ 1
3 sin 1

2+cos t+cos
√

2t sin u(t, x) dw(t), t ∈ R, t �= ti, i ∈ Z, x ∈ [0,π ],

�u(ti, x) = βi sin u(ti, x), i ∈ Z, x ∈ [0,π ],

u(t, 0) = u(t,π ) = 0, t ∈ R,

(9)
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where w(t) is a two-sided standard one-dimensional Brownian motion defined on the
filtered probability space (Ω , F , P, Ft), βi = 1

6 sin 1
2+cos i+cos

√
2i , ti = i + 1

3 | sin 1
2+cos i+cos

√
2i |

(ϕ(i) = 1
2+cos i+cos

√
2i ).

Let X = L2(0,π ), define the operators A : D(A) ⊆ X → X by Au = u′′. It is well known
that A is the infinitesimal generator of a semigroup {T(t) : t ≥ 0} on X and ‖T(t)‖ ≤ e–t

for t ≥ 0 with M = δ = 1, then condition (i) of Theorem 3.2 is satisfied. By Definition 2.3,
{tj

i : i ∈ Z}j∈Z are equipotentially almost automorphic sequence and

t1
i = ti+1 – ti

= 1 +
1
3

∣
∣
∣
∣sin

1
2 + cos(i + 1) + cos

√
2(i + 1)

∣
∣
∣
∣

–
1
3

∣
∣
∣
∣sin

1
2 + cos i + cos

√
2i

∣
∣
∣
∣

≥ 1 –
1
3

∣
∣
∣
∣sin

1
2 + cos(i + 1) + cos

√
2(i + 1)

– sin
1

2 + cos i + cos
√

2i

∣
∣
∣
∣

≥ 1 –
2
3

∣
∣
∣
∣sin

ϕ(i + 1) – ϕ(i)
2

cos
ϕ(i + 1) + ϕ(i)

2

∣
∣
∣
∣

> 1 –
2
3

=
1
3

.

Hence, γ = infi∈Z(ti+1 – ti) > 1
3 > 0.

Let f (t, u) = 1
6 sin 1

2+cos t+cos
√

2t sin u, g(t, u) = 1
3 sin 1

2+cos t+cos
√

2t sin u and Ii(u) = βi sin u,
then f , g ∈ AAT (R × L2(P, H), L2(P, H)) and {Ii(·) : i ∈ Z} is a square-mean almost auto-
morphic function sequence.

For any u, v, we have

E
∥
∥f (t, u) – f (t, v)

∥
∥2

= E
∥
∥
∥
∥

1
6

sin
1

2 + cos t + cos
√

2t
sin u –

1
6

sin
1

2 + cos t + cos
√

2t
sin v

∥
∥
∥
∥

2

= E
∥
∥
∥
∥

1
6

sin
1

2 + cos t + cos
√

2t
(sin u – sin v)

∥
∥
∥
∥

2

≤
[

1
6

sin
1

2 + cos t + cos
√

2t

]2

E‖ sin u – sin v‖2

≤ 1
36

E‖u – v‖2.

Similarly, E‖g(t, u) – g(t, v)‖2 ≤ 1
9 E‖u – v‖2, E‖Ii(u) – Ii(v)‖2 ≤ 1

36 E‖u – v‖2, then L1 = 1
36 ,

L2 = 1
9 , L = 1

36 . Therefore, condition (ii) of Theorem 3.2 is satisfied.
Since 3M2

δ2 L1 + 3M2

2δ
L2 + 3M2

(1–e–δγ )2 L = 3 × 1
36 + 3

2 × 1
9 + 3

(1–e–1/3)2 × 1
36 < 1, by Theorem 3.2,

Eq. (9) has a square-mean piecewise almost automorphic mild solution.
Also since

1
γ

ln

(

1 +
4M2

1 – e–δγ
L
)

+
4M2

δ
L1 + 4M2L2 – δ

= 3 ln

(

1 +
4

1 – e–1/3 × 1
36

)

+ 4 × 1
36

+ 4 × 1
9

– 1 < 0,
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by Theorem 3.3, Eq. (9) has an exponentially stable square-mean piecewise almost auto-
morphic mild solution.

5 Conclusion
In this paper, we mainly construct the square-mean piecewise almost automorphic func-
tion, and the existence and exponential stability of square-mean piecewise almost auto-
morphic mild solutions for impulsive stochastic evolution equations is proved by the the-
ory of semigroups of operators, the contraction mapping principle and the generalized
Gronwall–Bellman inequality. Finally, an interesting example is given to illustrate our re-
sults.
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